Mostrar el registro sencillo del ítem
Emotional Diagnosis for Employees Within the Framework of Industry 4.0: A Case Study in Ciudad Juarez
dc.contributor.author | Roldan Castellanos, Abraham | |
dc.date.accessioned | 2023-12-28T18:41:47Z | |
dc.date.available | 2023-12-28T18:41:47Z | |
dc.date.issued | 2023-06-17 | es_MX |
dc.identifier.isbn | 978-3-031-29774-8 | es_MX |
dc.identifier.uri | http://cathi.uacj.mx/20.500.11961/26605 | |
dc.description.abstract | The Industrial 4.0 revolution has promoted a considerable variety of changes in labor management at all levels, from the technical parameters of the industry to drastic modifications in the work environment. However, the human aspect has received little benefit compared with its technical counterpart, especially in the area of healthcare. Understanding and treating the clinical states of employees in a telemetric or technological manner has enhanced a real possibility, the increase of the welfare of the working personnel. But the discipline of biometrical emotional data analytics is increasable disperse because of its significant difficulty in the interpretation of intense amounts of data and segregation between emotions within a standard emotional range. The following chapter presents a study case of an emotional detection implementation in an operational environment too as a theoretical background for such executions. Therefore, this aims to show an approach toward the general trends and tools for biological diagnostics in industrial settings and capacities and emphasizes the capabilities and reliability states of smart diagnostics. This implementation was done by comparing and analyzing AI methods for classification to obtain the most proper possible emotional diagnosis, providing a future framework for further development and research of a similar phenomenon and its bifurcations. | es_MX |
dc.description.uri | https://link.springer.com/chapter/10.1007/978-3-031-29775-5_11 | es_MX |
dc.language.iso | en_US | es_MX |
dc.publisher | Springer | es_MX |
dc.relation.ispartof | Producto de investigación IIT | es_MX |
dc.relation.ispartof | Instituto de Ingeniería y Tecnología | es_MX |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 México | * |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 México | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/mx/ | * |
dc.subject | Industry 4.0 | es_MX |
dc.subject | Biometrics | es_MX |
dc.subject | Healthcare | es_MX |
dc.subject | Deep Neural Networks | es_MX |
dc.subject | Machine Learning | es_MX |
dc.subject | Artificial Intelligence | es_MX |
dc.subject.other | info:eu-repo/classification/cti/7 | es_MX |
dc.title | Emotional Diagnosis for Employees Within the Framework of Industry 4.0: A Case Study in Ciudad Juarez | es_MX |
dc.type | Capítulo de libro | es_MX |
dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | es_MX |
dcrupi.instituto | Instituto de Ingeniería y Tecnología | es_MX |
dcrupi.cosechable | Si | es_MX |
dcrupi.subtipo | Investigación | es_MX |
dcrupi.nopagina | 243-273 | es_MX |
dcrupi.alcance | Internacional | es_MX |
dcrupi.pais | Suiza | es_MX |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-29775-5_11 | es_MX |
dc.contributor.coauthor | Perez Olguin, Ivan Juan Carlos | |
dc.contributor.coauthor | Méndez-González, Luis Carlos | |
dc.contributor.coauthor | Vidal Portilla, Luis Ricardo | |
dcrupi.titulolibro | Innovation and Competitiveness in Industry 4.0 Based on Intelligent Systems | es_MX |
dcrupi.colaboracionext | No | es_MX |
dcrupi.impactosocial | Si, se presenta una metodología para medir emociones en ambientes de trabajo mediante el uso de inteligencia artificial. | es_MX |
dcrupi.vinculadoproyext | No | es_MX |
dcrupi.pronaces | Salud | es_MX |
dcrupi.vinculadoproyint | No | es_MX |
Archivos en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Capítulo en libro [232]