Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez Solís, Julia Patricia
dc.date.accessioned2024-01-15T20:32:01Z
dc.date.available2024-01-15T20:32:01Z
dc.date.issued2023-09-29es_MX
dc.identifier.isbn978-3-031-40687-4es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/27867
dc.description.abstractFirst appearing in Wuhan City, Hubei region, China, the COVID-19 disease has threatened public health, trade, and the global economy. The World Health Organization has recommended testing for COVID-19 using a Reverse Transcription Polymerase Chain Reaction (RT-PCR) protocol to address diverse viral genes. Nevertheless, these test protocols demand RNA extraction kits, expensive machines, and trained technicians to operate them. Therefore, alternatives that are faster to diagnose, cheaper, and easier to access for patients and medical personnel are needed. This chapter presents a comparative analysis of machine-learning techniques for detecting COVID-19. The following four classifiers were trained, tested, and compared using the cross-validation technique with five folds: Random Forest, Stochastic Gradient Descent, Naive Bayes, and K- Nearest Neighbors. The dataset used in this project was the one the Government of Mexico has made available on the Internet on the Datos Abiertos Dirección General de Epidemiología web page. The results indicate that the Random Forest classifier performs best based on the area under the curve and the precision-recall curve metrics.es_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-031-40688-1_15es_MX
dc.language.isoenes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectCOVID-19 · Random forest · Stochastic gradient descent · Naive Bayes · K-nearest neighbors · Cross-validation techniquees_MX
dc.subject.otherinfo:eu-repo/classification/cti/3es_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleA Comparative Study of Machine Learning Methods to Predict COVID-19es_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina323-345es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisSuizaes_MX
dc.identifier.doihttps://doi.org/10.1007/978-3-031-40688-1_15es_MX
dc.contributor.coauthorOlmos Sanchez, Karla Miroslava
dc.contributor.coauthorGonzalez Demoss, Martha Victoria
dc.contributor.alumno154075es_MX
dcrupi.titulolibroInnovations in Machine and Deep Learning Case Studies and Applicationses_MX
dc.contributor.coauthorexternoMata Gallegos, Juan D.
dc.contributor.alumnoprincipal8555es_MX
dcrupi.impactosocialNoes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesNingunoes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09