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Dynamics for an electric pendulum
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The Lagrangian formulation is an extensive tool for the analysis of physical systems. In particular, we have applied the Lagrangian procedure
to deduce the dynamics and stability for an electric pendulum system. We have considered two cases; repulsive and attractive electric
interactions which modify the dynamics of the classical simple pendulum model. We contrast both scenarios studying their restrictions,
phase trajectories and stability points for this purpose.
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1. Introduction

Classical mechanics for a system of particles is beautiful ex-
plained in Landau’s textbook [1]. The approach employed
by Landau corresponds to the Lagrangian formulation, where
the energy and degrees of freedom play an important role.
Since the Galileo Galilei’s era, a simple pendulum has been
widely studied [2]. This model corresponds to the description
of harmonic oscillations for a convenient limit, this is a ba-
sic mechanical system, which is applied to diverse branches
of knowledge [3]. The simple pendulum model consists of a
mass tied to a string that is attached to a fixed point and then
from a certain angle is released to analyze its movement [4].

The electric pendulum studied in this letter is composed
by a metallic ball of massm and chargeq, this ball is tied
to a nylon isolator string of lengthl, which is released from
angleφ. Another metallic ball with chargeq0 and massm0 is
placed in a fixed position of vertical axis, as can be observed
in Fig. 1. Charges and masses of both balls are chosen to be
different. Interaction of the hanging mass with gravitational
field of the Earth is important for the developed model, the
mass of the fixed ball in vertical axis does not represent a
considerable contribution to the system because both masses
are much smaller than the mass of the EarthMe ≫ m,m0

and1 kg ≥ m,m0 > 0; thus, gravitational interaction be-
tween the two balls can be neglected compared with that of
the Earth. Besides, the length of the stringl is much bigger
than the dimensions of the balls, which can be considered as
punctual particles but mass of the string can be neglected in
this model since it is lower than mass of the suspended ball
[5,6].

Our main objective in this work is to formulate the equa-
tions of motion for the electric pendulum system. The study

of the orbits and the nature of the motion in each region of
the system evolution are also analyzed.

The remainder of this work is organized as follows. In
Sec. 2, we present the physics of the problem and provide
the motion equations for the system. We analyse the regions
and restrictions for phase trajectories, which synthesizes the
dynamics of the system, in Sec. 3. The next section is de-
voted to identify the range of evolution as well as the stabil-
ity points. Finally, in Sec. 5 we provide the conclusions and
some closing remarks.

2. Electric Pendulum

The laws of movement for any mechanical system can be
deduced from the universal principle of least action or the
Hamilton’s principle. This statement establishes that all me-
chanical systems can be described by a function for all pos-
sible continuous trajectories. This is called the Lagrangian
and gives rise to the so called Euler-Lagrange equations of
motion [1,4].

We analyze a simple pendulum restricted to a one-degree
of freedom with variableφ, which is depicted in Fig. 1. Here,
l0 corresponds to a fixed length from the lower position of the
pendulum to the second vertical fixed particle. There are two
balls with massesm,m0 and chargesq, q0 respectively. For
the system developed at this work and for the massm, which
is being considered as the dynamic body, we define the La-
grangian function as

Le =
1
2
mẋ2 − U (x) , (1)

where the first elementmẋ2/2 represents the kinetic energy
andU(x) is the potential energy of the system. Note
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FIGURE 1. Model for an electric pendulum.

that even though motion of the system takes place in a bi-
dimensional frame, actually the motion is one-dimensional
according to the degrees of freedom.

The termU (x) is expressed as

U (x) = Ug (x) + Uqi (x) , (2)

whereUg = −mgl cos φ means the gravitational potential
energy withg = 9.8 m/s2 the acceleration due to Earth’s
gravity, we have taken they axis vertical downwards. The
other termUqi (x) = (−1)i

qq0/4πε0s corresponds to the
electric potential energy,ε0 denotes the electric permittivity
in vacuum, ands is the positive rectilinear distance between
charges. Observe thati = {0, 1} refers to a repulsive or at-
tractive interaction respectively [5,6]. Also, we must men-
tioned that nature of electric interaction depends on the sign
of chargesqq0, but we have taken them as positive in mag-
nitude and leave the repulsive or attractive interaction depen-
dent exclusively on the sign.

We can sets in terms ofφ by means of cosine’s law

s2 = (l + l0)
2 + l2 − 2ll0 cos φ.

We replace above expressions in Eq. (2) to obtain the
total potential for the electric pendulum

U (φ) = −mgl cosφ

+
(−1)i

qq0

4πε0

√
(l + l0)

2 + l2 − 2ll0 cosφ
, (3)

notice that the potential function holdsU (φ) = U (−φ), then
the system is governed by an even symmetry as it is known
for the simple pendulum.

In Fig. 2 is shownU (φ) for specific constant values, as
can be seen fori = 0 the repulsive electric potential creates
a shape with three extreme points. Meanwhile, fori = 1 we
observe an attractive electric potential, which is very similar
to an ordinary simple pendulum with stable point around

FIGURE 2. Potential for the electric simple pendulum with values,
mgl = 2, qq0/4πε0

√
2ll0 = 0.5, ((l + l0)

2 + l2)/2ll0 = 1.02.

φ = 0. It is worth noting that for the casei = 0 within a
range of values, as we shall see, gravitational potential can
be much bigger than the electric repulsive interaction, thus
the shape of the potential is quite similar to an ordinary sim-
ple pendulum.

For the considered system, the Lagrangian function
L

(
φ, φ̇

)
, corresponds to

Le =
1
2
ml2φ̇2 + mgl cos φ

− (−1)i
qq0

4πε0

√
(l + l0)

2 + l2 − 2ll0 cosφ
, (4)

here we apply the formal theory of Euler-Lagrange equations,
which are given by

d

dt

(
dL

dφ̇

)
=

dL

dφ

for the one-dimensional case, thus

dLe

dφ
= −mgl sinφ

+
(−1)i

qq02ll0 sin φ

4πε0

(
(l + l0)

2 + l2 − 2ll0 cosφ
) 3

2
(5)

and
dLe

dφ̇
= ml2φ̇ (6)

so the equation of motion for the system is given by

ml2
d2φ

dt2
= −mgl sin φ

+
(−1)i

qq02ll0 sinφ

4πε0

(
(l + l0)

2 + l2 − 2ll0 cos φ
) 3

2
(7)

observe that all dynamic information for the electric pendu-
lum is contained in the equation above. It is worth noting
that if one of the chargesq, q0 = 0 in Eq. (7), we recover the
typical simple pendulum motion equation.
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FIGURE 3. Trajectories on phase space for potentialU (φ) with
a = 1, c = 1.135 and−π < φ < π.

3. Orbits in Phase Space

Instead of working with the equation of motion (7), we an-
alyze the dynamics of the system by using the phase space
formulation. In this context, the graph inx-y axes where po-
sitions and momenta are represented, is called phase space,
every point depicted in it is called phase point, and the drawn
curves correspond to phase curves; usually they are known
as orbits or trajectories in phase space. Those which corre-
spond to single points, are called stable or unstable equilib-
rium points [7,8].

The phase space gives a complete description about the
dynamic behaviour of such system. Every phase point repre-
sents a dyad with coordinates of position and momentum of
the particle at a given instantt0. We begin by analyzing such
orbits withi = 0, which are plotted in Fig. 3. The casei = 1,
corresponds to rigid oscillations of the simple pendulum type,
which are not considered in this work. From equations (5, 6)
the one-dimensional Euler-Lagrange equation is

d

dt

(
dLe

dφ̇

)
= φ̇

d

dφ

(
dLe

dφ̇

)
,

from where is obtained

φ̇2 − a cos φ +
b√

c− cos φ
= E0. (8)

Observe that coordinates
(
φ̇, φ

)
are given for an specific

value of energyE0, wherea = 2g/l, b = qq0/ml2πε0

√
2ll0,

c = ((l + l0)
2 + l2)/2ll0. According to this, trajectories in

the upper half plane are depicted for positive values of veloc-
ities, meanwhile negative momenta are drawn in down half
plane.

In Fig. 3(a) we observe that trajectories correspond to an
stable equilibrium pointφ = 0, which is quite similar to sim-
ple pendulum. In Fig. 3(b) and 3(c), we note a splitting of
two more stable points meanwhile the pointφ = 0 becomes
an unstable equilibrium point given as a separatrix between
both stable points. For the case 3(d) we observe a restricted
region of motion around the pointφ = 0, and there are also
two orbits around stable points at symmetric anglesφ0. Phys-
ically this means that the electric interaction is stronger than
the gravitational for the system.

Orbits in phase space occur around stable and unstable
equilibrium points of the system. This is illustrated in Fig. 4
where we have plotted both casesi = {0, 1} in order to con-
trast equilibrium points. If we maximize the functionU(φ) in
expression (3), we must calculatedU (φ)/dφ = 0, from this
relation we find a constriction for critical points according to

a sin φ +
(−1)i

b sin φ

(c− cos φ)
3
2

= 0,

with a = mgl, b = qq0/8πε0

√
2ll0, c =

((l + l0)
2 + l2)/2ll0. Equilibrium points are given as the in-

tersection of functions{
a sin φ,− (−1)i

b sin φ

(c− cos φ)
3
2

}
.
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FIGURE 4. Stable and unstable equilibrium points for potential
U (φ) with a = 1, b = 1 and−π < φ < π.

FIGURE 5. Range for evolution ofφ with a = 2, b = 0.45 and
−π/2 < φ < π/2.

Note that in Fig. 4(a), there are three intersections
{−φ0, 0, φ0} for the casei = 0, meanwhile fori = 1 there is
just one critical point inφ = 0 which coincides with a typical
simple pendulum system. In Figs. 4(c) and 4(d) fori = 1
a pair of stable equilibrium points appears{−φ0,+φ0} and
for i = 0, there are no stable or unstable points. We note
a restricted region in the neighbourhood ofφ = 0 for both
casesi = {0, 1}.

The case illustrated in Fig. 4(b) corresponds to a unique
stable pointφ = 0 for both casesi = {0, 1}. They behave
similar to simple pendulum systems, in other words, the elec-
tric interaction does not give a significative contribution.

4. Range of Evolution

Let us examine the regions in which the motion of the sus-
pended particle occurs. Observe that the regions for motion
are governed by constraint imposed in Eq. (8). This can be
deduced from the positive argument in the square root radical
with respect toφ̇. If we look for the evolution of the particle,
the angle must evolve restricted to

a cosφ >
b√

c− cos φ
,

which is plotted for several cases in Fig. 5. The intervals
of oscillations are shown as bounded by shaded areas dis-
played on vertical axis. As parameterc → 1, the range of
motion goes from a real interval to imaginary values. The
casec = 0.5 is not shown in Fig. 5 because interval of mo-
tion now turns into imaginary values.

5. Conclusions

In this work, we have deduced the equation of motion that
describes the dynamics of the electric pendulum. The study
of the orbits and the nature of the motion in each region of the
system are also studied. We analyze the regions and restric-
tions for phase trajectories, which are different from those
typically observed in a simple pendulum model, physically
this is because bodies involved have electric charge as well
as mass adding a new electric potential energy term to the
Lagrangian which modifies considerably the original system.

Rev. Mex. F́ıs. E 65 (2019) 213–217



DYNAMICS FOR AN ELECTRIC PENDULUM 217

As a consequence the ranges of stability are restricted de-
pending on the values of parameters given in the potential
function. Through this work we have contrasted the repul-
sive and attractive electric interaction which depends on the
nature of the charge.
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