Mostrar el registro sencillo del ítem

dc.contributor.authorRamirez Monares, Jose Alfredo
dc.date.accessioned2025-01-10T15:52:35Z
dc.date.available2025-01-10T15:52:35Z
dc.date.issued2024-09-22es_MX
dc.identifier.isbn978-3-031-66730-5es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/30442
dc.description.abstractEstimating Stress Concentration Factors (SCF) guarantees resistance and durability criteria in structures and design components. Failure to correctly identify the SCFs could lead to premature material failure. In this chapter, eight regression models were used to predict the SCF. The regression models were multiple linear regression, random sample consensus, ridge regression, LASSO regression, elastic net, random forest regression, support vector regression, and polynomial regression. The models were trained on a dataset resulting from a two-dimensional Finite Ele ment Analysis from the Finite Element Method for different values of the parameters: large, width, and circular hole radius in a tensile plate. Least squares polynomial equations were fitted to these design points. The performance of the models was compared using the MSE, RMSE, MAE, MAPE, and R2 metrics. The random forest regression performed the best.es_MX
dc.description.urihttps://link.springer.com/book/10.1007/978-3-031-66731-2es_MX
dc.language.isoenes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectStress concentration factores_MX
dc.subjectRectangular plateses_MX
dc.subjectPolynomial curve fittinges_MX
dc.subjectArtificial intelligencees_MX
dc.subjectRegression modelses_MX
dc.subjectRandom sample consensuses_MX
dc.subjectRidge regressiones_MX
dc.subjectLASSO regressiones_MX
dc.subjectElastic Netes_MX
dc.subjectRandom forest regressiones_MX
dc.subjectSupport vector regressiones_MX
dc.subjectPolynomial regressiones_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleRegression Models for Estimating the Stress Concentration Factor of Rectangular Plateses_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina429-450es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisSuizaes_MX
dc.identifier.doihttps://doi.org/10.1007/978-3-031-66731-2_17es_MX
dc.contributor.coauthorFlorencia, Rogelio
dcrupi.titulolibroArtificial Intelligence in Prescriptive Analytics. Innovations in Decision Analysis, Intelligent Optimization, and Data-Driven Decisionses_MX
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09