Mostrar el registro sencillo del ítem

dc.date.accessioned2023-01-11T20:26:21Z
dc.date.available2023-01-11T20:26:21Z
dc.date.issued2022-06-22es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/24861
dc.description.abstractWhen cranial bone needs to be removed or lost, subsequent reconstruction of the defect is necessary to protect the underlying brain, correct aesthetic deformities, or both. Cranioplasty surgical procedures are performed to correct the skull defects requiring reconstruction of form and function. Personalized cranial implants can repair severe injuries to the skull can be done through This study presents the optimization of cranial titanium implants. A total of sixty different models were subjected to a simulation by Finite Element Analysis (FEA) applying the mechanical properties of a grade 5 titanium alloy (Ti6Al4V) implant material. The material was subjected to intracranial pressure (ICP) conditions, with a typical range (10 mm Hg) and twelve fixation points in the boundary conditions. An artificial neural network (ANN) was created to connect the designs, obtaining maximum displacements. Optimal designs were obtained using a generalized reduced gradient that minimizes the amount of material, maintaining as a restriction a maximum displacement of 0.1 mm for the 5th to 95th percentiles, which represent the group of individuals under study.es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IADAes_MX
dc.relation.ispartofInstituto de Arquitectura Diseño y Artees_MX
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectCranial implantes_MX
dc.subjectArtificial neural network (ANN)es_MX
dc.subjectGeneralized reduced gradientes_MX
dc.subjectmethod (GRG)es_MX
dc.subjectOptimizationes_MX
dc.subjectTitanium alloy (Ti6Al4V)es_MX
dc.subjectFinite Element Analysis (FEA)es_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleOptimization of titanium cranial implant designs using generalized reduced gradient method, analysis of finite elements, and artificial neural networkses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiada.pnges_MX
dcrupi.institutoInstituto de Arquitectura Diseño y Artees_MX
dcrupi.cosechableSies_MX
dcrupi.norevista2es_MX
dcrupi.volumen38es_MX
dcrupi.nopagina1-26es_MX
dc.identifier.doi10.23967/j.rimni.2022.06.004es_MX
dc.contributor.coauthorHernandez Arellano, Juan Luis
dc.journal.titleCulcYTes_MX
dc.contributor.authorexternoMartinez Valencia, Mariana Itzel
dc.contributor.coauthorexternoHernandez Navarro, Carolina
dc.contributor.coauthorexternoVazquez Lopez, Jose Antonio
dc.contributor.coauthorexternoJimenez Garcia, Jose Alfredo
dc.contributor.coauthorexternoDiaz Leon, Jose Luis
dcrupi.colaboracionextnoes_MX
dcrupi.impactosocialnoes_MX
dcrupi.vinculadoproyextnoes_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintnoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09