Mostrar el registro sencillo del ítem

dc.contributor.authorRodas Osollo, Jorge Enrique
dc.date.accessioned2026-01-07T19:18:03Z
dc.date.available2026-01-07T19:18:03Z
dc.date.issued2025-11-17es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/33368
dc.description.abstractThe Thin Line: Turning Small Data into Big Knowledge introduces the Knowledge Discovery in Serial Measures (KDSM) methodology—a hybrid epistemic framework that bridges statistics and artificial intelligence to extract meaningful, actionable insights from minimal, non-independent datasets in Complex Informal Structure Domains (CISDs). These domains—marked by tacit knowledge, ambiguity, and expert-driven interpretation—defy conventional analytical approaches yet harbor critical understanding in fields such as psychiatry, education, and social policy. KDSM addresses this challenge through three phases: Baseline Analysis (establishing individual pre-intervention profiles), Event Effect Analysis (transforming data into interpretable differences), and Knowledge Production (merging expert-guided clustering with contextual variables). Applied case studies demonstrate KDSM’s capacity to reveal dynamic, non-linear patterns—such as fluctuating cognitive responses during electroconvulsive therapy or distinct temporal trajectories in employability training outcomes—thereby overcoming the limitations of both oversimplified averaging and data-hungry AI models. Beyond its technical innovation, KDSM embodies a philosophical stance aligned with the Cognitive Era: it affirms the value of singularity, the generative power of difference, and the profound knowledge hidden within small data. In an age dominated by big data’s homogenizing impulse, KDSM offers a counterpoint—listening attentively to the minimal, not to amplify volume, but to illuminate essence.es_MX
dc.description.urihttps://medium.com/@a392513/the-thin-line-turning-small-data-into-big-knowledge-64f148267541es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IIT
dc.relation.ispartofInstituto de Ingeniería y Tecnología
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectArtificial Intelligence and Statisticses_MX
dc.subjectEpistemology and Philosophy of Sciencees_MX
dc.subjectData Science and Complexityes_MX
dc.subjectCognition and the Cognitive Eraes_MX
dc.subjectInnovation in Research Methodologieses_MX
dc.subject.otherinfo:eu-repo/classification/cti/1es_MX
dc.titleThe Thin Line: Turning Small Data into Big Knowledgees_MX
dc.typeDivulgación
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.png
dcrupi.institutoInstituto de Ingeniería y Tecnología
dcrupi.cosechableNo
dcrupi.subtipoInvestigación
dcrupi.alcanceInternacionales_MX
dcrupi.institucionextMediumes_MX
dcrupi.tipoparticipacionInternetes_MX
dcrupi.impactosocialSi.es_MX
dcrupi.vinculadoproyextThis article delivers vital social impact by empowering fields like psychiatry and social policy with KDSM, a methodology that ethically extracts profound insight from the small, complex data of human experience where big data fails. By valuing singularity and expert judgment, it shifts the paradigm from data quantity to contextual depth, ensuring critical decisions in care and education are informed by nuanced, individualised understanding rather than statistical oversimplification, thus humanising data-driven progress.es_MX
dcrupi.pronacesSaludes_MX
dcrupi.vinculadoproyintNoes_MX
dcrupi.difusionInternetes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09