Mostrar el registro sencillo del ítem

dc.date.accessioned2025-01-07T19:57:14Z
dc.date.available2025-01-07T19:57:14Z
dc.date.issued2024-11-27es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/30014
dc.description.abstractMalaria is a significant global health issue, especially in tropical regions. Accurate and rapid diagnosis is critical for effective treatment and reducing mortality rates. Traditional diagnostic methods, like blood smear microscopy, are time-intensive and prone to error. This study introduces a deep learning approach for classifying malaria-infected cells in blood smear images using convolutional neural networks (CNNs); Six CNN models were designed and trained using a large labeled dataset of malaria cell images, both infected and uninfected, and were implemented on the Jetson TX2 board to evaluate them. The model was optimized for feature extraction and classification accuracy, achieving 97.72% accuracy, and evaluated using precision, recall, and F1-score metrics and execution time. Results indicate deep learning significantly improves diagnostic time efficiency on embedded systems. This scalable, automated solution is particularly useful in resource-limited areas without access to expert microscopic analysis. Future work will focus on clinical validation.es_MX
dc.description.urihttps://www.mdpi.com/2227-7080/12/12/247es_MX
dc.language.isoen_USes_MX
dc.relation.ispartofProducto de investigación IADAes_MX
dc.relation.ispartofInstituto de Ciencias Biomédicases_MX
dc.subjectmalariaes_MX
dc.subjectimageses_MX
dc.subjectconvolutional neural networkes_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleMalaria Cell Image Classification Using Compact Deep Learning Architectures on Jetson TX2es_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiada.pnges_MX
dcrupi.institutoInstituto de Arquitectura Diseño y Artees_MX
dcrupi.cosechableSies_MX
dcrupi.norevista12es_MX
dcrupi.volumen12es_MX
dcrupi.nopagina1-12es_MX
dc.identifier.doihttps://doi.org/10.3390/technologies12120247es_MX
dc.contributor.coauthorMéndez-Gurrola, Iris Iddaly
dc.journal.titleTechnologieses_MX
dc.contributor.authorexternoAlonso-Ramírez, Adán-Antonio
dc.contributor.coauthorexternoBarranco-Gutiérrez, Alejandro-Israel
dc.contributor.coauthorexternoGutiérrez-López, Marcos
dc.contributor.coauthorexternoPrado-Olivarez, Juan
dc.contributor.coauthorexternoPérez-Pinal, Francisco-Javier
dc.contributor.coauthorexternoVillegas-Saucillo, J. Jesús
dc.contributor.coauthorexternoGarcía-Muñoz, Jorge-Alberto
dc.contributor.coauthorexternoGarcía-Capulín, Carlos-Hugo
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09