Mostrar el registro sencillo del ítem

dc.contributor.authorEstrada, Elsa
dc.date.accessioned2019-01-07T22:03:20Z
dc.date.available2019-01-07T22:03:20Z
dc.date.issued2018-08-07
dc.identifier.urihttp://cathi.uacj.mx/20.500.11961/5223
dc.description.abstractn Smart cities it is essential the development of information systems that collaborate in the measurement of the urban surroundings towards the cities’ sustainability. In this research, for the key performance indicators it is proposed a pattern’s visualization of efficiency metrics tool, utilizing the auto learning techniques “machine learning”. The objective is to give support to the decision making throughout the georeferenced analysis exploiting the Open Data. The research was applied to the primary public schools data study case, including four stages: the study of metrics, the search of the data model, the test of territorial dependency, and the development of the tool that applies the grouping techniques or clustering to compare the development and school resources by zone. In the tool, the kmeans algorithm is implemented with label as validation method to select the more relevant centroids to display on a map.es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación ICSAes_MX
dc.relation.ispartofInstituto de Ciencias Sociales y Administraciónes_MX
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectSmart City tools, Clustering for the georeferenced analysis of the Open Data, Smart City Metrics for the Education Sustainabilityes_MX
dc.subject.otherinfo:eu-repo/classification/cti/1es_MX
dc.titleSmart City Visualization Tool for the Open Data Georeferenced Analysis Utilizing Machine Learninges_MX
dc.typeArtículoes_MX
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiicsa.pnges_MX
dcrupi.institutoInstituto de Ciencias Sociales y Administraciónes_MX
dcrupi.cosechableSies_MX
dcrupi.norevista9es_MX
dcrupi.volumen2es_MX
dcrupi.nopagina25-40es_MX
dc.identifier.doihttps://ijcopi.org/index.php/ojs/article/view/93es_MX
dc.contributor.coauthorMaciel, Rocío
dc.contributor.coauthorOchoa, Carlos Alberto
dc.contributor.coauthorLoranca, Beatriz
dc.contributor.coauthorOliva, Diego
dc.contributor.coauthorLarios, Víctor
dc.journal.titleInternational Journal of Combinatorial Optimization Problems and Informatics,es_MX
dc.lgacEstudios Regionaleses_MX
dc.cuerpoacademicoHistoria, Sociedad y Cultura Regionales_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09