Mostrar el registro sencillo del ítem

dc.contributor.authorTorres, Vianey
dc.date.accessioned2024-01-08T14:53:55Z
dc.date.available2024-01-08T14:53:55Z
dc.date.issued2023-03-08es_MX
dc.identifier.isbn978-3-031-29774-8es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/26735
dc.description.abstractOne of the most common cancers in humans is skin cancer [1], classified into two large groups: non-melanoma and melanoma [2, 3]. The latter is the most lethal type of cancer, as it ranks third in mortality in Mexico with 7.9% and represents 75% of the causes of death from skin cancer in the country. A study conducted between 2014 and 2018 in Mexico yielded a total of 3973 patients who died from melanoma [2]. Also, according to the American Society of Clinical Oncology ASCO and [4], early diagnosis is essential to combat this type of cancer. There are techniques that are used to make this diagnosis, such as visual inspection which is a non-invasive technique and invasive techniques such as biopsy, which help determine whether a skin lesion is benign or malignant [5]. In the present work, we propose the development of a dermatoscopic image classification model focused on melanoma detection based on deep learning. This artificial intelligence methodology is chosen as it has been shown to be robust and with high degrees of accuracy in image classification in any context and in particular in medical images. As will be observed below, the proposed model achieves an accuracy close to 90% with test images with an area under the receiver operating characteristic (ROC) curve of 0.95, which demonstrates a high performance in the classification task of the constructed model.es_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-031-29775-5_3es_MX
dc.language.isoenes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectMelanoma Detectiones_MX
dc.subjectConvolutional Neural Networkes_MX
dc.subjectClassificationes_MX
dc.subjectDeep Learninges_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleIndustry 4.0 in the Health Sector: System for Melanoma Detectiones_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina43-70es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisSuizaes_MX
dc.identifier.doihttps://doi.org/10.1007/978-3-031-29775-5_3es_MX
dc.contributor.coauthorDíaz Román, José David
dc.contributor.coauthorSilva Aceves, Jesus Martin
dc.contributor.coauthorNoriega, Salvador
dc.contributor.alumno228203es_MX
dcrupi.titulolibroInnovation and Competitiveness in Industry 4.0 Based on Intelligent Systemses_MX
dc.contributor.coauthorexternoNava Dino, Claudia Georgina
dcrupi.impactosocialNoes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09