Mostrar el registro sencillo del ítem

dc.date.accessioned2022-01-10T17:52:59Z
dc.date.available2022-01-10T17:52:59Z
dc.date.issued2021-11-06es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/19960
dc.description.abstractGPS sensors are widely used to know a vehicle’s location and to track its route. Although GPS sensor technology is advancing, they present systematic failures depending on the environmental conditions to which they are subjected. To tackle this problem, we propose an intelligent system based on fuzzy logic, which takes the information from the sensors and correct the vehicle’s absolute position according to its latitude and longitude. This correction is performed by two fuzzy systems, one to correct the latitude and the other to correct the longitude, which are trained using the MATLAB ANFIS tool. The positioning correction system is trained and tested with two different datasets. One of them collected with a Pmod GPS sensor and the other a public dataset, which was taken from routes in Brazil. To compare our proposal, an unscented Kalman filter (UKF) was implemented. The main finding is that the proposed fuzzy systems achieve a performance of 69.2% higher than the UKF. Furthermore, fuzzy systems are suitable to implement in an embedded system such as the Raspberry Pi 4. Another finding is that the logical operations facilitate the creation of non-linear functions because of the ‘if else’ structure. Finally, the existence justification of each fuzzy system section is easy to understand.es_MX
dc.description.urihttps://doi.org/10.3390/math9212818es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IADAes_MX
dc.relation.ispartofInstituto de Arquitectura Diseño y Artees_MX
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/mx/*
dc.subjectlocalizationes_MX
dc.subjectfuzzy systemses_MX
dc.subjectunscented Kalman filteres_MX
dc.subjectadaptive neuro-fuzzy inference system (ANFIS)es_MX
dc.subjectGPSes_MX
dc.subjectautonomous navigationes_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleGPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicleses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiada.pnges_MX
dcrupi.institutoInstituto de Arquitectura Diseño y Artees_MX
dcrupi.cosechableSies_MX
dcrupi.norevista21es_MX
dcrupi.volumen9es_MX
dcrupi.nopagina1-18es_MX
dc.identifier.doihttps://doi.org/10.3390/math9212818es_MX
dc.contributor.coauthorMéndez-Gurrola, Iris Iddaly
dc.journal.titleMathematicses_MX
dc.contributor.authorexternoCorrea-Caicedo, Pedro J
dc.contributor.coauthorexternoRostro-González, Horacio
dc.contributor.coauthorexternoRodriguez-Licea, Martin A
dc.contributor.coauthorexternoGutiérrez-Frías, Óscar Octavio
dc.contributor.coauthorexternoHerrera-Ramírez, Carlos Alonso
dc.contributor.coauthorexternoCano-Lara, Miroslava
dc.contributor.coauthorexternoBarranco-Gutiérrez, Alejandro I
dcrupi.pronacesNingunoes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 México
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 México

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09