Mostrar el registro sencillo del ítem

dc.contributor.authorRoldan Castellanos, Abraham
dc.date.accessioned2023-12-28T18:41:47Z
dc.date.available2023-12-28T18:41:47Z
dc.date.issued2023-06-17es_MX
dc.identifier.isbn978-3-031-29774-8es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/26605
dc.description.abstractThe Industrial 4.0 revolution has promoted a considerable variety of changes in labor management at all levels, from the technical parameters of the industry to drastic modifications in the work environment. However, the human aspect has received little benefit compared with its technical counterpart, especially in the area of healthcare. Understanding and treating the clinical states of employees in a telemetric or technological manner has enhanced a real possibility, the increase of the welfare of the working personnel. But the discipline of biometrical emotional data analytics is increasable disperse because of its significant difficulty in the interpretation of intense amounts of data and segregation between emotions within a standard emotional range. The following chapter presents a study case of an emotional detection implementation in an operational environment too as a theoretical background for such executions. Therefore, this aims to show an approach toward the general trends and tools for biological diagnostics in industrial settings and capacities and emphasizes the capabilities and reliability states of smart diagnostics. This implementation was done by comparing and analyzing AI methods for classification to obtain the most proper possible emotional diagnosis, providing a future framework for further development and research of a similar phenomenon and its bifurcations.es_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-031-29775-5_11es_MX
dc.language.isoen_USes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectIndustry 4.0es_MX
dc.subjectBiometricses_MX
dc.subjectHealthcarees_MX
dc.subjectDeep Neural Networkses_MX
dc.subjectMachine Learninges_MX
dc.subjectArtificial Intelligencees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleEmotional Diagnosis for Employees Within the Framework of Industry 4.0: A Case Study in Ciudad Juarezes_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina243-273es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisSuizaes_MX
dc.identifier.doihttps://doi.org/10.1007/978-3-031-29775-5_11es_MX
dc.contributor.coauthorPerez Olguin, Ivan Juan Carlos
dc.contributor.coauthorMéndez-González, Luis Carlos
dc.contributor.coauthorVidal Portilla, Luis Ricardo
dcrupi.titulolibroInnovation and Competitiveness in Industry 4.0 Based on Intelligent Systemses_MX
dcrupi.colaboracionextNoes_MX
dcrupi.impactosocialSi, se presenta una metodología para medir emociones en ambientes de trabajo mediante el uso de inteligencia artificial.es_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09