Mostrar el registro sencillo del ítem

dc.contributor.authorRivera Zarate, Gilberto
dc.date.accessioned2021-08-03T18:38:54Z
dc.date.available2021-08-03T18:38:54Z
dc.date.issued2021-07-21es_MX
dc.identifier.isbn978-3-030-68662-8es_MX
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/18648
dc.description.abstractNowadays, the Order Picking Problem (OPP) represents the most costly and time-consuming operation of warehouse management, with an average ranging from 50 to 75% of the total warehouse management cost. So, OPP is being analysed to improve logistics operations in companies. The OPP consists of dispatching a set of products, allocated in specific places in a warehouse, based in a group of customer orders. In most traditional warehouses, the optimisation methods of order picking operations are associated with time, whose model is based on the Traveling Salesperson Problem (TSP). The TSP is considered as an NP-Hard problem; thus, the development of metaheuristics approaches is justified. This chapter presents a comparison among three different optimisation metaheuristic approaches that solve the OPP. An analysis is used to evaluate and compare ant colony optimisation, elephant herding optimisation, and the bat algorithm. This study considers the number of picking aisles, the number of extra cross aisles, the number of items in the order, and the standard deviation in both the x and y-axis of the product distribution in the warehouse.es_MX
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-030-68663-5_13es_MX
dc.language.isoenes_MX
dc.publisherSpringeres_MX
dc.relation.ispartofProducto de investigación IITes_MX
dc.relation.ispartofInstituto de Ingeniería y Tecnologíaes_MX
dc.subjectOrder picking problemes_MX
dc.subjectAnt colony optimisationes_MX
dc.subjectBat algorithmes_MX
dc.subjectElephant herding optimisationes_MX
dc.subjectTraveling salesperson problemes_MX
dc.subjectSwarm intelligencees_MX
dc.subject.otherinfo:eu-repo/classification/cti/7es_MX
dc.titleMetaheuristics for Order Picking Optimisation: A Comparison Among Three Swarm-Intelligence Algorithmses_MX
dc.typeCapítulo de libroes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.pnges_MX
dcrupi.institutoInstituto de Ingeniería y Tecnologíaes_MX
dcrupi.cosechableSies_MX
dcrupi.subtipoInvestigaciónes_MX
dcrupi.nopagina177-194es_MX
dcrupi.alcanceInternacionales_MX
dcrupi.paisSwitzerlandes_MX
dc.identifier.doidoi.org/10.1007/978-3-030-68663-5_13es_MX
dc.contributor.coauthorFlorencia, Rogelio
dc.contributor.coauthorGarcía, Vicente
dc.contributor.coauthorGonzalez Demoss, Martha Victoria
dc.contributor.coauthorSánchez Solís, Julia Patricia
dc.lgacOPTIMIZACIÓN INTELIGENTEes_MX
dc.cuerpoacademicoInteligencia Artificial Aplicadaes_MX
dcrupi.titulolibroTechnological and Industrial Applications Associated With Industry 4.0es_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09