Mostrar el registro sencillo del ítem

dc.contributor.authorRodas Osollo, Jorge Enrique
dc.date.accessioned2026-01-07T19:12:08Z
dc.date.available2026-01-07T19:12:08Z
dc.date.issued2025-11-03es_MX
dc.identifier.urihttps://cathi.uacj.mx/20.500.11961/33365
dc.description.abstractThe Thin Line: The Hybrid Model Bringing Power Measurement to Every Indoor Cyclist presents the Hybrid Linear Regression Model (HLRM)—a scientifically grounded yet human-centred solution for estimating cycling power without a physical power meter. Designed for accessibility, the HLRM leverages widely available inputs—heart rate, cadence, body weight, and reference power—to deliver real-time power estimates in watts with a standard error of approximately ±4.8 W. Developed from empirical data collected across 40 participants (ages 38–84) and refined through robust statistical methods inspired by Huber’s (1964) theory of robust estimation, the model incorporates both linear and quadratic physiological components to reflect the non-linear relationship between effort and power output. By integrating heuristic physiological insights with rigorous regression techniques—including variable simplification, centering, and outlier resistance—the HLRM achieves both high accuracy and interpretability. Validated in real-world conditions and optimized for smartphone-based applications, the model enables cyclists to access performance metrics such as power, energy expenditure, and training zones using only basic sensors. While limitations include dependence on heart-rate sensor fidelity and optimal performance near 80 RPM, the HLRM represents a significant step toward democratizing performance science. More than a computational tool, it embodies a vision of ethical innovation—where precision meets inclusivity, and every pedal stroke becomes a measurable, meaningful act of human energy.es_MX
dc.description.urihttps://medium.com/@a392513/the-thin-line-the-hybrid-model-bringing-power-measurement-to-every-indoor-cyclist-75b0b5e51060es_MX
dc.language.isoenes_MX
dc.relation.ispartofProducto de investigación IIT
dc.relation.ispartofInstituto de Ingeniería y Tecnología
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectData Sciencees_MX
dc.subjectApplied Mathematicses_MX
dc.subjectRegression Modelses_MX
dc.subjectWearable Technologyes_MX
dc.subjectSports Sciencees_MX
dc.subject.otherinfo:eu-repo/classification/cti/1es_MX
dc.titleThe Thin Line: The Hybrid Model Bringing Power Measurement to Every Indoor Cyclistes_MX
dc.typeDivulgación
dcterms.thumbnailhttp://ri.uacj.mx/vufind/thumbnails/rupiiit.png
dcrupi.institutoInstituto de Ingeniería y Tecnología
dcrupi.cosechableNo
dcrupi.subtipoInvestigación
dcrupi.alcanceInternacionales_MX
dcrupi.institucionextMediumes_MX
dcrupi.tipoparticipacionInternetes_MX
dcrupi.impactosocialSi. Este artículo tiene un impacto social significativo al democratizar la ciencia deportiva de élite con el Modelo de Regresión Lineal Híbrida (HLRM), una herramienta que permite a cualquier ciclista de interior acceder a métricas de potencia precisas utilizando solo sensores básicos y asequibles. Al hacer que el análisis avanzado del rendimiento sea inclusivo y centrado en las personas, rompe las barreras económicas del entrenamiento basado en datos, promueve estilos de vida más saludables y encarna una innovación ética en la que la tecnología mejora, en lugar de excluir, fomentando una comunidad deportiva más equitativa e informada.es_MX
dcrupi.vinculadoproyextNoes_MX
dcrupi.pronacesEducaciónes_MX
dcrupi.vinculadoproyintNoes_MX
dcrupi.difusionInternetes_MX


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal
Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal

Av. Plutarco Elías Calles #1210 • Fovissste Chamizal
Ciudad Juárez, Chihuahua, México • C.P. 32310 • Tel. (+52) 688 – 2100 al 09