Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Román, José David
dc.date.accessioned2023-12-28T18:40:33Z
dc.date.available2023-12-28T18:40:33Z
dc.date.issued2023-08-22es_MX
dc.identifier.isbn978-3-031-34600-2es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/26604
dc.description.abstractSmart cities are transforming the way people live, work, and socialize. Smart cities offer a wide range of opportunities to improve the quality of life for citizens, and smart healthcare is one of the most promising areas. In this regard, smart cities can play a key role in providing a robust infrastructure and data platform for healthcare innovation. For example, the implementation of sensor technologies and data analytics in smart cities can enable healthcare professionals to gather valuable information about population health, identify disease patterns and trends, and act preventively to address public health challenges. In addition, smart cities can integrate telemedicine technologies to provide remote, real-time medical care, which can be especially useful in remote or hard-to-reach areas. Furthermore, the internet of things and big data technologies can be merged with smart health to address some of the issues with increasing the accessibility, affordability, and availability of healthcare. The connection between smart cities and smart healthcare has the potential to significantly improve healthcare and the well-being of the populationes_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-031-34601-9_14es_MX
dc.language.isoenes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectCOVID-19es_MX
dc.subjectLung lesion segmentationes_MX
dc.subjectComputed tomographyes_MX
dc.subjectDeep learninges_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleSegmentation of Lung Lesions Caused by COVID-19 in Computed Tomography Images Using Deep Learninges_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina237-259es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisSuizaes_MX
dc.identifier.doihttps://doi.org/10.1007/978-3-031-34601-9es_MX
dc.contributor.coauthorMederos, Boris
dc.contributor.coauthorCota Ruiz, Juan De Dios
dc.contributor.coauthorEnriquez Aguilera, Francisco Javier
dc.contributor.alumno168463es_MX
dcrupi.titulolibroInternet of Everything for Smart City and Smart Healthcare Applicationses_MX
dcrupi.impactosocialNoes_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09