Mostrar el registro sencillo del ítem

Accedido2022-01-10T17:52:59Z
Disponible2022-01-10T17:52:59Z
Fecha de publicación2021-11-06es_MX
Identificador de objeto (URI)http://cathi.uacj.mx/20.500.11961/19960
Resumen/AbstractGPS sensors are widely used to know a vehicle’s location and to track its route. Although GPS sensor technology is advancing, they present systematic failures depending on the environmental conditions to which they are subjected. To tackle this problem, we propose an intelligent system based on fuzzy logic, which takes the information from the sensors and correct the vehicle’s absolute position according to its latitude and longitude. This correction is performed by two fuzzy systems, one to correct the latitude and the other to correct the longitude, which are trained using the MATLAB ANFIS tool. The positioning correction system is trained and tested with two different datasets. One of them collected with a Pmod GPS sensor and the other a public dataset, which was taken from routes in Brazil. To compare our proposal, an unscented Kalman filter (UKF) was implemented. The main finding is that the proposed fuzzy systems achieve a performance of 69.2% higher than the UKF. Furthermore, fuzzy systems are suitable to implement in an embedded system such as the Raspberry Pi 4. Another finding is that the logical operations facilitate the creation of non-linear functions because of the ‘if else’ structure. Finally, the existence justification of each fuzzy system section is easy to understand.es_MX
Descripción URIhttps://doi.org/10.3390/math9212818es_MX
Idioma ISOenes_MX
Referencias físicas o lógicasProducto de investigación IADAes_MX
Referencias físicas o lógicasInstituto de Arquitectura Diseño y Artees_MX
Tipo de licenciaAtribución-NoComercial-SinDerivadas 2.5 México*
Tipo de licenciaAtribución-NoComercial-SinDerivadas 2.5 México*
Enlace a licenciahttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
Temalocalizationes_MX
Temafuzzy systemses_MX
Temaunscented Kalman filteres_MX
Temaadaptive neuro-fuzzy inference system (ANFIS)es_MX
TemaGPSes_MX
Temaautonomous navigationes_MX
Área de conocimiento CONACYTinfo:eu-repo/classification/cti/7es_MX
TítuloGPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicleses_MX
Tipo de productoArtículoes_MX
Imagen repositoriohttp://ri.uacj.mx/vufind/thumbnails/rupiiada.pnges_MX
Instituto (dcrupi)Instituto de Arquitectura Diseño y Artees_MX
CosechableSies_MX
No. de revista21es_MX
Volumen9es_MX
Rango de páginas1-18es_MX
Identificador DOIhttps://doi.org/10.3390/math9212818es_MX
CoautorMéndez-Gurrola, Iris Iddaly
Título de revistaMathematicses_MX
dc.contributor.authorexternoCorrea-Caicedo, Pedro J
dc.contributor.coauthorexternoRostro-González, Horacio
dc.contributor.coauthorexternoRodriguez-Licea, Martin A
dc.contributor.coauthorexternoGutiérrez-Frías, Óscar Octavio
dc.contributor.coauthorexternoHerrera-Ramírez, Carlos Alonso
dc.contributor.coauthorexternoCano-Lara, Miroslava
dc.contributor.coauthorexternoBarranco-Gutiérrez, Alejandro I
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

No Thumbnail [100%x80]
No Thumbnail [100%x80]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09