Mostrar el registro sencillo del ítem
The Thin Line: The Hybrid Model Bringing Power Measurement to Every Indoor Cyclist
| dc.contributor.author | Rodas Osollo, Jorge Enrique | |
| dc.date.accessioned | 2026-01-07T19:12:08Z | |
| dc.date.available | 2026-01-07T19:12:08Z | |
| dc.date.issued | 2025-11-03 | es_MX |
| dc.identifier.uri | https://cathi.uacj.mx/20.500.11961/33365 | |
| dc.description.abstract | The Thin Line: The Hybrid Model Bringing Power Measurement to Every Indoor Cyclist presents the Hybrid Linear Regression Model (HLRM)—a scientifically grounded yet human-centred solution for estimating cycling power without a physical power meter. Designed for accessibility, the HLRM leverages widely available inputs—heart rate, cadence, body weight, and reference power—to deliver real-time power estimates in watts with a standard error of approximately ±4.8 W. Developed from empirical data collected across 40 participants (ages 38–84) and refined through robust statistical methods inspired by Huber’s (1964) theory of robust estimation, the model incorporates both linear and quadratic physiological components to reflect the non-linear relationship between effort and power output. By integrating heuristic physiological insights with rigorous regression techniques—including variable simplification, centering, and outlier resistance—the HLRM achieves both high accuracy and interpretability. Validated in real-world conditions and optimized for smartphone-based applications, the model enables cyclists to access performance metrics such as power, energy expenditure, and training zones using only basic sensors. While limitations include dependence on heart-rate sensor fidelity and optimal performance near 80 RPM, the HLRM represents a significant step toward democratizing performance science. More than a computational tool, it embodies a vision of ethical innovation—where precision meets inclusivity, and every pedal stroke becomes a measurable, meaningful act of human energy. | es_MX |
| dc.description.uri | https://medium.com/@a392513/the-thin-line-the-hybrid-model-bringing-power-measurement-to-every-indoor-cyclist-75b0b5e51060 | es_MX |
| dc.language.iso | en | es_MX |
| dc.relation.ispartof | Producto de investigación IIT | |
| dc.relation.ispartof | Instituto de Ingeniería y Tecnología | |
| dc.rights | CC0 1.0 Universal | * |
| dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
| dc.subject | Data Science | es_MX |
| dc.subject | Applied Mathematics | es_MX |
| dc.subject | Regression Models | es_MX |
| dc.subject | Wearable Technology | es_MX |
| dc.subject | Sports Science | es_MX |
| dc.subject.other | info:eu-repo/classification/cti/1 | es_MX |
| dc.title | The Thin Line: The Hybrid Model Bringing Power Measurement to Every Indoor Cyclist | es_MX |
| dc.type | Divulgación | |
| dcterms.thumbnail | http://ri.uacj.mx/vufind/thumbnails/rupiiit.png | |
| dcrupi.instituto | Instituto de Ingeniería y Tecnología | |
| dcrupi.cosechable | No | |
| dcrupi.subtipo | Investigación | |
| dcrupi.alcance | Internacional | es_MX |
| dcrupi.institucionext | Medium | es_MX |
| dcrupi.tipoparticipacion | Internet | es_MX |
| dcrupi.impactosocial | Si. Este artículo tiene un impacto social significativo al democratizar la ciencia deportiva de élite con el Modelo de Regresión Lineal Híbrida (HLRM), una herramienta que permite a cualquier ciclista de interior acceder a métricas de potencia precisas utilizando solo sensores básicos y asequibles. Al hacer que el análisis avanzado del rendimiento sea inclusivo y centrado en las personas, rompe las barreras económicas del entrenamiento basado en datos, promueve estilos de vida más saludables y encarna una innovación ética en la que la tecnología mejora, en lugar de excluir, fomentando una comunidad deportiva más equitativa e informada. | es_MX |
| dcrupi.vinculadoproyext | No | es_MX |
| dcrupi.pronaces | Educación | es_MX |
| dcrupi.vinculadoproyint | No | es_MX |
| dcrupi.difusion | Internet | es_MX |
Archivos en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Divulgación [285]

