Mostrar el registro sencillo del ítem

dc.date.accessioned2024-01-15T20:36:57Z
dc.date.available2024-01-15T20:36:57Z
dc.date.issued2023-09-23es_MX
dc.identifier.isbn978-3-031-38324-3es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/27869
dc.description.abstractImage processing has gained notoriety over the last few years in performing various tasks through deep learning (DL) algorithms, such as face recognition and identity verification. Unfortunately, most of them require a large set of images for training, usually manually labeled, which is a costly task both in time and effort, not to mention being prone to human error. Data Augmentation (DA) techniques have been used to mitigate this situation, as they generate images by applying variations to real image sets. This chapter presents a brief literature review on variousDAmethods dedicated to image generation. The technique that has presented outstanding results in the task of generating artificial images is Generative Adversarial Networks (GANs). Some recent research papers in which GANs have been used for the generation of artificial images are presented. General aspects of GANs, such as their definition, architecture, training, and challenges, are described. Additionally, the implementation of aGANarchitecture for the generation of artificial face images from a public set of images is presented. The need for a great computational capacity to generate images with great sharpness and realism is highlighted.es_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-031-38325-0_9es_MX
dc.language.isoenes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectFace image generation · Data augmentation · Generative Adversarial Networkses_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleData Augmentation Techniques for Facial Image Generation: A Brief Literature Reviewes_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina185-209es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisSuizaes_MX
dc.identifier.doihttps://doi.org/10.1007/978-3-031-38325-0_9es_MX
dc.contributor.coauthorFlorencia, Rogelio
dc.contributor.coauthorGarcía, Vicente
dc.contributor.coauthorSánchez Solís, Julia Patricia
dcrupi.titulolibroData Analytics and Computational Intelligence: Novel Models, Algorithms and Applicationses_MX
dc.contributor.authorexternoCazares, Blanca Elena
dc.contributor.alumnoprincipal206599es_MX
dcrupi.impactosocialNoes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSeguridad humanaes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09