Mostrar el registro sencillo del ítem

dc.contributor.authorGutiérrez, Guadalupe
dc.date.accessioned2019-01-11T18:17:52Z
dc.date.available2019-01-11T18:17:52Z
dc.date.issued2018-06-19
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/5676
dc.description.abstractThe exponential expansion of sentiment analysis is mainly due to the interest of companies to obtainment users’ views about products and services. Likewise, sentiment analysis has been widely and successfully used in publicity and selling strategies as well as behaviour patterns and user preferences identification. In the same way, has been applied to educational areas to increase the learning, and e-learning quality through the mining analysis data on teaching performance assessment or student’s comments. This work describes the development and evaluating the process of a Model called “SocialMining“, which is focused on higher education with the purpose of improve teaching techniques of teachers and recommend courses for teacher improvement, through teacher performance evaluation made by students comments. The SocialMining model analyze students’ comments by means representative machine learning algorithms such as: Support Vector Machines and Random Forest. We applied metrics as evaluation measure to measuring the performance of algorithms. Finally, we have implemented this model in Universidad Politécnica de Aguascalientes (Mexico) and the results obtained show that it is feasible to perform sentiment analysis to classify comments of Teacher Performance Assessment using Machine Learning with high accuracy (85%).es_MX
dc.description.urihttps://ijcopi.org/index.php/ojs/article/view/99es_MX
dc.description.urihttps://ijcopi.org/index.php/ojs/issue/view/26es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación ICSAes_MX
dc.relation.ispartofInstituto de Ciencias Sociales y Administraciónes_MX
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectInteligencia Artificial Aplicada, Smart Citieses_MX
dc.subject.otherinfo:eu-repo/classification/cti/1es_MX
dc.titleMining: Students Comments about Teacher Performance Assessment using Machine Learning Algorithmses_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiicsa.pnges_MX
dcrupi.institutoInstituto de Ciencias Sociales y Administraciónes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista3es_MX
dcrupi.volumen9es_MX
dcrupi.nopagina26-40es_MX
dc.contributor.coauthorCanul-Reich, Juana
dc.contributor.coauthorMargain, Lourdes
dc.contributor.coauthorPonce, Julio
dc.journal.titleInternational Journal of Combinatorial Optimization Problems and Informatics,es_MX
dc.lgacEstudios Regionaleses_MX
dc.cuerpoacademicoHistoria, Sociedad y Cultura Regionales_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09