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Abstract

In this paper, the formula to estimate the sample size n to perform a random

vibration test is derived only from the desired reliability (R(t)). Then, the

addressed n value is used to design the ISO16750‐3 random vibration test IV

for both normal and accelerated conditions. For the normal case, the applied

random vibration stress (S) is modeled by using the Weibull stress distribution

[W(s)]. Similarly, for the testing time (t), the Weibull time distribution [W(t)] is

used to model its random behavior. For the accelerated case, by using the over‐

stress factor fitted from the W(t) and W(s) distributions, four accelerated sce-

narios are formulated with their corresponding testing's profiles. Additionally,

from the W(s) analysis, the stress formulation to perform the fatigue and Mohr

stress analysis is given. Since the given Weibull/fatigue formulation is general,

then the formulas to determine the W(s) parameters, which correspond to any

principal stresses values and/or vice versa, are given. Although the application

is performed to demonstrate R(t) = 0.97 by testing only n2 = 6 parts, the guide-

lines to use the values given in columns n, S, and t of the Weibull analysis table

to generate several accelerated testing plans are given.

KEYWORDS

accelerated life test, fatigue analysis, ISO16750‐3, reliability vibration test, sample size, Weibull

distribution
1 | INTRODUCTION

Currently, a vibration testing is the general formal procedure applied to any mechanical component attached to a vehi-
cle to confirm endurance and reliability (R(t)), as well as to provide manufacturers with dynamic information for struc-
tural analysis.1 In a vibration test, the magnitude of the damage caused by the effect of the applied vibration on the
component is directly related to the vibration amplitude. Because the vibration amplitude occurs at different frequen-
cies, then in a vibration test, the expected (or observed) frequencies and the vibration magnitude are both given in a
testing profile (here, the testing profile for ISO16750‐3 norm test IV2 is used). Therefore, since in the vibration test
the testing profile is applied cyclically, the component's expected failure is, then, a fatigue failure.3

However, because no failures are allowed in the actual R(t) vibration test, then no failure data are available to con-
duct the corresponding fatigue analysis (see section 2.5.1, page 49, in Castillo and Fernandez‐Canteli4). Moreover,
although the applied vibration is random and generates fatigue, the standard vibration test consists on demonstrating
that the tested part presents a reliability of R(t) = 0.97 by testing without failure5,6 n = 23 parts at the vibration stresses
level (S) and testing time (t) given in the used testing profile. Hence, since no failures are allowed, if none of the tested
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parts fail after the test, we can conclude that the part presents at least the desired reliability of R(t) = 0.97. Unfortu-
nately, because this vibration standard test neither relates n = 23 parts with R(t) = 0.97 nor offers failure time data
to perform the probabilistic behavior of the applied vibration stress and its corresponding fatigue analysis, then the
application of this standard test is not as efficient as it could be.

This paper responds to the fact that by applying the standard vibration test, we can perform neither the probabilistic
analysis of the used profile nor the fatigue analysis that the applied vibration generates on the tested part. It does so
based on the mechanical Weibull/stress formulation given in Piña‐Monarrez7 and considering that (a) the first row of
the used testing profile represents the most severe damage generated by its vibration level, (b) the damage generated
by the other testing profile rows can be added to the first one, and (c) the testing profile by itself represents one vibration
cycle, which must be cyclically applied during the reliability test (see Section 4.2.1). The Weibull distribution as pro-
posed in Piña‐Monarrez7 is used for both to represent the random behavior of the applied vibration profile and to derive
the corresponding midrange (Sm) and alternating (Sa) stresses values

8 used to perform the corresponding fatigue anal-
ysis9 (see Section 4.3).

Hence, since to apply the proposed Weibull/vibration/fatigue method, the sample size n, which completely repre-
sents the R(t) index has to be first determined, then in Section 3.2 of this paper, based on the relation between the cumu-
lative risk function H(t) and the Weibull reliability function R(t) given10 as follows:

R tð Þ ¼ exp −H tð Þf g: (1)

The unknown n value depending only on R(t) is determined, and because H(t) in terms of the testing time t and on the
Weibull shape (β) and scale (η) parameters is given as

H tð Þ ¼ t
η

� �β

: (2)

Then, the derived n value for known β value completely represents the Weibull scale η parameter also. (see Section
4.2.3).

Hence, in the analysis using n, both the Weibull stress W(β, ηs) distribution used to model the random behavior of
the profile used and the Weibull time W(β, ηt) distribution used to model the random behavior of the testing time
are determined. Then based on both Weibull families, the analysis in Sections 4.2.1 to 4.2.6 is generalized to determine
the vibrations testing parameters ti, ni, and Si for different normal and accelerated testing's scenarios (see Table 3).

Finally, in the numerical application, vibration data given in appendix D of the user guide 11 for norm GMW3172 and
the testing profile for the ISO 16750‐3 test IV are used. The objective of the test is to demonstrate that a sprung mass
product meets R(t) = 0.97. Since the derived n value lets us determine any desired Weibull scale η parameter, the test
design and analysis are given for the normal, the accelerated, and the fatigue scenarios. It is important to mention that
in the fatigue analysis, the fatigue material exponent is incorporated as an exponent in the over stress factor used to
determine the vibration level, which should be applied during the test.

The paper is structured as follows: Section 2 presents the vibration testing's generalities. In Section 3, the expected
Weibull scale η value, which n should represent, is given (Section 3.1), and the formula to estimate n in such a way that
its value always represents η, is derived depending only on R(t) (Section 3.2). Then, Section 4 presents the formulation of
the proposed method to design and apply a random vibration test for all three conditions, normal, accelerated, and
fatigue, as follows. In Section 4 the vibration data are given, and in Section 4.1, the actual standard vibration test is per-
formed. In Section 4.2.1, the vibration Weibull stress β and ηs parameters are estimated directly from the testing profile
used, while in Section 4.2.2, the corresponding Weibull testing time β and ηt parameters are determined based on the
addressed Weibull stress parameters. In Section 4.2.3, the numerical Weibull stress and Weibull testing time analysis
are presented. However, because in this initial Weibull analysis, the sets (R(t) and n), and (S and t) fall in a different
row of the Weibull analysis table (See Table 2), Section 4.2.4 offers the steps to set (R(t) and n), and (S and t) in the same
row. The numerical analysis is presented in Table 3 of Weibull testing's plan application section. Additionally, based on
the row in Table 3 containing all the testing factors, Section 4.2.5 shows the accelerated testing design to test lower time
t at an accelerated vibration level S and vice versa, as well as to test lower parts n at lower/higher t or S values. In Sec-
tion 4.2.6, the accelerated fatigue factor is derived and applied to design the fatigue/accelerated scenarios in Section
4.2.5, and Section 4.3 features the formulation to determine the principal, midrange, and alternating stresses values
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as well as the guidelines to perform the Weibull/fatigue, Weibull/Mohr circle, and Weibull/Goodman analyses. Finally,
conclusions are presented in Section 5.
2 | VIBRATION TESTING GENERALITIES

In practice, two types of vibration testing are performed, the swept sine and the random vibration testing. The first one
is recommended when the objective is to determine the resonant frequency (see 12 SAE J1455‐2017 section 4.10.4.1, page
28), while the second one is used when the aim is to excite the product at different frequency ranges (see SAE J1455‐
2017 section 4.10.4.2, page 28). Of the two, the random vibration testing is the most realistic method.13

On the other hand, in a random vibration testing, the most critical variables are mounting location, vibration fre-
quency f , applied vibration level S, and sample size n. The mounting location is generally classified as in the cab
(or passenger compartment), on the engine, and on the chassis (or under hood), while the vibration frequency f and
the applied vibration level S both depend on the product's location. Thus, in a random vibration test, f and S are both
given in the testing profile of the standard used (ISO16750‐3, SAE J1455‐2017, or GMW3172). Since in the testing pro-
file, each one of the frequencies represents a stationary process,14,15 then the testing parameters of the testing profile
will not change significantly over a given period. As a result, it can be modeled by a probability density function, as
it is the case of the Weibull distribution.16 This fact implies that because in a Weibull vibration analysis, R(t), t, f ,
and S are all known, and β is derived from the vibration testing's profile (see Section 4.2.1 and Equation 21), then nmust
be estimated in such a way that its value completely represents η. Following is the formulation to determine n.
3 | DETERMINATION OF n

The formula to estimate the n value, which always represents R(t) and η is based on the following two facts. (a) From
Equations (1) and (2), given R(t), t, and β, the corresponding η value is unique and (b) because from Equation (1), the
relation between H(t) and R(t) is unique, then the addressed n value is unique, and it is also completely determined.
Therefore, since n has to represent η, it is necessary to first determine the η value that n should represent.
3.1 | Estimation of η

This section aims to show that for known R(t), t, and β values, the corresponding η value is unique and that it is
completely determined. Seeing this let rewrite Equation (1) as follows:

H tð Þ ¼ − ln R tð Þ½ � (3)

and rewrite Equation (2) as follows:

ηβ ¼ 1
H tð Þ

� �
tβ: (4)

Thus, by substituting Equation (3) into Equation (4)

ηβ ¼ 1
− ln R tð Þf g

� �
tβ: (5)

Hence, from Equation (5), finally, we have that η is unique for the known R(t), t, and β values, and that it is given as
follows:

η ¼ 1

− ln R tð Þf g½ �1=β
t: (6)

Now based on Equations (4) and (6), the formula to estimate n in such a way that its value always represents R(t) and η
can be derived.
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3.2 | Derivation of n

In this section, the objective consists on deriving n in such a way that its value completely represents η. And since from
the demonstration test plan inputs, we always know R(t), then n is determined based only on R(t). Moreover, because all
the n tested parts are independent and identically Weibull distributed, then the n parts have the same shape β parameter
(implying the n parts presents the same failure mode). Hence, because once β is known, only η has to be determined,
then n has to completely represent η. And because the Weibull distribution is the minimum value extreme distribution,
then based on its weakest link principle, which states that the failure of a system is determined by its weakest element
(see Castillo,17 page 25), in this section, n is determined based on the facts that (a) η represents the R(t) = 0.3678 per-
centile, which from Equation (1) occurs when H(t) = 1; (b) in the demonstration test plan, all the n products are inde-
pendent and identically Weibull distributed, and all of them are tested at the same time t (no failures are allowed); and
(c) from the Weibull stable property4 section 2.3.1.2, page 38, the minimum cumulative time function F (tmin) of the set
of the n tested parts is given as follows:

F tminð Þ ¼ 1 − 1−F tð Þ½ �n: (7a)

Thus, since F (t) = 1 − R(t), then Equation (7a) in terms of R(t) is given as follows:

1 − F tminð Þ ¼ exp −n
t
η

� �β
( )

¼ exp
−ntβ

ηβ

� �
; (7b)

which implies that the cumulative risk function H(t) for a set of n variables is given as follows:

H tð Þ ¼ ntβ

ηβ

� �
: (7c)

Therefore, since we are estimating η, implying that 1 − F (tmin) = R(t) = 0.3678 or equivalently that H(t) = 1, then from
Equation (7c), the relation between η and t for a set of n variables is always given as follows:

ηβ ¼ ntβ: (8)

From Equation (8), notice that because ntβ represents the total tested time, which η has to represent, and that t is
powered to the exponent β, then because in Weibull analysis, β represents the effective intensity (spread) on which
the applied stress affects the lifetimes. Then n in terms of t, β, and η is given by:

n ¼ ηβ

tβ

� �
; (9)

or equivalently from Equation (7c), n in terms of H(t) is given by:

n ¼ 1
H tð Þ ¼

ηβ

tβ

� �
: (10)

Thus, as in Equation (6), by substituting Equation (3) into Equation (10), n in terms of R(t) is given by:

n ¼ 1
− ln R tð Þf g½ �: (11)

Finally, by comparing Equations (5), (6), and (11), we have that the n value given in Equation (11) completely repre-
sents both R(t) and η. Therefore, since R(t) is a reliability index, which represents no failures, then Equation (11) also
represents the n parts, which have to be tested without failures in order to demonstrate the tested product meets with
the desired R(t) index. Moreover, notice from Equations (9) and (10) that because n represents the times that the con-
tinuous t variable has to be tested, then n is a continuous variable also, and that for known t and η values, n is unique.
Finally, note that by substituting Equation (11) into Equation (6), η in terms of n is given by:

η ¼ n1=βt: (12)
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And because n completely represents η and R(t), then R(t) in terms of n is directly given as follows:

R tð Þ ¼ exp
−1
n

� �
: (13)

Now that from Equation (11), we have the right n value to perform a vibration test, let us show numerically the vibra-
tion testing design and its analysis by using data given in appendix D of the user guide of the norm GMW3172.
4 | RANDOM VIBRATION TESTING DESIGN

In this section, data given in appendix D, page 276, of the user guide for norm GMW3172 are used to show how Equa-
tion (11) works in the standard vibration test. Data are as follows: “The basic sprung‐mass specification for a car
requires the product to be tested at 2.76 Grms with a specified Power Spectral Density (PSD) for 8 hours in each axis.
This set of test conditions represents a life of 100,000 miles for a car. The recommendation is to test the product for 8
hours in the ‘X’ direction and then for 8 hours in the ‘Y’ direction. The ‘X’ and ‘Y’ directions are defined as being in
the plane of the circuit board. The ‘Z’ direction is to be tested last. The ‘Z’ direction is defined as being perpendicular
to the plane of the circuit board. Vibration testing is performed with superimposed thermal cycling and vibration occur-
ring simultaneously, as well as under thorough product monitoring” (for details of the thermal cycling testing see
appendix G of the user guide for norm GMW3172, page 290).
4.1 | Standard testing design analysis
Since data correspond to sprung mass mounted on a car, then the random vibration test IV for the ISO 16750‐3 section
4.1.2.4, page10, should be performed under the following conditions.

Step 1. From the ISO 16750‐3 section 4.1.2.4.2, the testing time on each one of the X, Y, and Z axes is of 8 hours. There-
fore, the total testing time for the analysis is t = 24 hours, and the applied vibration level is 27.1 m/s2 or equivalently
S = (27.1/9.80665) = 2.76 Grms.

Step 2. Table 7 of the ISO 16750‐3, section 4.1.2.4.2 shows the values of the PSD in acceleration units [rms2 = (m/s2)2/
Hz], while the frequencies are shown in Hertz (Hz). Both are shown in Table 1 and Figure 1.

Step 3. The operating mode during the test is the 3.2 mode given18 in the ISO16750‐1, section 5.3, which is
“systems/components are tested with electric operation and control in typical operating mode.”

Step 4. The functional status classification is the functional status A given in the ISO16750‐1, section 6.2, which is “All
functions of the device/system performed as designed during and after the test.”

Step 5. As shown in the ISO 16750‐3 norm and in appendix D of the user guide for norm GMW3172, “the vibration
test should be performed with superimposed thermal cycling occurring simultaneously with vibration, and the prod-
uct fully monitored.” However, when Thermal shock and Power Temperature Cycle are applied using the Coffin
Manson model, the test can be performed following appendix G of the user guide for norm GMW3172, page 290.
Otherwise, the ISO 16750‐3, sec 4.1.1 should be applied.

Step 6. Appendix C of the user guide of the norm GMW3172, page 275, shows that the desired reliability to be dem-
onstrated is R(t) = 0.97 by testing only n = 23 parts. However, since from Equation (11), the right n value is known to
represent R(t) = 0.97, in order to demonstrate R(t) = 0.97, instead of testing n = 23 parts, the recommendation is to
TABLE 1 ISO16750‐3, test IV: Random vibration profile

Freq, Hz PSD (m/s2)2/Hz dB Oct dB/Oct Area rms

10.00 30.0000 * * * 300.00 17.32

400.00 0.2000 −21.76 5.32 −4.09 614.00 24.78

1000.00 0.2000 0.00 1.32 0.00 734.00 27.09

* it only indicates it is an empty cell.

Bold number shown readers the total accumulated energy.
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test n = 32.8308≈33 parts without failure for 24 hours each, at a constant vibration level of S = 2.76 Grms, and if
none of them fail, it can be said that the tested product features the desired reliability of R(t) = 0.97 as a minimum.

As a summary of the standard vibration test, it can be said that because the standard vibration test requires to test only
n = 23 parts (see appendix C of the user guide for norm GMW3172, page 278), then if only 23 parts were tested, the
demonstrated reliability would be underestimated. In fact, from Equation (13), using n = 23, only R(t) = exp{−1/
23} = 0.9574 is demonstrated. Additionally, it should be noticed that because this standard test cannot be related to
the Weibull distribution, then so far, it is not possible to numerically observe, from Equation (12) for example, that
the sub‐estimation of R(t) occurred because n = 23 does not represent the η value.

Therefore, based on the used profile data given in Table 1, the next section explains the analysis to perform the cor-
responding Weibull probabilistic analysis.
4.2 | Probabilistic Weibull vibration analysis

First, it should be stated that besides the derivation of the right n value given in Equation (11), the main contribution of
this paper lies this section. Such contribution consists of deriving the formulation and offering the guidelines to perform
the probabilistic Weibull vibration analysis for both normal and accelerated conditions, as well as for the corresponding
fatigue analysis. To facilitate its understanding, the section is presented in subsections. Section 4.2.1 presents the formu-
lation to determine the Weibull stress W (βs, ηs) distribution, which is used to model the random behavior of the applied
vibration stress S, directly from the used vibration profile. Then based on the aforementioned W (βs, ηs) distribution,
Section 4.2.2 shows how the corresponding Weibull vibration testing time W (βt, ηt) distribution is derived. Next,
Table 2 in Section 4.2.3 shows the numerical application to data of Section 4 to show how both W (βs, ηs) and W (βt,
ηt) can be used to model the random behavior of S and t. Because in this initial Weibull analysis, the sets (R(t) and
n) and (S and t) fall in a different row of Table 2, then in Section 4.2.4, the steps to perform the Weibull analysis on
which (R(t) and n) and (S and t) all fall in the same row are given. Weibull testing's plan application section features
the numerical analysis, presented in Table 3, and based on the row in Table 3, which contains all the testing factors,
in Section 4.2.5, the accelerated testing design for several scenarios is presented. Similarly, Section 4.2.6 presents the cor-
responding fatigue analysis to the accelerated scenarios of Section 4.2.5. Finally, in Section 4.3, the formulation to deter-
mine the principal, midrange, and alternating stresses values, as well as the guidelines to perform the Weibull/fatigue,
the Weibull/Mohr circle, and the Weibull/Goodman analysis are given.

http://wileyonlinelibrary.com


TABLE 2 Weibull/stress analysis to determine the minimum strength that the tested product would present to fulfills with R(t) = 0.97

Equation

(11) (20) (23) (24) (25) (11) (26) (27) (30)
n Yi ln[tan(θi)] tan(θi) R(ti) ni λ1i λ2i SGi ti

1 −3.85466 −1.54184 0.21399 0.9790 47.21 2192.91 100.41 4.78 8.03
−3.49137 −1.39653 0.24746 0.9700 32.83 1896.32 116.12 4.44 9.29

2 −2.95192 −1.18075 0.30705 0.9491 19.14 1528.28 144.08 3.99 11.53

3 −2.47345 −0.98937 0.37181 0.9192 11.86 1262.07 174.47 3.62 13.96
−2.30259 −0.92102 0.39811 0.9048 10.00 1178.70 186.82 3.50 14.95

4 −2.14209 −0.85682 0.42451 0.8892 8.52 1105.41 199.20 3.39 15.94

5 −1.88612 −0.75444 0.47028 0.8593 6.59 997.83 220.68 3.22 17.65

6 −1.67599 −0.67038 0.51151 0.8293 5.34 917.39 240.03 3.09 19.20

7 −1.49659 −0.59863 0.54957 0.7994 4.47 853.86 257.89 2.98 20.63

8 −1.33916 −0.53566 0.58528 0.7695 3.82 801.75 274.65 2.89 21.97

9 −1.19815 −0.47925 0.61925 0.7395 3.31 757.78 290.58 2.81 23.25
−1.11842 −0.44736 0.63931 0.7112 3.06 734.00 300.00 2.76 24.00

10 −1.06979 −0.42791 0.65187 0.7096 2.91 719.86 305.89 2.74 24.47

11 −0.95142 −0.38056 0.68348 0.6796 2.59 686.57 320.72 2.67 25.66

12 −0.84108 −0.33643 0.71432 0.6497 2.32 656.93 335.20 2.61 26.82

13 −0.73726 −0.29490 0.74461 0.6198 2.09 630.21 349.41 2.56 27.95

14 −0.63878 −0.25551 0.77452 0.5898 1.89 605.86 363.45 2.51 29.08

15 −0.54467 −0.21787 0.80423 0.5599 1.72 583.48 377.39 2.46 30.19

16 −0.45414 −0.18165 0.83389 0.5299 1.57 562.73 391.31 2.46 31.30

17 −0.36651 −0.14660 0.86364 0.5000 1.44 143.35 405.27 2.38 32.42

18 −0.28118 −0.11247 0.89363 0.4701 1.32 525.11 419.34 2.34 33.55

19 −0.19759 −0.07903 0.92401 0.4401 1.22 507.85 433.60 2.30 34.69

20 −0.11523 −0.04609 0.95495 0.4102 1.12 491.39 448.12 2.26 35.85

21 −0.03360 −0.01344 0.98665 0.3802 1.03 475.60 462.99 2.22 37.04

22 0.04781 0.01912 1.01931 0.3503 0.95 460.37 478.31 2.19 38.27

23 0.12995 0.05182 1.05318 0.3204 0.88 445.56 494.21 2.15 39.54

24 021223 0.08489 1.08860 0.2904 0.81 431.06 510.83 2.12 40.87

25 0.29657 0.11863 1.12595 0.2605 0.74 416.76 528.36 2.08 42.27

26 0.38345 0.15338 1.16576 0.2305 0.68 402.53 547.04 2.05 43.76

27 0.47403 0.18961 120878 0.2006 0.62 388.21 567.22 2.01 45.38

28 0.56990 0.22796 1.25603 0.1707 0.57 373.60 589.40 1.97 47.15

29 0.67345 0.26938 1.30915 0.1407 0.51 358.44 614.32 1.93 49.15

30 0.78856 0.31542 1.37083 0.1108 0.45 342.31 643.27 1.89 51.46

31 0.92239 0.36895 1.44622 0.0808 0.34 324.47 678.64 1.84 54.29

32 1.09123 0.43648 1.54726 0.0509 0.34 303.28 726.06 1.78 58.08

33 1.35202 0.54080 1.71738 0.0210 0.26 2.73.24 805.89 1.69 64.47

μy = −0.55479467

σy = 1.201931562

Bold shows readers the testing plan imputs (R(t), n) and (S, t) do not fall in the same row.
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4.2.1 | Weibull/vibration stress parameter estimation

In this section, the objective is to determine the Weibull shape β and scale η parameters of the two parameter Weibull
distribution, directly from the used vibration testing profile. The two parameter Weibull distribution is given by:



TABLE 3 Weibull testing's plan analysis

Equation

(11) (20) (23) (24) (25) (11) (37) (39)
n Yi ln[tan(θi)] tan(θi) R(ti) ni SGi ti

1 −3.85466 −1.54184 0.21399 0.9790 47.21 2.39 20.75
−3.49137 −1.39653 0.24746 0.9700 32.83 2.76 24.00

2 −2.95192 −1.18075 0.30705 0.9491 19.14 3.43 29.78

3 −2.47345 −0.98937 0.37181 0.9192 11.86 4.15 36.06
−2.30259 −0.92102 0.39811 0.9048 10.00 4.44 38.61

4 −2.14209 −0.85682 0.42451 0.8892 8.52 4.74 41.17

5 −1.88612 −0.75444 0.47028 0.8593 6.59 5.25 45.61

6 −1.67599 −0.67038 0.51151 0.8293 5.34 5.71 49.61

7 −1.49659 −0.59863 0.54957 0.7994 4.47 6.14 53.30

8 −1.33916 −0.53566 0.58528 0.7695 3.82 6.53 56.77

9 −1.19815 −0.47925 0.61925 0.7395 3.31 6.91 60.06

10 −1.06979 −0.42791 0.65187 0.7096 2.91 7.28 63.22

11 −0.95142 −0.38056 0.68348 0.6796 2.59 7.63 66.29

12 −0.84108 −0.33643 0.71432 0.6497 2.32 7.97 69.28

13 −0.73726 −0.29490 0.74461 0.6198 2.09 8.31 72.22

14 −0.63878 −0.25551 0.77452 0.5898 1.89 8.65 75.12

15 −0.54467 −0.21787 0.80423 0.5599 1.72 8.98 78.00

16 −0.45414 −0.18165 0.83389 0.5299 1.57 9.31 80.88

17 −0.36651 −0.14660 0.86364 0.5000 1.44 9.64 83.76

18 −0.28118 −0.11247 0.89363 0.4701 1.32 9.98 86.67

19 −0.19759 −0.07903 0.92401 0.4401 1.22 10.32 89.62

20 −0.11523 −0.04609 0.95495 0.4102 1.12 10.66 92.62

21 −0.03360 −0.01344 0.98665 0.3802 1.03 11.02 95.69

22 0.04781 0.01912 1.01931 0.3503 0.95 11.38 98.86

23 0.12995 0.05182 1.05318 0.3204 0.88 11.76 102.15

24 021223 0.08489 1.08860 0.2904 0.81 12.15 105.58

25 0.29657 0.11863 1.12595 0.2605 0.74 12.57 109.20

26 0.38345 0.15338 1.16576 0.2305 0.68 13.01 113.06

27 0.47403 0.18961 120878 0.2006 0.62 13.50 117.24

28 0.56990 0.22796 1.25603 0.1707 0.57 14.02 121.82

29 0.67345 0.26938 1.30915 0.1407 0.51 14.62 126.97

30 0.78856 0.31542 1.37083 0.1108 0.45 15.30 132.95

31 0.92239 0.36895 1.44622 0.0808 0.340 16.15 140.26

32 1.09123 0.43648 1.54726 0.0509 0.34 17.27 150.06

33 1.35202 0.54080 1.71738 0.0210 0.26 19.17 166.56

Bold shows readers all the testing inputs (R(t),n) and (S,t) are now in the same row.

2415PIÑA‐MONARREZ
f tð Þ ¼ β
η

t
η

� �β−1

exp −
t
η

� �β
( )

; (14)

and based on the vibration testing profile, their parameters are determined under the following three assumptions: (a)
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The first row in the testing profile represents the test's most severe scenario, (b) the generated damage in one cycle is
cumulated from the first row of the testing profile to the last, and (c) the whole test profile is considered a compact
cycle, which is repeated n times until failure occurs. Based on these assumptions, the steps to determine the correspond-
ing β and η parameters, directly from the testing profile are the following.

Step 1. From the first row of the testing profile, take the product of the applied frequency and energy as the mini-
mum eigenvalue

λmin ¼ f 1*G1: (15)
Step 2. Take the maximum eigenvalue as the total cumulated energy of the testing profile as follows:

λmax ¼ ∑
k

Ai; (16)

i¼1

where Ai represents the area of the th‐row of the testing profile, given as follows19:

Ai ¼ 10 log 2ð Þ PSDi

10 log 2ð Þ þm
f i − f i−1

f i−1
f i

� �m=10 log 2ð Þ" #
: (17a)

PSDi is the applied energy and f i is the frequency of the ith row of the used testing's profile, while f (i‐1) is the frequency
of the (th‐1)‐row of the testing's profile, and m is the slope given as follows:

m ¼ dB=octaves; (17b)

where

dB ¼ 10 log PSDi=PSDi−1ð Þ; (17c)

octaves ¼ log f i=f i−1ð Þ
log 2ð Þ : (17d)

Step 3. By using the maximum eigenvalue taken from step 2, determine the vibration stress level S in Grms units as
follows:

S ¼
ffiffiffiffiffiffiffiffiffi
λmax

p
(18)
9:80665

Step 4. By using the n value estimated in step 6 of Section 4.1, determine the median rank approach20 as follows:

F tið Þ ¼ i − 0:3
nþ 0:4

(19)

where F (ti) = 1 − R(ti) is the cumulated failure time percentile.

Step 5. By using the F (ti) elements from Step 4, determine the corresponding Yi elements as follows:

Yi ¼ ln − ln 1 − F tið Þð Þð Þ ¼ boþ B ln tið Þ; (20)
and from the Yi elements, determine the corresponding arithmetic mean μy and the standard deviation σy.

Step 6. By using the μy value from step 5, and the addressed λmin and λmax values from steps 1 and 2, determine the
corresponding Weibull vibration βs parameter7 as follows:

βs ¼ −4μY
0:9947* ln λmax=λminð Þ (21)
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Step 7. By using the addressed λmin and λmax values from steps 1 and 2, determine the corresponding Weibull
vibration stress parameter as follows7:

ηs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxλmin

p
(22)

The Weibull parameters addressed in Equations (21) and (22) are the parameters of the Weibull stress family W (βs, ηs),
which completely represent the vibration profile of step 2 in Section 4.1. Now that by using Equations (15), (16), (21),
and (22), the Weibull parameters can be determined directly from the vibration testing profile; the addressed W (βs, ηs)
can be used to determine the corresponding Weibull testing time parameters.
4.2.2 | Weibull/vibration testing time parameters estimation

The objective of this section is to establish the Weibull testing time W (βt, ηt) distribution, which determines the
expected testing time values that correspond to each of the expected vibration stress levels Si values given by the W
(βs, ηs) distribution. The analysis to derive the corresponding W (βt, ηt) distribution is performed by using both the
Weibull stress βs and ηs parameters in Section 4.2.1, and the testing profile data S = 2.71 Grms and t = 24 hours shown
in Table 1.

By doing this, (a) the expected Si values are determined, (b) the scale testing time ηt parameter is determined, and
finally by using both the addressed ηt value and the basic Weibull values, (c) the expected ti, value, which corresponds
to each one of the Si values, is determined. Each of these is determined as follows:

1. To determine the Si values:
Step 1. Determine the desired R(t) index, and from Equation (11), determine the corresponding n value.

Step 2. By using the n value in step 1, determine the Yi elements, its mean μy, and its standard deviation σy, as men

tioned in step 5 of Section 4.2.
Step 3. By using the βs parameter from step 6 in Section 4.2, and the Yi elements from step 2, determine the log

arithm of the basic Weibull values as follows:

ln tan θið Þ½ � ¼ Yi

βs

� �
(23)

Step 4. From the logarithm of the basic Weibull values in step 3, determine the corresponding basic Weibull values
as follows:

tan θið Þ ¼ exp
Yi

βs

� �
(24)

Step 5. By using the basic Weibull values in step 4, determine their corresponding reliability indices as follows:

R tið Þ ¼ exp − tan θið Þβ
	 
n o

(25)

Step 6. By using the reliability indices in step 5 in Equation (11), determine their corresponding ni value, which
corresponds to each one of the the basic Weibull values of step 4.

Step 7. By using the basic Weibull values in step 4 and the ηs parameter from step 7 in Section 4.2, determine the
expected maximum and minimum vibration levels as follows:

λmax ið Þ ¼ λ1i ¼ ηs= tan θið Þ and λmin ið Þ ¼ λ2i ¼ ηs* tan θið Þ (26)

Step 8. From the maximum vibration levels in step 7, determine the corresponding vibration stress value Si for each
one of the basic Weibull values as follows:
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Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax ið Þ

p
9:80665

(27)
The Si values in these steps represent the expected vibration stress values given by the Weibull stress W (βs, ηs)
distribution.

2. The corresponding scale testing time ηt parameter is determined as follows:

Step 9. By using the addressed λmin and λmax values from steps 1 and 2 in Section 4.2, determine the corresponding

basic Weibull value as follows:

tan θλsð Þ ¼
ffiffiffiffiffiffiffiffiffi
λmin

λmax

s
(28)

Step 10. By using the basic Weibull value from step 9 and the testing time from step 1 in Section 4.1, determine the
Weibull scale testing time parameter in time units as follows:

ηt ¼
t

tan θλsð Þ (29)
The βs parameter in Section 4.2.1 and the ηt parameter of this step represent the Weibull testing time family W (βs = βt,
ηt), which in the Weibull analysis is used to determine the testing time ti value that corresponds to each one of the Si
values.

3. The corresponding ti elements are estimated as follows:

Step 11. By using the basic Weibull values in step 4 and the Weibull testing time scale parameter from step 10, the

testing time that corresponds to each one of the basic Weibull values is given as follows:

ti ¼ ηt* tan θið Þ (30)
Next, the addressed stress Weibull family W (βs, ηS) in Section 4.2.1 and the Weibull testing time family W (βs, ηt) in this
section will be used to present the numerical Weibull vibration application.
4.2.3 | Numerical Weibull stress and testing time analysis

In the application, the testing profile in Section 4.1 is used, thereby following the steps in Section 4.2.2,

1. The Weibull stress W (βs, ηS), as well as the expected vibration stress Si elements, are estimated as follows.
Step 1. R(t) = 0.97 and n = 33 parts.
Step 2. The Yi elements, its mean μy, and its standard deviation σy are all shown in Table 2.
Step 3. Since from Equation (21), with μy = −0.554795 and λmin = 300 rms2 and λmax = 734 rms2, βs = 2.5, then by

using its value in Equation (23), the logarithm of the basic Weibull values are shown in Table 2.
Step 4. From Equation (24), the basic Weibull values are also shown in Table 2.
Step 5. The reliability indices are featured in Table 2.
Step 6. The ni values are given in Table 2.
Step 7. Since by using λmin = 300 rms2 and λmax = 734 rms2, in Equation (22), ηs = 469.2544 rms2, then by using

this value in Equation (26), the expected maximum and minimum vibration levels are given in Table 2.
Here, notice the Weibull stress distribution is W (βs = 2.5, ηS = 469.2544 rms2).

Step 8. The expected vibration stress Si values are shown in Table 2.
2. The scale testing time parameter is derived as follows:

Step 9. From Equation (28), the basic Weibull value that corresponds to λmin = 300 rms2 and λmax = 734 rms2 is
tan(θλs) = 0.639312.
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Step 10. From Equation (29), the Weibull scale parameter in time units is ηt = 37.54038hours.
Step 11. From Equation (30), the expected testing times are given in Table 2. Here, it should be noticed that the

Weibull testing time distribution is W (βs = 2.5, ηt = 37.54038 hours).
3. From Equation (30), the corresponding testing times are shown in Table 2.

In theWeibull analysis offered in Table 2, it is important to notice that columns λ1i and λ2i and Si are all based on the vibra-
tion stress family W (βs = 2.5, ηs = 469.2544 rms2) and that the ti column in Table 2 is based on the Weibull testing time
family W (βs = 2.5, ηt = 37.54038 hours) also that from Equation (11), the values of the R(ti) and ni columns are both
completely related each other, and that the (R(ti) and ni) columns are independent from the (λ1i, λ2i, Si, and ti) columns.

Thus, from Table 2, the original vibration testing design in Section 4.1 is given by combining the R(ti) = 0.97 and
ni = 33 parts values of row between rows 1 and 2 with the S = 2.76 Grms and t = 24 hours values of row between rows
9 and 10. As a consequence, columns (R(t) and n) are independent of the (S and t) columns, and the testing profile
values appear in different rows. The next section describes the analysis by which all of them are set in the same row.

However, to show how the Weibull analysis shown in Table 2 can be used for designers and reliability practitioners,
the following complement analysis will first be presented.

Practical complement analysis
First, it should be pointed out that from Equations (25) and (26), the values of column λ2i in Table 2 can also be used to
determine the reliability value, which corresponds to the R(ti) column given in Table 2 as follows:

R tið Þ ¼ exp −
λ2i
ηs

� �βs
( )

(31)

Thus, from row between rows 9 and 10 of Table 2, it can be concluded that because from the applied testing profile shown
in Table 1, theminimal applied stress is 300Grms, then fromEquation (31) the expected reliability as shown in Table 2 is of
R(t) = exp{−1 * (300/469.2544)2.5) = 0.7212. Similarly, from row between rows 1 and 2 of Table 2, it can be concluded that if
theminimal applied stress is of 116.12 Grms, then as shown in Table 2, R(t) = exp{−1 * (116.12/469.2544)2.5) = 0.97. Hence,
since the real minimal applied stress is 300 Grms and the desired R(t) index is R(t) = 0.97, then the strength of the product
should be increased to increase the reliability from R(t) = 0.7212 to R(t) = 0.97.

By using data of Table 2, the minimal strength material to be used is selected based on the fact demonstrated in Piña‐
Monarrez,7 where for higher R(t) percentiles, (saying R(t) > 0.90), the column λ1i of Table 2 can be used as the strength
scale ηSi parameter of the Weibull strength distribution, which can be used to model the strength behavior of the used
material. Therefore, by using the known βs = 2.5 value and the desired λ1i = ηSi value in Table 2 as the Weibull strength
parameters W (βs, λ1i = ηSi), the R(t) index shown in Table 2 can also be determined by using the composed
Weibull/Weibull (stress/strength) reliability function21 given as follows:

R t=s; Sð Þ ¼ ∫
∞

0
∫
∞

s
f Sð ÞdS

" #
f sð Þds (32)

which because in our case, βs is common for the stress W (βs, ηs) and the strength W (βs, λ1i = ηSi) distributions, then
from Piña‐Monarrez,7 the R(t) index is given as follows:

R t=s; Sð Þ ¼ ηβsS
ηβsS þ ηβss

(33)

Thus, since R(t) = 0.97 is desired, then from Table 2, λ1i = ηSi = 1896.32 rms2 is selected as the scale parameter of the
Weibull strength distribution. Hence, with this value in Equation (33), R(t) = 1896.322.5/(1896.322.5 + 469.252.5) = 0.97.

However, because from engineering handbooks, there was a search for average strength values, say yield strength Sy,
and not for Weibull scale parameters, then by using the selected strength ηS value, the stress ηs value, and the minimum
applied stress value, the minimum strength values, which should be searched for in the engineering handbook is given
as follows:

λSmin ¼ λminηS
ηs

; λSmax ¼ ηsηS
λmin

(34)
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From Equation (34), by using ηS = 1896.3223 rms2, ηs = 469.2547 rms2, and λmin = 300 rms2, the minimum product
strength, which should be searched for, is λmin = 1212.34 rms2 (3.55 Grms). Thus, if the minimum product strength
is of λmin = 1212.34 rms2 (3.55 Grms), then its reliability will be of R(t) = 0.97.

Additionally, it should be noticed that because from Equation (34), the maximum expected strength is λmax = 2966.19,
then since by using these minimum and maximum strength values in Equation (22), the estimated scale strength value
is also ηS = 1896.3223 rms2, then the whole theory explained in this paper could also be performed to the addressed
strength Weibull family.

Following is the formulation to set the R(t) = 0.97, n = 33 parts, S = 2.76 Grms, and t = 24 hours values of the orig-
inal testing profile in the same row of the Weibull analysis.
4.2.4 | Weibull testing plan analysis

This section is based on the normal vibration data given in the testing profile in Table 1 and Figure 1 in step 2 of Section 4.1.
In addition, from the analysis above, in this section, it has been assumed that the tested product will withstand the applied
vibration stress profile as mentioned in Practical complement analysis section. In other words, the assumption is that the
tested product presents a minimum strength of λmin = 1212.34 rms2, or equivalently, and that has been assumed because
the strength of the tested product could be well represented by the strength Weibull distribution with parameters W
(βs = 2.5, λ1i = ηSi = 1896.3223 rms2); thus, by applying the testing profile given in Table 1, no failures are expected.

As a result, in the Weibull analysis, the key vibration testing factors, R(t) = 0.97 sample size n = 33 parts, t = 24 hours,
and S = 2.76 rms should be set at the row, which corresponds to R(t) = 0.97.

The steps to do this are given below.

Step 1. Following steps 1 to 6 of Section 4.2.2, determine the Yi elements, the logarithm of the basic Weibull values,
the basic Weibull values, the R(ti) indices and the ni values.
Step 2. Determine the basic Weibull value which corresponds to the desired R(t) index as follows:

tan θR tð Þ
� � ¼ exp

ln − ln R tð Þð Þð Þ
βs

� �
(35)

Step 3. By using the S vibration level of step 3 of Section 4.2.1 (see Equation (18)) and the basic Weibull value of
step 2, determine the vibration scale parameter in Grms units as follows:

ηG ¼ S

tan θR tð Þ
� � (36)

Step 4. By using the ηG value from step 3 and the basic Weibull values from step 1, determine the vibration Grms
levels as follows:

SGi ¼ ηG* tan θið Þ (37)
Step 5. By using the testing time t from step 1 in Section 4.2.1 and the basic Weibull value of step 2, determine the
testing time scale parameter in hours as follows:

ηt ¼
t

tan θR tð Þ
� � (38)

Step 6. By using the ηt value from step 5 and the basic Weibull values from step 1, determine the testing times as
follows:

ti ¼ ηt* tan θið Þ: (39)
The next section describes the application.

Weibull testing's plan application
Here, vibration data from Section 4.2.1 are used. In the analysis from Equation (35), the basic Weibull value, which cor-
responds to R(t) = 0.97 istan(θR(t)) = 0.2474499. Therefore, from Equation (36) ηG = 11.153769 Grms, and from
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Equation (38) ηt = 96.989295hours. Table 3 shows the normal vibration analysis following the steps in Section 4.2.3.
From Table 3, it can be observed that now all the original testing's parameters of the test IV of the ISO 16750‐3 are
in the R(t) = 0.97 row. This means that by testing n = 33 parts at constant vibration stress of S = 2.76 Grms by
t = 24 hours each, the demonstrated reliability is R(t) = 0.97.

On the other hand, since now the values of columns SGi and ti, represent the random behavior of the minimum
applied stress and testing time of a product, which as expected present a R(t) = 0.97, then the values of these columns
could be used to derive several accelerated testing plan scenarios such as those given in the next section.
4.2.5 | Weibull accelerated testing's plan analysis

This section is based on Equation (34), on the data from Table 3, and on the fact that from the data in Table 3, the ratio
of the testing times and vibration levels between the fixed row of R(t) = 0.97 and any other row is the same, and it is
given as follows:

tn
tac

¼ Sn
Sac

(40)

where from Equation (18), Sn is the normal vibration level of the testing profile of S = 2.76 Grms, and tn is the testing
time of t = 24 hours; tac is the accelerated testing time, and Sac is the accelerated vibration stress level. Therefore, from
Equation (40), Sac is given as follows:

Sac ¼ Sn
tac
tn

� �
¼ Sn*sf (41)

Hence, from Table 3 or from Equations (12) and (40), it can be seen that the over stress factor is given as follows:

sf ¼ tac
tn

� �
¼ Sac

Sn

� �
¼

ffiffiffiffiffi
n
n2

βs

r
(42)

Therefore, based on the analysis from above, several testing scenarios are possible. The four most common are the
following:

S1. Testing fewer parts for the given vibration level S, but at an accelerated testing time tac. In this case, S is a fixed
value, and tac (tac > t). For the selected n2 (n2 < n) value, it is given from Equations (41) and (42). For example, with
fixed S = 2.76 Grms value, the tac value that corresponds to n2 = 10 is, tac = 24 * (32.83/
10)0.4 = 24 * 1.60883 = 38.61 hours.

Thus, by testing n2 = 10 parts for tac = 38.61 hours, each at constant vibration level of S = 2.76 Grms, R(t) = 0.97 can be
demonstrated. (The same fact is true for any desired row of Table 3). Here, it can be noticed that since S is a fixed value,
then the testing profile is the one shown in Table 1 and in Figure 1.

S2. Testing more parts for the given vibration level S, but for a shorter testing time. In this case S is a fixed value, and
the testing's time ti (ti < t). For the selected n2 (n2 > n) value, it is given from Equations (41) and (42). For example,
with fixed S = 2.76 Grms value, the ti value that corresponds to n2 = 47.21 parts is, ti = 24 * (32.83/
47.021)0.4 = 24 * 0.8662 = 20.75 hours.

Thus, by testing n2 = 47.21 parts for ti = 20.75 hours each at constant vibration level of S = 2.76 Grms, R(t) = 0.97 can be
demonstrated. (The same fact is true for any desired row of Table 3). Here, it can be noticed that since S is the fixed
value, then the testing profile is the one given in Table 1 and in Figure 1.

S3. Testing fewer parts for the given testing time t, but at an accelerated vibration level Sac. In this case, t is a fixed
value, and the Sac (Sac > S) level. For the selected n2 (n2 < n) value, it is given from Equations (41) and (42). For
example, from Equation (41), with fixed t = 24 hours, the Sac level that corresponds to n2 = 10, is Sac = 2.76 * (32.83/
10)0.4 = 2.76 * 1.60883 = 4.44 Grms.
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Thus, by testing n2 = 10 parts for t = 24 hours each at constant accelerated vibration level of Sac = 4.44 Grms, R(t) = 0.97
can be demonstrated. (The same fact is true for any desired row of Table 3). The corresponding accelerated testing's pro-
file is given in Table 4 and in Figure 2.

In Table 4, the accelerated frequencies were determined by using the sf factor of Equation (42) as follows:

f ac ¼ f i*sf
2 (43)
TABL

Freq

25.88

1035.

2588.

* it onl

Bold nu

FIGU
Note . It is worth pointing out that under equipment capability restriction, instead of accelerating the fre-
quency as in Equation (43), the PSD energy could be equivalently accelerated by replacing f i by the corre-
sponding PSDi value as PSDac = PSDi * sf

2.
S4. Testing more parts for the given testing time t, but at a lower vibration level S. In this case, t is a fixed value, and
the vibration level Si (Si < S). For the selected n2 (n2 > n) value, it is given from Equations (41) and (42). For exam-
ple, with fixed t = 24 hours, the Si value that corresponds to n2 = 47.21 is, Si = 2.76 * (32.83/
47.021)0.4 = 2.76 * 0.8661 = 2.39 Grms.

Thus, by testing n2 = 47.21 parts for t = 24 hours each at constant vibration level of S = 2.39 Grms, R(t) = 0.97 can be
demonstrated. (The same fact is true for any desired row of Table 3). The testing profile is given in Table 5 and in
Figure 3.

As a summary of this section, notice that the above analysis was performed based on the row in Table 3, which con-
tains the testing factors of the used profile. The same analysis will be presented next but by considering the fatigue expo-
nent M of the used material.
E 4 ISO16750‐3, test IV: Accelerated random vibration profile

, Hz PSD (m/s2)2/Hz dB Oct dB/Oct Area rms

30.0000 * * * 776.51 27.87

35 0.2000 −21.76 5.32 −4.09 1589.25 39.87

36 0.2000 0.00 1.32 0.00 1899.85 43.59

y indicates it is an empty cell.

mber shown readers the total accumulated energy.

RE 2 ISO16750‐3, accelerated testing's profile [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


TABLE 5 ISO16750‐3, test IV: Accelerated random vibration profile

Freq, Hz PSD (m/s2)2/Hz dB Oct dB/Oct Area rms

7.50 30.0000 * * * 225.07 15.00

300.09 0.2000 −21.76 5.32 −4.09 460.64 21.46

750.23 0.2000 0.00 1.32 0.00 550.66 23.47

* it only indicates it is an empty cell.

Bold number shown readers the total accumulated energy.

FIGURE 3 ISO16750‐3, accelerated testing's profile [Colour figure can be viewed at wileyonlinelibrary.com]
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4.2.6 | Weibull accelerated fatigue testing's plan analysis

From appendix I of the user guide for the norm GMW3172, page 299, the fatigue exponent M of the used material is
incorporated in the analysis. It is incorporated in the stress factor defined in Equation (42). Therefore, the corresponding
fatigue stress factor is given as follows:

sfm ¼ Sac
Sn

� �
¼

ffiffiffiffiffi
tac
tn

M

r
¼

ffiffiffiffiffi
n
n2

βsM

r
(44)

As a result, from Equations (41) and (44), the accelerated fatigue vibration level is given as follows:

Saf ¼ Sn
Sac
Sn

� �1=M

(45)

Now, by considering that the tested product is made of aluminum lead, and according to appendix I of the user guide for
norm GMW3172, page 299, the M fatigue coefficient is M = 6.4. Thus, the fatigue vibration testing analysis for the four
scenarios in section 4.2.6.3 is as follows.

SF1. Testing fewer parts for the given vibration level S, but at an accelerated testing's time. In this case, from Equa-
tion (45) Sac = S, then Saf = Sn = 2.76 Grms. Consequently, this scenario is not affected by the M coefficient. Here,
it can be noticed that since Saf is a fixed value, then the testing's profile is the one given in both Table 1 and in
Figure 1.

SF2. Testing more parts for the given vibration level S, but at a lower testing time. This scenario is not affected by the
M coefficient either. Here, it can be noticed that since Saf is a fixed value, then the testing profile is the one given in
both Table 1 and in Figure 1.

SF3. Testing fewer parts for the given testing time t, but at an accelerated vibration level. In this case, by using
Sac = 4.44 Grms, Sn = 2.76 Grms, and M = 6.4 in Equation (45), Saf = 2.97 Grms. Thus, by testing n2 = 10 parts

http://wileyonlinelibrary.com


TABLE 6 ISO16750‐3, test IV: Accelerated random vibration profile

Freq, Hz PSD (m/s2)2/Hz dB Oct dB/Oct Area rms

11.60 30.0000 * * * 348.06 18.66

464.08 0.2000 −21.76 5.32 −4.09 712.36 26.69

1160.21 0.2000 0.00 1.32 0.00 851.59 29.18

* it only indicates it is an empty cell.

Bold number shown readers the total accumulated energy.

2424 PIÑA‐MONARREZ
for t = 24 hours each at constant accelerated vibration level of, Saf = 2.97 Grms, R(t) = 0.97 is demonstrated. (The
same fact is true for any desired row of Table 3). The corresponding accelerated testing profile is given in Table 6
and in Figure 4. In Table 6, the accelerated fatigue frequencies were determined by using the sf factor of Equa-
tion (42) as follows:

f ac ¼ f i*sf
2=M (46)
FIGU

TABL

Freq

9.56

382.4

956.0

* it onl

Bold nu
Note . As can be observed instead of accelerating the frequency, the PSD energy could be accelerated as
PSDac = PSDi * sf

2/M.
SF4. Testing more parts for the given testing time t, but at a lower vibration level S. In this case, by using
Sac = 2.39 Grms, Sn = 2.76 Grms, and M = 6.4 in Equation (45), Saf = 2.70 Grms. Thus, by testing n2 = 47.21 parts
for t = 24 hours each at constant accelerated vibration level of, Saf = 2.70 Grms, R(t) = 0.97 can be demonstrated.
(The same fact is true for any desired row in Table 3). The corresponding accelerated fatigue testing's profile is given
in Table 7 and in Figure 5.

Finally, the Weibull/Fatigue family which could be used in the corresponding fatigue analysis will be derived.
RE 4 Accelerated fatigue testing profile [Colour figure can be viewed at wileyonlinelibrary.com]

E 7 ISO16750‐3, test IV: Accelerated random vibration profile

, Hz PSD (m/s2)2/Hz dB Oct dB/Oct Area rms

30.0000 * * * 286.83 16.94

4 0.2000 −21.76 5.32 −4.09 587.04 24.23

9 0.2000 0.00 1.32 0.00 701.77 26.49

y indicates it is an empty cell.

mber shown readers the total accumulated energy.
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FIGURE 5 Accelerated fatigue testing profile [Colour figure can be viewed at wileyonlinelibrary.com]
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4.3 | Weibull/fatigue relationships

By using the material fatigue exponent M, the Weibull shape fatigue parameters β f is given as follows:

βf ¼ βs*M ¼ σy
σS

(47)

And by using the corresponding vibration level S of the used profile and the above β f value in Equation (38), the
Weibull scale fatigue parameter η f

ηf ¼ S= exp
lnð− ln R tð Þð Þ

βf

( )
(48)

Numerically, β f = 2.5 * 6.4 = 16, and η f = 2.76 * exp{ln(−ln(0.97))/16} = 3.433023 Grms. Therefore, the corresponding
Weibull fatigue stress family is W (β f = 16, η f = 3.433023 Grms).

Additionally, based on Equations (47) and (48), the Weibull scale parameter, which is used to determine the mean
and the amplitude fatigue stresses, is given as follows:

ηft ¼ exp ηf −
μy
βf

( )
(49)

Numerically, it is ηft = exp{3.433023‐(−0.55479/16)} = 3.554149 Grms. Thus, by using the ηft value and the basic fatigue
Weibull values given by:

tan θfi
� � ¼ Yi

βf
(50)

the Sfti values are generated as follows:

Sfti ¼ ηft* tan θfi
� �

(51)

and by taking the arithmetic mean of theSfti values as the mean stress μ, the principal stresses values are given as fol-
lows:

σ1; σ2 ¼ μ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − η2f

q
(52)

http://wileyonlinelibrary.com


FIGURE 6 Weibull/fatigue representation
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Numerically, μ = 3.442251 Grms. Hence, from Equation (52), σ1 = 3.442251 + 0.251883 = 3.694134 Grms, and
σ2 = 3.190368 Grms. As a consequence, the amplitude fatigue stress value is given as follows:

Sa ¼ σ1 − σ2
2

: (53)

Numerically it is Sa = 0.251883 Grms, and the corresponding basic Weibull angle θ is as follows:

θi ¼ tg−1
ffiffiffiffiffiffi
σ2i

σ1i

r� �
¼ tg−1

1ffiffiffiffiffiffi
n2iβ

p
� �

¼ tg−1 S0ið Þ: (54)

Numerically, it is θ = tg−1((3.190368/3.694134)0.05) = 42.90. Therefore, from the above data, the cyclical Weibull/fatigue
stress behavior in Grms units is shown in Figure 6.

As can be seen in Figure 6, if we know the ultimate strength SuG, the yield strength SyG, and the endurance limit SeG,
of the material in Grms units, the modified Goodman diagram analysis could be performed also, but because they are
unknown, then more research should be undertaken. However, as Liou et al22 mentions, because from the fatigue stress
distribution W (β f , η f ), the relationship between Si and ti (see Equations 48 and 49) as well as the cumulated damage
(see Equation (2)) are all given; thus, from the previous analysis, it seems to be possible to derive formulas to estimate
not only the cumulated damage, as it is done in section 2 in Liou et al22 but also to predict the fatigue life based on the
given σ1 and σ2 values, as it is given in Castillo et al,23 or by using the first‐order reliability method given in Xiang and
Liu,24 but because we do not know SuG, SyG, and SeG, then more research should be undertaken. Following are the gen-
eral conclusions of this work.
5 | CONCLUSIONS

1. From Equation (13), it is concluded that by applying the standard vibration test with n = 23 parts for t = 24 hours
each, the demonstrated reliability is always lower than R(t) = 0.97 (0.9574 < 0.97). Because in this standard vibra-
tion test no failure time is available, then neither the probabilistic behavior of the applied vibration profile nor the
fatigue analysis can be performed.

2. From Equation (11), the right n value, which completely represents both the desired R(t) index and the related
Weibull scale parameter value can be estimated.

3. Since the n value defined in Equation (11) always represents R(t) and η, then by using it in Equation (30) the basic
Weibull elements to determine the probabilistic behavior of both S and t can always be performed.

4. Since in the analysis the Weibull parameters are estimated directly from the testing profile, then the analysis
completely represents the used testing profile.

5. The minimum strength (rms2) that the product should present to withstand the applied stress with the desired reli-
ability will be determined from the Weibull analysis shown in Table 2.

6. From the Weibull analysis given in Table 3, several accelerated testing plans scenarios to test fewer parts for a lon-
ger time and vice versa can be determined, and the same can be done for the fatigue analysis.
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7. By applying the proposed Weibull analysis, it is possible to determine the midrange, the alternating, and the prin-
cipal stresses values to perform the corresponding fatigue analysis. However, since there were no vibration data in
rms2 in the engineering handbooks used, more research is necessary in this area.

8. If the fatigue exponent is known, it can be incorporated in the Weibull analysis in the derived over‐stress factor. It
should be noticed here that the Weibull stress shape parameter and the Weibull fatigue shape parameters are
related25 as in Equation (47).

9. On the other hand, it is important to mention that if the time Weibull family W (βt, ηt) or the stress Weibull family
W (βs, ηs) are determined based on several stress variables, then the Taguchi method given in26 can be used to
determine the corresponding Weibull parameters.

10. Finally, it should be considered for further research that because n in Equation (11) is the reciprocal of the cumu-
lative risk function H(t), and since H(t) is the mean of the related non‐homogeneous Poisson processes, referred to
in literature as the Weibull process (see Rinne27 section 4.2.6, page 199), then it seems possible, by setting the H(t)
value as the critical cumulated damage, to use Equation (11) to estimate the n expected shocks of the related addi-
tive cumulative damage model defined in Nakagawa28; however, more research should be undertaken in this area.
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