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ABSTRACT People reidentification is a fundamental task in automated video surveillance based on
computer vision. Reidentification happens when a person seen in a field of view is the same that has been
observed in other fields of view. A person who has disappeared from one field of view can appear in any
other within a camera network. Instead of looking for the person in all neighboring fields of view, for an
intelligent video surveillance system, it is more practical to predict which of the neighboring camera views
the person could appear. This prediction can become achieved by learning the paths the person usually
follows in the camera network. The ant colony optimization technique has properties that can get exploited
for this purpose; precisely, the accumulation and evaporation of artificial pheromones are used to learn the
paths. After the learning process, the proposed method can make predictions every time that the person
leaves a field of view. Such prediction is evaluated to obtain feedback and further tune the learning process.
The path followed by the person becomes obtained by tracking their face image within and between fields
of view using correlation filters as descriptors. The results obtained from an extensive experiment show that
the field of view that the person selects to visit can be successfully predicted using artificial pheromones,
and thus, reduce the resources that require reidentification.

INDEX TERMS People reidentification, ant colony optimization, correlation filters.

I. INTRODUCTION
In most cities, there are cameras interconnected for video
surveillance purposes, generating massive amounts of visual
and non-visual data from that network. That makes it impos-
sible for human operators to analyze and use the data effi-
ciently. They could use it to, for example, learn the path that a
person follows in the network and then use that data to predict
in which viewfield the person could appear. The development
of new artificial vision algorithms and computers that allow
parallel processing of images makes it possible to analyze
such data to obtain meaningful information automatically.

The task of following and authenticating a person in a
network of disjoint cameras is known as reidentification
(ReID). It determines whether the person viewed in a field
of view (FoV) of a camera is the same person observed in
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other FoVs. ReID has a wide range of applications, such as
public safety, long-term multicamera tracking, and forensic
search [1]–[6].

ReID is an artificial-vision technique that includes detec-
tion, tracking, matching, and, for the biometric context,
recognition. A person must be tracked within a field of view
and between fields of view. Within a field of view, the track-
ing can get performed with acceptable results, by using
existing approaches. Tracking between FoVs, on the other
hand, remains an open problem because the appearance of
the person can drastically change from a camera to another
under real-world conditions. Thus, ReID requires the design
of descriptors that can deal with appearance changes, variable
illumination, occlusion, background clutter, poses, scale, and
some other variations [4], [7], [8].

Generally, a person ReID approach can get split into four
modules:
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1) Person detection. Given an arbitrary image, the goal
of person detection is to determine whether there is
any person in the image. If so, return the location and
dimension of the region of interest.

2) Person tracking. Estimate the location of the previously
detected person in each video frame.

3) Descriptor design. Data obtained by detection and
tracking modules are used to segment the person’s
image for generating the descriptor, which can get
constructed from data/cues as face [9]–[13]; visual
appearance of the whole body [8], [14]–[21]; walking
pattern [22], [23]; height and build [1]; and head, torso
and limbs of a person [24], [25]; or a combination of
these cues.

4) Descriptors matching. Descriptors created in disjoint
FoVs get matched to determine whether they belong to
the same person.

Modules 1 and 2 are performed on an FoV to obtain a set
of images to build a descriptor for the person (Module 3).
Module 4 can operate in two ways: 1) Compare descriptors
generated from stored videos that became previously cap-
tured from the camera network, and 2) Generate and com-
pare descriptors while the person goes through the camera
network. This second method allows the implementation of
a semi-real time system. With that, it is straightforward to
notice that ReID works for both short- and long-term periods.

The semi-real time ReID task is computationally expen-
sive. Let Fig. 1 represent a camera network where the red
arrows mark the path R = {i, j, k, f } followed by a person.
From that path, it is possible to obtain in each FoV a video
where the person to re-identify appears. A person who leaves
the FoV i can appear in either j, k, or l. Searching the per-
son in the whole neighborhood requires many computational
resources and may require the intervention of an operator.

FIGURE 1. Camera network represented by a graph, with the fields of
view f , i, j,k, and l ; where i and j are the network’s input and output,
respectively.

Furthermore, each FoV is required to perform the person
detection module, tracking module, and matching module on
a sequence of images. This problem produces the need to
predict the FoV that the person would select, which we call
the target FoV in our research.

The target FoV prediction task is a new problem not
ad-dressed within the reviewed literature. Addressing it in
this work can contribute to attracting the attention of other
researchers to this problem. This task has the potential to
extend the capacity of ReID algorithms by allowing the devel-
opment of systems that do not require the intervention of a
human operator.

The target FoV prediction problem is addressed in this
paper by an ant colony optimization (ACO) [26]-based
method that learns the path, usually followed by the person
in a camera network. The learned path is used to predict the
fields of view that the person could visit during a semi-real
time reidentification. Because surveillance systems under
real-world conditions usually capture only part of the person,
the descriptor for the proposed method is a composite corre-
lation filter [20], [27] that combines the facial images of the
same person into a single signal. Experimental results show
that the proposed method can efficiently predict the target
FoV, improve the speed of semi-real time reidentification, and
reduce the use of computational resources.

The rest of this paper consists of the following. Section II
briefly describes some existing approaches for person rei-
dentification. Section III describes, in detail, the proposed
method for predicting the FoVs that the person could visit.
Section IV presents a discussion of the results obtained in real
and simulated scenarios. Finally, Section V summarizes the
main conclusions of this research.

II. RELATED WORK
No approaches were found that address the problem of pre-
dicting the target field of view in the reviewed literature.
Therefore, this section describes approaches for camera net-
work topology inference applied to ReID, and others based
on learning models and traditional techniques.

A large number of cameras installed at universities, shop-
ping centers, public squares, parks, among other places, have
the purpose of, for example, tracking people, and incident
prevention. Those cameras are interconnected in such a way
that they form a network and maintain a spatio-temporal
relationship known as camera network topology. Intelligent
video surveillance based on computer vision requires the
installation of a camera network in such a way as to effi-
ciently extract useful information from a large number of
videos [28], [29].

There are some proposed methods in the literature for
camera-network topology inference applied to ReID. In [30],
they proposed a framework that addresses both the per-
son reidentification and camera network topology inference.
First, a random forest-based classifier becomes trained to
re-identify people. Subsequently, they estimate the cam-
era network topology and refine it based on the results of
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the reidentification using the previously trained classifier.
Finally, they run an online reidentification by using the
inferred camera topology. In [31], each camera becomes cali-
brated, and they estimate the relative scales between cameras.
They use calibration results to calculate the person’s speed
and infer the distance between cameras to generate a camera
network topology based on distance. They can apply this
method adaptively to each per-son according to their speed
and can handle different times of transition of people between
disjoint cameras.

In [32], they classify approaches based on learning mod-
els, as supervised and unsupervised. Supervised learning
approaches assume the availability of a large number of
manually-labeled cross-view identity matching image-pairs.
They do it for each camera pair to induce a feature repre-
sentation or a distance metric function optimized just for
that camera pair. In [33], they propose a deep model named
integration convolutional neural network (ICNN) for people
ReID, which jointly learns global and local features. They
extend the global features by directly performing global aver-
age pooling on the convolutional maps for each person’s
image. They learn the local features by performing local
horizontal average pooling on the convolutional maps. They
obtain several banding convolutional features for describing
pedestrian parts. Finally, they concatenate global and local
features by using a weighted strategy to represent the pedes-
trian image. In [34], they proposed it as a method for learning
global and weighted local body-part features from pedestrian
images. In that work, they employ angular loss and part-level
classification loss jointly as a similarity measure and used for
training a network robust to feature variance. Another method
based on learning global and local features is in [35]. Firstly,
they explore multi-feature extraction with different spatial
levels projected into a shared space to reduce the dimension.
After that, they use a weighted fusion approach combined
dictionary learning-based sparse representation with collab-
orative representation. A common problem with this type of
approach is the lack of discriminative features that aggregate
both the spatial and temporal information. They ad-dress this
problem in [36] with a joint attentive spatial-temporal feature
aggregation network (JAFN), which simultaneously learns
the quality- and frame-aware model to obtain attention-based
spatial-temporal feature aggregation.

Unsupervised learning approaches per-camera pairwise ID
labeled training data are not required in model learning [32].
In [37], they proposed that frames, where a person appears,
should get divided into a set of clusters. Those subsequently
match up by using a distance measure based on the naive
Bayes nearest neighbor algorithm and Spearman distance.
They [7] propose two solutions to fix the ReID in a closed
short-term surveillance network. One is the indiscriminative
patch trim strategy. The other is themulti-instancemulti-label
learning method. The first algorithm finds indiscriminative
patches from the image of the person, while the second
algorithm detects attributes of the images that help refine the
final matching process.

Traditional approaches use distance metrics to calculate
the degree of similarity between descriptors. In [38], they
proposed an algorithm for learning a Mahalanobis distance
for ReID. Such a method has two distinctive parts. They
first minimize the intraclass distances to the greatest extent
to obtain the best separability of the training data, by forc-
ing intraclass distances to be zero. Secondly, they maximize
the minimum margin between different classes to promote
the generalization ability of the learned metric. Due to the
poor quality of cameras or the extent distance from the per-
son, the captured pedestrian videos usually suffer from low
resolution, which results in the loss of useful information
contained in videos. In [21], they introduce a mean distance
of multi-metric subspace to address the overfitting problem,
usually presented in learned metric subspace-based methods.
The joint discriminant optimal model on feedback top ranks
matching pairs will enhance the discrimination of matching
pairs similarity. For the same problem of overfitting, in [39],
they proposed a semi coupled mapping-based set-to-set dis-
tance learning (SMDL) approach.

The appearance of the person to re-identify suffers varia-
tions due to lighting, pose, rotation, noise, occlusion, scale,
different cameras, among others. Various approaches came
up that attempt to solve this problem. In [40], they proposed
CamStyle, which serves as a data augmentation approach
to smooth data disparities. They learn camera aware style
transfer models from the real training data between different
cameras. For each real image, they utilize the trained transfer
model to generate images that fit the style of target cameras.
Subsequently, real images and style-transferred images get
combined to train the ReID convolutional neural network
(CNN). They apply cross-entropy loss and the Label Smooth
Regularization (LSR) loss to real images and style-transferred
images, respectively, for reducing noise. The results on the
Market-1501 and DukeMTMC-ReID data-sets show that
CamStyle reduces the impact of the over-adjustment. In [41],
they propose the Multi-view Common Component Discrimi-
nant Analysis (MvCCDA) to simultaneously handle the vari-
ability in the appearance of the object tracked, discrimination,
and non-linearity. To achieve that, MvCCDA incorporates
supervised and local geometric information into the standard
component extraction process to learn a common discrimi-
nant subspace. It is useful to discover the nonlinear structure
embedded in multi-view data. The method yielded promising
results on databases of hand-written digits, faces, and other
objects. Another approach that addresses variations in the
appearance of an object followed is that proposed in [42],
changes explicitly in geometry/photometry, camera point of
view, illumination, and partial occlusion. The authors adopt
the principles of cognitive psychology to design a flexible
representation that can adapt to changes in the appearance of
the object during the tracking.

Most of the previously described works require several
images to re-identify the person of interest. However, there
are some approaches that try to re-identify the person using
a single image. In [43], there is an algorithm for learning a

179012 VOLUME 7, 2019



E. Santiago-Ramirez et al.: Target Field of View Prediction Using Artificial Pheromones for People Reidentification

Mahalanobis distance for person reidentification when only a
single image exists per person. This method obtains the best
separability of the training data and promotes the generaliza-
tion ability of the learnedmetric bymaximizing the minimum
margin between different classes.

The method proposed in this paper use face images
extracted for videos captured in a camera network to con-
struct a descriptor for the person of interest. Because cam-
era network topology inference is beyond the scope of this
research work, we manually annotated the topologies used
here. However, the proposed method can complement and
extends the capacity of the approaches for cam-era net-
work topology inference previously described. For more
details about requirements for person reidentification, refer
to [1], [2], [4], [44].

III. METHOD FOR PREDICTING THE TARGET
FIELD-OF-VIEW IN THE REIDENTIFICATION PROBLEM
For a better understanding, some terms are defined before to
present the proposed method:

• Field of view: real-world extension that can be observed
at any time by a camera.

• Target field of view: field of view that the person chooses
to visit.

• Path: it is a sequence of fields of view that a person visits.
• Facial descriptor: an single signal created by synthesiz-
ing a set of facial images belongs to the same person.

• Matching: operation that involves comparing two sig-
nals to determine how closely they resemble.

• Pheromone evaporation: decrease in pheromone inten-
sity over time because of evaporation.

• Pheromone accumulation: increase in pheromone inten-
sity over time.

As mentioned above in Section I, semi-real time ReID
is computationally expensive. Computational cost may
decrease by predicting the target FoV where a person could
appear after leaving another FoV. That is the goal of the
method described in this section. It requires that a camera net-
work mapped onto a graph be implemented as an adjacency
list or adjacency matrix.

A camera network can be modeled as a graph G(B,A),
in which the vertices, B, correspond to fields of view, and
the edges, A, represent the relationships among the cameras
(see Figure 1). The possibility that a person in the FoV i has
to go to the FoV j induces these relationships. The weight
over the edges corresponds to the level of preference that
the person has to go from i to j. This research proposes that
the weight be given by artificial pheromones, whose quantity
should gradually increase as the person uses the relationship
represented by the edge.

The graph of the camera network serves the proposed
method of creating and initializing the pheromone table.
Although the graph is constructed and initialized only once,
it goes stored and updated when the network changes due
to the addition or removal of cameras. The updated graph

allows the restructuring of the pheromone table. This makes
the proposed method invariant to changes in the size of the
camera network.

Several techniques can be used to characterize a per-son’s
preference for a path, for example, frequency and deep learn-
ing. Through frequency, we can keep track of how many
times a person visits the same FoV; in this way, the FoV
most frequently in a neighborhood can be selected as a target
one. Through frequency, however, it is not easy to repre-
sent the selection of a new target FoV for a known path.
Besides, it is not easy to implement the gradual reduction
of pheromones to emulate the forgetting of unvisited FoVs.
On the other hand, one can train a deep learning model with
paths previously traveled by the user. However, deep learn-
ing requires thousands of pieces of information to achieve
acceptable performance. That is not practical in real biometric
applications where sometimes only one sample is available.
Besides, adding new paths requires a computationally expen-
sive re-training process. For those reasons, there is a need
for a simple approach that efficiently characterizes a person’s
preference for a path in a camera network. An approach that
requires few data and can learn new target FoV and forget
those no longer used.

The proposed method for predicting the target FoV is
composed of two phases. The first phase consists of training a
prediction model from a set of paths and videos of the person
of interest. The training phase is given by Algorithm 1, where
the input is a set of paths R, a sequence of images, S, associ-
ated with R, a graph,G, representing the camera network, and
the identity, ID, of the person. For each path Ri ∈ R, the face
of the person is detected and tracked across disjoint fields of
view. The collected data are used to initialize a pheromone
matrix, F , and the memory of paths, m, (See Figure 3) for
a specific person whose identity is given by ID. The vector,
mID, is updated only with paths that have not been previously

Algorithm 1 Initialization of Prediction Models
Data: R, S,G, ID
Result: FID,mID, btID

1 initialization FID on G;
2 for r ∈ R do
3 for i ∈ r do
4 Detect face in the video s ∈ S associated with

the FoV i;
5 Track face on the video s ∈ S associated with i;
6 Build the descriptor Hj(k, l) using face images

obtained in the tracking;
7 Match the descriptors Hj(k, l) and Hj−1(k, l);
8 Update FID;
9 end
10 Update mID with Ri;
11 end
12 Build the biometric template btID with the most

representative face images;
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Algorithm 2 Facial Reidentification With Target FoV
Prediction
Data: G

1 Detect face in a FoV i;
2 Obtain the identity ID of the detected face;
3 Load FID and mID for the identified person;
4 Track the detected face in FoV i;
5 Build the facial descriptor Hi(k, l) using face images
obtained in the tracking;

6 while person remains in G do
7 Obtain an ordered list L of neighbors of the FoV i;
8 while the person is not found do
9 Detect face in the FoV j ∈ L;
10 Track the detected face in the FoV j ∈ L;
11 Build the facial descriptor Hj(k, l) using face

images obtained in the tracking;
12 Match the facial descriptors Hi(k, l) and Hj(k, l);
13 if person is found then
14 i = j;
15 Hi(k, l) = Hj(k, l)
16 end
17 end
18 Update FID considering the result of the prediction;
19 end
20 Update mID with the path followed by the person in G;
21 Apply evaporation to FID;

saved. If the path followed by the person is already in mID,
then only the quantity of pheromones in the FID is increased.
The biometric templates bt for the person of interest gets
built using a representative set of face images detected in S,
captured during the training process.

The pheromone matrix F and the memory of paths m
created in the training process are used by Algorithm 2 each
time that a person of interest visits the camera network. First,
a face gets detected in any FoV that acts as an input to the
area observed by a camera network. Next, the detected face
is recognized for obtaining the identity ID of the person.
This ID is useful for loading the data structures FID and
mID for the identified person. Then, the person is tracked
in the FoV by their face image, and the facial descriptor
H (k, l) is created once the person disappears from the cam-
era view. Next, the reidentification is initiated according to
Algorithm 2.While the person remains in the camera network
represented by G, an ordered list L of neighboring FoVs
is obtained each time that the person leaves an FoV. The
ordering is in descending order according to the amount of
artificial pheromones on the edge.

The first FoV in L has the highest probability of being
visited by the person. Thus, starting from the first FoV in L,
each of them gets analyzed in search of the person. If the
person gets found, then FID is updated. This process repeats
until the person leaves the camera network. Finally, once the
person leaves the camera network, mID gets only updated if

the path followed by the person has not become previously
registered. Beside, evaporation is applied to FID to delay
faster convergence and favor the exploration of different paths
during the entire ReID process. Both the memory of paths
and evaporation help the proposed method to escape from
cycles inG.. Below, there is a detailed description of the target
FoV prediction. It includes stagnation prevention, reduction
in failed predictions, construction of facial descriptors, and
identification.

A. TARGET FIELD OF VIEW PREDICTION
Figure 2 shows the general scheme of the correlation
filter-based reidentification algorithm implemented in this
work. Given a video sequence captured in an FoV, the reiden-
tificationworks as follows. First, a face image gets detected in
a video frame when the person is seen in the camera network
for the first time. Next, the detected face gets tracked while
the person remains visible to a camera. Then, one selects
the most representatives face-images captured in the tracking
to synthesize a correlation filter to use as the descriptor
for the person. Finally, when the person leaves the FoV i,
the target FoV j that the person could visit must be predicted
immediately.

The person of interest chooses the target FoV, j, based
either on the shortest distance or the configuration of their
environment. This selection indicates that the person has dif-
ferent levels of preference for each FoV in a neighborhood V .
This level of preference could bemodeled, as previouslymen-
tioned, using artificial pheromones from the ACO algorithms.
For implementation purposes, the amount of pheromones,
τi,j, among the source FoV, i, and the target FoV, j, becomes
accumulated in a pheromone matrix, F , as in [26]. More-
over. the different paths that the person takes get stored in
a vector m, (see Figure 3).

A pheromonematrix F becomes initialized for each person
known by the system as follows. If there is a relationship
between i and j, then F(i, j) is initialized with the value
τi,j =

1
|V | , where V is the set of FoVs that are neighbors of i.

Otherwise, it initializes with τi,j = 0. The following matrix is
an example of the result obtained by this initialization process
on the graph in Figure 1:

F =


f i j k l

f 0.00 0.00 0.33 0.33 0.33
i 0.00 0.00 0.33 0.33 0.33
j 0.25 0.25 0.00 0.25 0.25
k 0.33 0.33 0.33 0.00 0.00
l 0.33 0.33 0.33 0.00 0.00


Each FoV j ∈ V has a probability P of being visited by the

person that leaves i, which is given by:

P(j) =
τi,j∑|Vi|
l∈Vi τi,l

, (1)

where l is a neighbor of i. One can get the ordered list
L by performing this equation for each FoV in the cur-
rent neighborhood, inserting the resulting value into L in
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FIGURE 2. Basic scheme of video-based person reidentification using correlation filters.

FIGURE 3. Data structures used by the proposed method: pheromone
matrix F (above) and memory of paths m (below).

descending order. The FoV in the first place in L has the
highest probability to be visited, and therefore, it becomes
chosen as the target FoV. When the person arrives at the
target FoV, j, the level of pheromones τi,j in F gets updated
with:

τi,j = τi,j +
τi,j∑|Vi|
l∈Vi τi,l

. (2)

This updating is only performed if the predicted target FoV
and the FoV visited by the person are the same, which means
a successful prediction. Assume that a person is in the FoV i,
of the graph in Figure 1, with pheromone matrix previously
presented. The person has three possible destinations: j, k ,
or l; according to Equation 1, each of these FoVs has a
probability of 0.33 of being visited. In this case, we suggested
that the target FoV appears in the first position in the list L.
Thus, FoV j, must get selected as the target, and the matrix F
is updated with τ (i, j) = 0.33 + 0.33 = 0.66, according to
Equation 2.

B. PHEROMONE EVAPORATION
The continuous deposit of pheromone over an edge can cause
excessive accumulation and cause stagnation of the method.
It is necessary to undertake evaporation of pheromones in
F when the person leaves the camera network to avoid this
problem:

F =
(
1− ρ−r

)
F, (3)

where ρ is the number of FoVs where the person got viewed,
and r is the number of times that the person has visited the
camera network. The factor r , is the rate of evaporation.

C. MINIMIZING FAILED PREDICTIONS CAUSED BY CYCLES
The presence of cycles in G can provoke an excessive accu-
mulation of pheromones, causing failed prediction; how-
ever, faults can also become evident because the person has
selected a new target FoV. In this work, one used two strate-
gies adapted from those described in [26] to minimize the
effect of this problem:
• Gradual reduction of number of artificial pheromones
to accumulate. The idea here is to reduce the number
of pheromones deposited every time the person visits
the same FoV. To achieve this, the modification of the
denominator of Equation 2 is as follows:

τi,j = τi,j +
τi,j(∑|Vi|

l∈Vi τi,l

)q , (4)

where q is the number of times that the person has visited
j during the current tour. This process gradually reduces
the level of pheromones to be deposited. The first time
that the person visits j, the level of pheromones deposited
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FIGURE 4. Level of pheromones on the path of the person in each visit to the same FoV (continuous line) and the amount of pheromone
deposited in each visit (dotted line).

is equal to 1
|Vi|

. During subsequent visits to j, the quantity
of pheromones deposited can vary and tend to gradu-
ally decrease, as shown by the dotted line in Fig. 4.
The continuous line shows the increase in the level of
pheromones every time that the person visits j until
reaching stability.

• Penalization of failed predictions. This approach seeks
to apply a reduction in pheromones presented in the rela-
tionships that cause a failed prediction. This penalization
is given by:

ti,j = (1− β) τ (i, e), (5)

where 0 < β < 1 is the penalization factor that acts
as an escape mechanism for promoting the breaking of
the relationship that causes the failed prediction. The
penalty is applied to the FoV j because the person has
decided to change to a new target FoV. Thus, the FoV j
must become gradually forgotten.

In Algorithm 2, the update of F for fields of view, i, and
the selected by the persons is performed by using equations
in Eq. 2 and Eq. 4. Furthermore, F is updated according to
Eq. 5 in the case of a failed prediction. This single-use of these
equations allows the proposed method to forget a not-used
target FoV and to learn a new target FoV.

D. CORRELATION FILTERS AS FACIAL DESCRIPTOR
Correlation filters (CF) are used in pattern recognition due
to following advantages [20], [27], [45], [46]: a) invariant
to noise, shift, and variable illumination, b) high ability for
discrimination, c) ability to use both content and shape, d) can
simultaneously detect and locate, and e) ability to continually
adapt to changes in appearance. Correlation filters can be

applied to face detection [47], [48], tracking [49]–[51] and
recognition [52].

Let C = {f1(x, y), . . . , fN (x, y)} be the set of N facial
images captured during facial tracking in FoV i. Using all
face images, including images of poor quality, can degrade
the quality of the correlation filter. Thus, it is advisable to
select only the best subset T ⊂ C for training a CF. This
selection can get performed using the approaches proposed
by [52] or [53]. The correlation filter used as a descriptor in
this work is given by [50]:

Hi(u, v) =
1
N

N∑
n=1

Fkn (u, v), (6)

where Fn(u, v) is the Fourier Transform (FT) of fn(x, y) ∈ T ,
and 0 < k < 1 is the nonlinear factor [54]. This corre-
lation filter was selected as a biometric template because
it can recognize incomplete face images. Such images are
common under unconstrained environments due to occlu-
sion, pose, or point of view. The descriptor, Hi(u, v),
is correlated against the descriptor Hj(u, v) via a correlation
process [27]:

g(x, y) = F−1{Hi(u, v)H∗j (u, v)}, (7)

where F−1 is the inverse of the FT (IFT), and Hj(u, v) is the
facial descriptor generated in target FoV j. The correlation
output g(x, y) is examined toward searching a correlation
peak whose sharpness is characterized by the measure known
as peak-to-sidelobe ratio (PSR) [27]. If PSR ≥ τ , then this
means that the descriptor Hj(u, v) resembles the descriptor
Hi(u, v), and there is a correspondence.
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FIGURE 5. Graph depicting a camera network with the entrances and
exits shown in red (left) and a path followed by a person on tour (right).

E. FACIAL IDENTIFICATION
Reidentification algorithms are not required to know the ID
of the person of interest, which can remain unknown during
the entire process. However, knowing the person’s identity
allows reidentification algorithms to work under biometric
contexts. Because of this, the proposed approach includes a
recognition module that can be performed only once in any
part of the ReID process. Facial recognition works as follows.
Each descriptor gets compared against all the descriptors
stored in the gallery. If there is a match, then the identity ID of
the person gets reported. The gallery is a database containing
descriptors generated by the Eq. III-D.

F. PREDICTION RATE
The performance of the proposed method is measured by
calculating the prediction rate (PR), which is given by:

PR =
Number of successful predictions

Total of predictions
. (8)

A successful prediction occurs when the FoV selected by
the person is the same as that predicted by the proposed
algorithm.

This section presented an algorithm to predict the target
FoV, which uses correlation filters as the person’s descriptors.
The next section describes the results obtained in an experi-
mental evaluation.

IV. EXPERIMENTAL RESULTS
The results obtained from two the experiments are presented
in this section. First, the proposed method was used on
31 simulated scenarios and two real scenarios to test their
ability to predict the target FoV. Second, we present an analy-
sis of the expected path and the path followed by the person.
We manually annotated paths used in training, while in the
test, the paths were defined by the trajectory that the person
followed in the camera network. The prediction rate avoids
the need to annotate the test paths manually; that is because
the path followed by the person is compared directly against
the information of paths stored in the pheromone matrix.

Before these two experiments, we computed the perfor-
mances of approaches for minimizing the effect of failed
prediction presented in Sec. III-C. We performed four exper-
iments on the graph depicted in Fig. 5: 1) updating the
pheromones via Eqs. 4 and 5; 2) updating the pheromones via
Eq. 2 and Eq. 5; 3) updating the pheromones via Eq. 4; and
4) updating the pheromones via Eq. 2. For each experiment,
thirty artificial ants were used to emulate people, with each
one performing 500 tours on the camera network.

Figure 6 shows the performance obtained with the
first and second experiment. Penalizing failed predic-
tions achieved the best performance using β = 0.9,

FIGURE 6. Performance in terms of the average number of cycles for experiment 1 (dotted line) and experiment 2 (continuous line) with
different values for β.
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FIGURE 7. Graph of the camera network where the LPA2 dataset was
obtained.

outperforming the results of third and fourth experiment
that obtained PR performances equal to 0.8778 and 0.9140,
respectively. Updating the pheromone and penalizing failed
predictions (second experiment), an average of 574 cycles
occurred compared to 709 when no penalty was applied
(fourth experiment). The use of factor q did not reduce the
occurrence of cycles in the third experiment, which was a
consistent trend because this only causes a slow artificial
pheromone accumulation.

The results presented in the rest of this paper were obtained
by updating the level of pheromones via Eq. 4 and penalizing
the failed predictions via Eq. 5. It is important to note that
the penalty of failed predictions helps the proposed method
to forget unexploited targets. It also improves the capacity to
learn a new target FoV without a relearning process.

A. EVALUATION ON A REAL SCENARIO
Consider the following assumptions in real scenarios. First,
the person has the ability to detect and leave any cycle in the

TABLE 1. Datasets from real scenarios used in the evaluation of the
proposed method.

camera network at any time. The success of the prediction
depends on the quality of face images collected by the detec-
tion and trackingmodules and the robustness of the descriptor
to changes in the appearance of the person.

1) DATA CONFIGURATION
We considered real scenarios in this evaluation. Firstly,
the publicly available ChokePoint [55] video dataset
designed for people reidentification under real-world surveil-
lance conditions. We selected sequences of 24 persons from
this dataset and organized such that each person crosses four
fields of view. Faces have variations in terms of illumina-
tion, pose, sharpness, and misalignment due to automatic
face localization/detection. The videos got recorded in two
portals with a month of difference between them; this is the
agreement with the creators of the data set. LPA2 is the name
of the second dataset used in this research. The videos became
captured from a camera network in a laboratory with only one
access door and one wall that divides the laboratory into two
sections. The cameras were placed to capture the facial image
of the person when entering and leaving in each section.
This scenario contains different light sources with different
intensities and receives exterior light through the windows
and the door. Figure 7 presents this scenario, comprising
fields of view a, b, c and d , in which the camera network
is entered through the FoV a, while the exit is through FoV b.

FIGURE 8. Examples of frames in the LPA2 (first row) and ChokePoint (second row) datasets.
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FIGURE 9. Results on the LPA2 data set with twelve routes sequentially traveled, where the person toured each of them ten times.

FIGURE 10. Results on a subset of ten people from the ChokePoint dataset with thirteen executions. Four sequences were used for each
person, where each sequence consists of four videos.

TABLE 2. Performance of the proposed method in terms of the Levenshtein distance.

Figure 8 shows some frame samples of the LPA2 dataset (first
row) and the ChokePoint dataset (second row).

ChokePoint and LPA2 datasets are summarized in Table 1.
ChokePoint contains 24 people, four FoVs, and facial

variation under indoor/outdoor conditions. LPA2 dataset was
created for this project, and it is not public. It contains videos
of one person, a network of four cameras and the face presents
variations due to indoor conditions.
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FIGURE 11. Frame samples with correctly identified persons in the dataset extracted from ChokePoint.

TABLE 3. Results on the paths R5−12 in the Figure 13 and the ChokePoint dataset.

2) RESULTS ON REAL SCENARIOS
Experiments in this section used the complete ReID system,
which includes the tasks of detection, tracking, identification,
and the proposed method to predict the target FoV. The face
images got detected by the approach proposed in [56], while

for tracking, the correlation filters-based algorithm described
in [50].

We evaluated twelve paths on the LPA2 dataset. On three
of these paths, video sequences were recorded registering
a person who used each path ten times. These videos had
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FIGURE 12. PSR performance in the identification of a person with a biometric template (person number 3) and a person without a
biometric template (unknown person).

FIGURE 13. Paths on a camera network used in the evaluation with 24 people from the ChokePoint dataset. Paths R1,R2,R3, and R4
became used for training, while the rest of the pats became used for test the proposed method.

a rate of 30 frames per second, a resolution of 480 ×
640 pixels, and grayscale images. The appearance of face
images is affected by illumination, pose, rotation (in-plane
and out-plane), scale, partial occlusion, and facial expres-
sions. On these three paths, the complete reidentification
system was tested, including face detection, tracking, and the
synthesis of the facial descriptor. The remaining nine paths
were manually generated to analyze the performance of the
prediction model in a real scenario in isolation from the rest
of the reidentification system.

Figure 9 shows the PR performance of the proposed algo-
rithm on the LPA2 dataset. Twelve paths were used for the
evaluation, and the person used each of them ten times. The
proposed method obtained an average PR = 0.8256 and
required that the person visited at least four times the same
path to reach a PR = 1.0. The PR performance decreases
when a new target FoV is selected by the person. However,
the performance gradually increases as the proposed method
adapts to the new target FoV. Paths R11 and R12 were chal-
lenging because they presented several cycles and long paths.
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FIGURE 14. Graphs of the camera networks in the simulated scenarios.

Figure 10 depicts the average PR performance obtained
on the ChokePoint dataset with 13 repetitions of the
experiment, ten people, and four sequences. In most
cases, performance improved proportionally to the num-
ber of paths traveled by the person. Only the first per-
son obtained a decrease in performance from second and
third sequence; this because, in the third sequence, there
were frames where the face images contained shadows and
intense illumination, causing mismatching between descrip-
tors. The proposed method obtained an average PR equal
to 0.7850 along with the sequences and subjects, and it
reached an average of 1.0 in the last sequence for all
subjects.

An average of 40 facial images got captured in each video
in LPA2, while for ChokePoint, an average of 34 got cap-
tured. From these sets, the best subsets became automatically
selected by the method in [52] for synthesizing the descriptor
of persons that obtained recognition rates of 100%. Although
there was a month between the recording of videos in portal 1
and portal 2 of ChokePoint, the correlation filters were able
to perform a correct matching in the reidentification. These
results were not affected by the different clothes that the
person used, which is an advantage to using faces in the
person reidentification.

A detection and identification rate (DIR) [57] equal to
100% in the identification of persons on tested datasets got
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FIGURE 15. Box plot of prediction rate (PR) performance on the simulated scenarios.

obtained. An average of ten different facial images got used
to training the biometric templates. Each facial image was
grayscale with a resolution of 128 × 128 pixels. Comparing
a suitable facial image captured in an FoV against the bio-
metric templates produced a set of similarity scores. Thus,
the identity of the facial image corresponds to the biometric
template with the nth most significant PSR value. Figure 11
shows frame samples with correctly identified persons in the
dataset extracted from ChokePoint. As shown in Figure 12,
the correlation filter correctly identified a known person
while rejecting unknown persons.

To get a more in-depth analysis of the expected path and
the path followed by the person of interest, we performed an
experiment using the 24 people of the ChokePoint dataset.
We got the results presented here on the twelve paths depicted
in Figure 13. The first four paths became used to train the
proposed method, while the remaining eight paths became
used for the tests. The paths got used sequentially by the
people to test the capacity of the proposed method to produce
paths similar to expected paths. Besides, we evaluated the
ability of the proposed approach to using information from
previously learned paths to predict the target FoV and adapt
to changes in paths.

Table 2 shows the result of this evaluation in terms of the
Levenshtein distance. It measures the difference between the
expected path and the path followed by the person. In most
cases, a distance equal to zero got obtained, which means
that compared paths are similar, while a distance equal to
four or five means that the person followed a different path
than expected. Furthermore, it was observed in the experi-
ment that 70% − 80% of neighbors were analyzed in search
of the person of interest. This result indicates that there
was a savings of 20% − 30% of computational resources
and time.

Table 3 contains the performance of the proposed method,
where the proposed method obtained a PR greater than or
equal to 0.78. These results are promising and provide evi-
dence that the proposed method can learn full paths and adapt
to small changes.

B. EVALUATION ON SIMULATED SCENARIOS
We could not find a public dataset containing sequences of
videos recorded on several suitable camera networks to test
reidentification algorithms. Therefore, the proposed method
was evaluated on simulated scenarios to observe its perfor-
mance in networks with different features.We used theMonte
Carlo method to measure the performance of the proposed
algorithm on the simulated scenarios. People and camera
networks became emulated by artificial ants and non-directed
graphs, respectively. Each artificial ant performed 2000 tours
on each graph. First, an FoV is randomly selected to access
the camera network. Second, the Monte Carlo method is
used to select the FoV that will be visited by the artificial
ant. This step emulates the process that the person follows
to select the place to visit. Third, by the proposed method,
the target FoVs that the ant could visit becomes predicted.
Fourth, the pheromone level on the trail gets updated. Steps
two to four get executed iteratively until the artificial ants
leave the camera network.

Figure 14 shows graphs extracted from Refs. [26] and [58],
used in the simulated scenarios. The graphs are different
in the number of nodes and the configuration of the links
connecting them.

Figure 15 shows the box plot of PR performance for the
proposed algorithm. We obtained an average PR equal to
0.9789with a variance in 0.00059. GraphsG8,G9,G17,G18
and G26 obtained a performance below average and a higher
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FIGURE 16. Box plot with the number of paths generated in each path on the simulated scenarios.

level of variability because they are graphs that contain vari-
ous cycles, a high number of nodes, and few exits.

Figure 16 presents the box plot with the number of
paths taken. On average, the artificial ants tested 16 paths
before selecting the best one. Networks G8,G9,G25,G26
and G28 registered a more significant variation due to
their higher number of cycles and fewer number of exit
options.

Themost significant challenges faced by the correlation fil-
ters in the facial identification were shadows and intense illu-
mination. Preprocessing operations were applied to improve
global lighting and remove the variable illumination. It was
impossible, however, to recover all the border and texture
information, which are vital for a person’s discrimination.
In facial tracking, we observed that the re-synthesis of the
tracking filter in every 15 face images improves the filter’s
ability to learn the newest detected faces while forgetting
the oldest. Additionally, this avoids obtaining over-fitting in
the filter. According to the results described in this section,
the proposed algorithm can predict the target FoV under
real-world surveillance conditions. Furthermore, it is capable
of recovering from prediction failures that can occur after
some changes in the path andworks both short- and long-term
periods.

V. CONCLUSION
This paper proposed a method for predicting the target field
of view in the facial reidentification problem based on cor-
relation filters. The obtained results indicate the following.
First, principles of the ant colony optimization algorithm can
be used efficiently to indicate the level of preference that a
person has for going from an FoV to a neighbor, FoV, in a
scenario monitored by a camera network. Second, the traced

paths show the behavior of the person of interest in a camera
network and provide sufficient data for the proposed method
to robustly predict the target FoV. Third, correlation filters
are useful and accurate as facial descriptors for reidentifica-
tion under facial variations caused by variable illumination,
expressions, rotation, and scale.

As future work, we are interested in comparing our
approach with other prediction meta-heuristics. Besides,
we will apply the proposed method over a more significant
number of real indoor and real outdoor scenarios.
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