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ABSTRACT Degradation trajectories over time provide information that is important for the life estimation
of products and systems. However, most of the time the degradation measurements are disturbed by different
conditions that cause uncertainty. This is an important problem in the area of reliability assessment based
on degradation data, because the multiple observed measurements characterize the degradation path, which
ends defining a failure time. Thus, in the presence of measurement error the observed failure time may be
different from the true failure time. As the measurement error is inherent to the degradation testing, it results
important to establish models that allow to obtain the true degradation from the observed degradation and
some measurement error. In this article, a modeling approach to assess reliability under measurement error
is proposed. It is considered that the true degradation is obtained by deconvoluting the observed degradation
and the measurement error. We considered the inverse Gaussian and Wiener processes to describe the
observed degradation of a particular case study. Then, the obtaining of the true degradation is performed
by developing the proposed deconvolution method which considers that the measurement error follows a
Gaussian distribution. An illustrative example is presented to implement the proposed modeling, and some
important insights are provided about the reliability assessment.

INDEX TERMS Deconvolution, fast Fourier transform, inverse Gaussian process, measurement error,
reliability, Wiener process.

I. INTRODUCTION
The degradation modeling has become an important tool in
the area of reliability inference of highly reliable products.
One of the main reasons is because as modern products
and systems are developed with high quality standards the
traditional reliability analysis approach based on failure times
has become unsuitable, this indeed has posed the need of
alternative models. On the other hand, most products and
systems are expected to naturally degrade over time which
causes the reliability to decrease as the degradation pro-
cess evolves [1]. In general, different modeling approaches
have been presented in the literature for reliability assess-
ment based on degradation. Zio [2] identified four different
approaches as: statistical models of time to failure, which are
based on degradation data, stochastic degradation modeling,
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physics-based models and multi-state models. These four
approaches consist in finding the model that describes the
process of degradation, determining the failure time when
the degradation accumulates to a certain critical level, char-
acterize the failure time distribution, and finally perform
the reliability assessment. Sun et al. [3] studied these four
approaches in the analysis of high-power white LEDs. They
mentioned that more work should be done in the aims of
improve the performance of themodels in terms of addressing
different sources of uncertainty.

Specifically, degradation models based on stochastic pro-
cesses have been given special attention in the last years in
the literature. The gamma process is one of the first stochastic
processes used in degradation modeling and has been widely
used in different applications. Sun et al. [4] used the gamma
process to model the sealing performance of rubber O’rings,
they also considered the Arrhenius relationship to model the
effect of temperature given that a constant stress degradation
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test was performed. Yung et al. [5] used a Lévy subordinator
of a mixed Gamma process and compound Poisson process
to describe the degradation of process of high-power LEDs.
Sun et al. [6] used the gamma process to characterize the per-
formance degradation of solar cells considering the general
stress-strength interference model. On the other hand, lately,
two of the most used degradation models are based on the
Inverse Gaussian (IG) and Wiener processes. The IG process
has received great attention in the last years given its charac-
teristic that it is a limiting compound Poisson process, which
justifies its use in degradation process that are originated
by multiple external shocks. In addition, this process pro-
duces independent monotone paths and it is flexible to the
incorporation of random effects. Such characteristics have
been thoroughly studied in the next studies [7]–[12]. The
Wiener process, on the other hand, produces independent
non-monotone degradation paths and has been also thor-
oughly explored in the literature [13]–[15]. Specially, for
these characteristics the Wiener process has been used in
different applications. Kong et al. [16] studied a two phase
degradation process with change points based on the Wiener
process. Jin and Matthews [17] studied reliability demon-
stration plans with small samples for Rubidium Atomic Fre-
quency Standard by using the Wiener process. Cui et al. [18]
developed a degradation model based on the Wiener process
by considering periodical calibrations.

In general, there are several difficulties for obtaining life-
time estimations based on degradation data. One of the main,
is related to the uncertainty that arises in the measuring pro-
cess of the degradation. For instance, the probabilistic behav-
ior of the degradation increment over time is well modeled by
the stochastic process that governs the degradation process.
However, an independent process describes the measurement
error (ME). Then, the process of the measured degradation
is an additive function of the process of the true degradation
and the independent ME. Thus, if the reliability assessment
is performed by only considering the measured degradation
without any consideration about the ME, then the assessment
may be inaccurate. In such cases, it is of interest to find the
process that describes the true degradation as a function of
the observed degradation and the ME. In this way, it would
be possible to assess the reliability accurately without error
contamination.

The Wiener process is the stochastic process that
has received more attention when dealing with ME.
Whitmore [19] presented a model considering that the true
degradation is governed by a Wiener diffusion process.
It is assumed that the expected value of the measured
degradation equals the expected value of the true degra-
dation plus the expected value of the measurement error,
from there, the modeling is developed. Several approaches
have been introduced considering different sources of vari-
ation as mixed effects along with the ME modeling in
the Wiener process [20]–[25]. Li et al. [26] explored the
Wiener process model withME under accelerated conditions.
Zhai and Ye [27] investigated the Wiener degradation model

with ME considering that the errors follow a t-distribution.
While, other studies have considered the same modeling
approach, but focusing in estimating the remaining useful
life [28], [29].

The Wiener process is a non-monotone process, which
means that it may have some negative increments. Thus, this
process may not be adequate for many degradation processes.
In this sense, the IG process overcomes this drawback given
that it is a monotone process. In addition, the IG process
with ME has not been thoroughly studied in the literature.
Zhang et al. [30] considered an IG process to describe the
observed depth-growth of corrosion defects on pipelines.
They used a linear model to describe the true depth-growth
by incorporating constant and non-constant biases and the
ME. Although, in their study, they consider that the biases
and standard deviation of the ME as deterministic quanti-
ties. Thus, more research should be intended in this specific
area of degradation modeling. In this study, we propose to
use deconvolution to deal with the IG process with ME.
Several studies have been presented in the literature con-
sidering the deconvolution to deal with ME. The proposed
models normally consider a specific form of the distribution
of the ME. Then, the distribution of a true measurement is
obtained by deconvoluting the characteristic functions of the
distribution of the observed measurement and a kernel of the
error distribution [31]–[35]. Although, these models do not
involve a stochastic modeling as is the case when dealing with
degradation processes, which is one of the contributions of
this article.

A common assumption when dealing with degradation
processes with ME is that the ME follows a Gaussian dis-
tribution with µ = 0 and σ . This assumption is adequate as
can be noted in several reported works [9], [20], [21], [28],
[29]. In addition, there are several studies in the literature
in which Gaussian ME is incorporated in a deconvolution
process to obtain the true measurements [36]–[38]. In this
paper, it is considered that the distribution of the ME is
known to be Gaussian and that the Wiener and IG processes
govern the observed degradation. As the process of the true
degradation is of interest, an approximation is proposed by
considering the Fourier transform (FT) of the characteris-
tic function (CF) of the probability density function (PDF)
of the true degradation, which is obtained by dividing the
CF of the observed degradation distribution and the CF of
the ME Gaussian distribution, this procedure is known as
deconvolution. Indeed, several works have been reported
in the literature where non-Gaussian ME are proposed.
Li et al. [39] and Li et al. [40] considered to model
the ME with autoregressive models in the Wiener process.
Shen et al. [41] considered the logistic distribution to describe
the ME by also considering the Wiener process. Whereas,
Giorgo et al. [42] proposed a perturbed gamma process con-
sidering that the ME is a non Gaussian random variable that
depends stochastically on the actual degradation level.

As the deconvoluted function results in a quite complex
form, the fast Fourier transform (FFT) is implemented in
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the discrete form of the FT. A code in the R software is
developed to obtain the true degradation considering the pro-
posed scheme. The proposed approach is implemented in a
simulation study in order to assess the effect of the ME over
the true degradation. In addition, the modeling is applied to
a case study dataset to obtain the true degradation under an
estimated value of the standard deviation of the ME. The reli-
ability assessment is carried out by considering the pseudo-
failure times of the true degradation for the IG process,
given that the true degradation function have a complex form.
In the case of the Wiener process, the reliability assessment
is provided with the first-passage time distributions. From
both cases, it is observed that the reliability assessment of the
product is miss-estimated if the ME is not considered in the
modeling. The deconvolution approach is considered given
that the true measurements in degradation analysis are not
observed directly, which means that they represent a hidden
state of the degradation process. Instead, the observed degra-
dation is the only known state of the degradation process.
Because of this, in most of the degradation process analysis it
is considered that the observed degradation is governed by a
specific stochastic process. Then, the hidden true degradation
may be obtained as an approximation given that the observed
degradation is modeled by a certain model and the ME is
known to be described by a specific distribution.

The rest of the paper is organized as follows, in Section 2 the
deconvolution approach to obtain the true degradation
from the observed degradation and the ME is described.
In Section 3, we present the IG and Wiener processes to
describe the observed degradation. In addition, the decon-
volution for these two processes is introduced. In Section 4,
the estimation of parameters of the observed degradation and
the ME is discussed. In Section 5, a simulation study is per-
formed to visualize the effect of theME over the true degrada-
tion. In Section 6, an illustrative example is presented which
consists in the application of the proposed modeling to a
fatigue crack growth dataset, the reliability assessment of the
product is provided and some important insights are denoted.
Finally, in Section 7, the concluding remarks are provided.

II. A DECONVOLUTION APPROACH TO OBTAIN TRUE
MEASUREMENTS
Considering a degradation process as a stochastic pro-
cess, the degradation path over time can be modeled as
{Z (t); t > 0}. Thus, 1Zi

(
tj
)
= Zi

(
tj
)
− Zi

(
tj−1

)
for i =

1, . . . , n units at corresponding times tj for j = 1, . . . ,m.
In this paper, it is considered that the observed degradation
Zi
(
tj
)
is contaminated with ME, such that for any i and tj the

observed degradation is denoted as Zi
(
tj
)
= Si

(
tj
)
+ε, where

Si
(
tj
)
represents the true degradation, and ε theME, observed

at each Zi
(
tj
)
for the i = 1, . . . , n units at corresponding

times tj for j = 1, . . . ,m. When the ME’s PDF is known
and the observed degradation is assumed to be governed
by a specific stochastic process. Then, the true degradation
may be obtained via deconvolution at every j = 1, . . . ,m.
In this Section, we present general information about the

deconvolution, while in Section IIIA the proposed deconvo-
lution approach is developed.

Considering the convolution as g∗h = u, where (∗) repre-
sents the convolution operator and u represents the convoluted
function. Let u be the PDF of some observed measurement(
Zi
(
tj
))
, g is the PDF of the true measurement

(
Si
(
tj
))
, and

h is the PDF that describes a knownME (ε). Then, if the func-
tions and parameters of u and h are known, the deconvolution
can be performed by obtaining the CF of u and h and apply-
ing the deconvolution as ϕG (ζ ) = ϕU (ζ ) /ϕH (ζ ), where
ϕG (ζ ) , ϕH (ζ ), and ϕU (ζ ) are the respective CF. In general,
for any random variable X with distribution f (X) the CF
function is defined by ϕX (ζ ) = E [exp {iζX}], where ζ is
real and i =

√
−1. Then, ϕX (ζ ) is defined on a real line

as a function of ζ , which provides and alternative approach
to obtain characteristics of f and perform analysis of the
function f when this is complex.

Finally, the deconvoluted PDF of the true measurement g
can be obtained by computing the inverse Fourier transform
(IFT) of ϕG. Thus, in first instance the CF of the true mea-
surement PDF ϕG is obtained as in (1).

ϕG (ζ ) =
ϕU (ζ )

ϕH (ζ )
. (1)

Then, as mentioned earlier the PDF of g is obtained by
computing the IFT of (1), as denoted in (2).

f (g) =
∫
∞

−∞

ϕG (ζ )× exp {−iζg} dζ. (2)

It can be noted that the expressed integral may results
in a quite complex form. However, some methods can be
used to obtain an approximation of the PDF of g. In this
article, the fast Fourier transform (FFT) is considered as an
approximation method to obtain the PDF of the true degra-
dation. The FFT is an algorithm to compute the discrete
Fourier transform (DFT), and allows an efficient calculation
of the DFT coefficients of a periodic function sampled on a
regular grid of 2p points. The DFT considers that the FT can
be obtained as a Riemann sum approximation. We consider
P equally spaced sub-intervals ranging from a regular grid
of [D0,D1], where, the lower interval isD0 = 0, representing
the minimum true value. The upper interval is defined as
D1 = µε+5σ+q, which represents the maximum true value.
In this case, we consider the maximum true value as the sum
of the maximum observed measurement and the maximum
value of the ME. For this, we consider the 99.999th quantile
of the assumed distribution for the observed degradation
defined as q and µε + 5σ for the ME, where (µε, σ ) are the
parameters of the ME distribution.

In this way, the approximation of (2) is obtained in (3).

f (g) '
∫ D1

D0

ϕG (ζ ) exp {−iζg} dζ,

'
2D1

P

P−1∑
r=0

ϕG

(
2D1

P
(r − 1)− D0

)
× exp

{
−iζg

(
2D1

P
(r − 1)

)
− D0

}
, (3)
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where, the P equally spaced sub-intervals are considered to
have a width of 2D1/P. In the literature, it has been suggested
that the number of sub-intervals should greater or equal to
the sample size of the function to be deconvoluted. Indeed,
the greater P is, the closer the deconvoluted function will
be to the true function [43]. For the implementation of the
FFT in (3) we considered the ‘‘NormalGamma’’ package [44]
fromR. The source code of the ‘‘dnormgam’’ function, which
is oriented to convolution problems was modified in order to
implement the proposed deconvolution approach in (3). The
implementation of the FFT in the R software for a sampled
vector k = 0, 1, . . . ,P− 1 is defined as [38],

W [k] =
D1

Pπ
exp {iπ (k − 1)}

P∑
r=1

ϕG

(
2D1

P
(r − 1)

)
× exp

{
2iπ
P
(r − 1) (k − 1)

}
. (4)

Thus, W [k] is a vector of observations free of error.
With W [k], degradation paths can be constructed from the
observed degradation in the aims to assess the reliability
based on the true degradation.

III. INVERSE GAUSSIAN AND WIENER STOCHASTIC
DEGRADATION MODELS
For the implementation of the previously discussed deconvo-
lution approach, it is considered that observed degradation is
governed by two widely used stochastic processes in degra-
dation modeling. We consider the IG and Wiener stochastic
processes. We first discuss the details of the IG process. It is
considered that {Z (t) , t ≥ 0} is governed by an IG process
with the following properties: the increment Z (t +1t) −
Z (t) follows an IG distribution with parameters µ and λ,
Z (t) has independent increments, Z (t4)−Z (t3), and Z (t2)−
Z (t1) are independent ∀ t1 < t2 < t3 < t4. Thus, the PDF of
Z (t) is given as,

fIG (Z (t)) =

√
λt2

2πZ3 (t)

× exp

{
−
λ (Z (t)− µt)2

2µ2Z (t)

}
. (5)

An important aspect to consider when dealing with the
reliability assessment of products is the first-passage time
distributions. Such are obtained when the degradation paths
reach a critical degradation level ω. Then, the lifetime Tω of
the product is defined as Tω = inf {Z (t) ≥ ω}. Given the
monotonicity property of the IG process, it is well known
that the cumulative distribution function (CDF) of Tω can
be obtained as P (Z (t) ≥ ω) = 1 − F

(
ω,µt, λt2

)
. Thus,

the reliability function is obtained as follows

P (Z (t) < ω) = 8

[√
λ

ω

(
ω

µ
− t
)]
+ exp

{
2λt
µ

}

×8

[
−

√
λ

ω

(
ω

µ
+ t
)]

, (6)

where 8 denotes the standard Gaussian CDF.

Considering a degradation test (DT) where n units are
tested and m measurements for all the units are observed
up to the termination time T , which results in degradation
measurements Zi

(
tj
)
of the ith unit at the corresponding

time tj, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and according
to the independent increment property of the IG process,
and 1Zi

(
tj
)
= Zi

(
tj
)
− Zi

(
t(j−1)

)
, t0 = 0, 1tj = tj −

tj−1, for i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Thus, it is
possible to obtain independent random variables 1Zi(tj) ∼

IG
(
µ1tj, λ1t2j

)
.

The Wiener process is also considered for the implemen-
tation of the deconvolution approach, given that this process
has been widely used in degradation modeling. In addition,
this process has been widely studied when dealing with ME,
as discussed in Section I. Thus we consider this process
in the aims of establishing a point of comparison with the
proposed approach. The theoretical foundation for the use
of this process is based on the fact the often a gradual
drift of the mean value of degradation characterizes most of
the degradation processes. Thus, the selection of a stochas-
tic process can be based on the assumption of an additive
accumulation of degradation with constant wear intensity.
Considering every degradation increment as an additive
superposition of a large number of small effects, then it is pos-
sible to assume normality for the degradation process [45].
The general function of the Wiener processes with drift is
described as,

Z (t) = Z (0)+ αt + βB (t) , (7)

where α is a drift parameter, β is a diffusion parameter,
Z (0) is the initial level of degradation, which in this paper
is considered as Z (0) = 0, and B (t) is the standard Wiener
process, with the next characteristics: B(0) = 0, B(t) has
independent and stationary increments B(t) − B(s) = 1B(t)
with a Gaussian distribution 1B(t) ∼ G(0,

√
1t).

The moment of a failure caused by degradation is the
moment when the degradation path reaches a critical level ω.
Thus the lifetime is defined as Tω = inf {Z (t) ≥ ω}. It is
well known that Tω follows an IG distribution, with reliability
function defined as,

P (Z (t) < ω) = 1−8

[√
1
β2t

(αt − ω)

]
+ exp

{
2αω
β2

}

×8

[
−

√
1
β2t

(αt + ω)

]
. (8)

By also considering a DT where degradation measure-
ments Zi

(
tj
)
of the ith unit at the corresponding time tj

are obtained. And, according to the independent property
of the Wiener process, and 1Zi

(
tj
)
= Zi

(
tj
)
− Zi

(
t(j−1)

)
,

t0 = 0, 1tj = tj − tj−1, for i = 1, 2, . . . , n, j =
1, 2, . . . ,m. Thus, it is possible to obtain independent random
variables 1Zi(tj) ∼ G

(
α1tj, β

√
1tj
)
, with the next PDF
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and CDF.

fW
(
1Zi

(
tj
))
=

1√
2π1tjβ

exp

{
−

(
1Zi

(
tj
)
−α1tj

)
2β21tj

}
.

(9)

F
(
1Zi

(
tj
))
= 8

{
1Zi

(
tj
)
− α1tj

β
√
1tj

}
. (10)

A. DECONVOLUTION FOR INVERSE GAUSSIAN AND
WIENER PROCESSES
In this paper, it is considered that the ME follows a Gaus-
sian distribution with (µε = 0, σ ), and is assumed to be
independent of the cross time. Considering that degradation
measurements have been observed for Zi(tj) of the ith unit at
the corresponding time tj, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Then, ε is also observed at tj for each Zi

(
tj
)
. We denote

Zj = Zi(tj), where Zj =
{
Z1(tj),Z2(tj), . . . ,Zn(tj)

}
, for

j = 1, 2, . . . ,m, contains the degradation measurements for
all i = 1, 2, . . . , n at j. Then, 1Zj = Zj − Zj−1, represents
a vector of degradation increments for all i = 1, 2, . . . , n
at j, as

1Zj =
{ (
Z1
(
tj
)
− Z1

(
tj−1

))
,
(
Z2
(
tj
)
− Z2

(
tj−1

))
,

. . . ,
(
Zn
(
tj
)
− Zn

(
tj−1

)) }
,

denoted as 1Zj =
{
1Z1

(
tj
)
,1Z2

(
tj
)
, . . . ,1Zn

(
tj
)}

for
j = 1, 2, . . . ,m. Thus, for the degradation measurements it
follows that Zj ∼ IG

(
µj, λj

)
, where µj = µtj, and λj = λt2j ,

for the IG process. And, Zj ∼ G
(
αj, βj

)
, where, αj = αtj,

and βj = β
√
tj, for the Wiener process. The deconvolution

approach described in Section 2 is implemented in IG
(
µj, λj

)
andG

(
αj, βj

)
for j = 1, 2, . . . ,m, consideringG (µε = 0, σ )

to obtain the true degradation.
We first consider the CF of the Gaussian ME ϕε (ζ ) =

E [exp {iζε}], which is constant for every tj of the specified
stochastic process. The CF for the Gaussian distribution is
well known and it is presented in (11) to implement the
deconvolution approach.

ϕε (ζ ) = exp
{
iµεζ − σ 2ζ 2/2

}
. (11)

In addition, it is considered that the observed degradation
at tj is governed by an IG process and a Wiener process.
Thus, the CF for the observed degradation based on these two
processes at tj can be obtained as ϕZj (ζ ) = E

[
exp

{
iζZj

}]
,

by considering that Zj ∼ IG
(
µj, λj

)
and Zj ∼ G

(
αj, βj

)
, for

the IG and Wiener processes respectively. Then, the CFs can
be obtained for each tj, j = 1, 2, ...,m as,

ϕZj (ζ )=

∫
∞

−∞

exp
{
iζZj

}
f
(
Zj
)
dZj, j= 1, 2, . . . ,m.

The PDF f
(
Zj
)
can be considered as IG

(
µj, λj

)
orG

(
αj, βj

)
.

Fortunately, these CFs have closed form, these are presented

in (12) and (13), respectively.

ϕ
(1)
Zj
(ζ ) = exp

 λjµj
1−

√
1−

2µ2
j iζ

λj

 ,
j = 1, 2, . . . ,m. (12)

ϕ
(2)
Zj
(ζ ) = exp

{
iαjζ − β2j ζ

2/2
}
,

j = 1, 2, . . . ,m. (13)

Thus, if an IG process governs the observed degradation,
and by considering the Gaussian ME, the CF of the true
degradation would be defined as

ϕ
(1)
Sj
(ζ ) = exp

{
λj

µj

1−

√
1−

2µ2
j iζ

λj


− iµεζ − σ 2ζ 2/2

}
, j = 1, 2, . . . ,m. (14)

If the Wiener process is considered to govern the observed
degradation, then the CF of the true degradation would be
obtained as

ϕ
(2)
Sj
(ζ ) =

exp
{
iαjζ − β2j ζ

2/2
}

exp
{
iµεζ − σ 2ζ 2/2

} ,
ϕ
(2)
Sj
(ζ ) = exp

{
iζ
(
αj − µε

)
− ζ 2/2

(
β2j − σ

2
)}
,

j = 1, 2, . . . ,m. (15)

It is well known that the IFT from (15) returns the
Gaussian distribution. Thus, when the observed degrada-
tion is known to be governed by a Wiener process and
the ME is Gaussian, the true degradation is described as
Sj ∼ G

((
αj − µε

)
,
(
βj − σ

))
for j = 1, 2, . . . ,m. However,

the exact solution of (14) for the true IG degradation can not
be directly found as in the case of (15). Thus, an approxima-
tion of the PDF for the true degradation may be obtained by
computing the IFT via FFT of ϕ(1)Sj

, this by considering (3) as
denoted in Section 2.

f
(
sj
)
'

∫ D0

−D0

ϕ
(1)
Sj
(ζ ) exp

{
−iζ sj

}
dζ,

'
2D0

P

P−1∑
r=0

ϕ
(1)
Sj

(
2D0

P
(r − 1)− D0

)
× exp

{
−iζ sj

(
2D0

P
(r − 1)

)
− D0

}
.

The previously proposed approach for the IG and Wiener
processes is illustrated in Fig 1. In general, the proposed
deconvolution approach can be implemented considering the
next steps:

1) Estimate the parameters of the observed degradation
and the parameters of the assumed distribution for the
ME (this step is discussed in the next section).

2) Define the CF at tj for the observed degradation based
on the assumed stochastic process, (12) and (13) for the
IG and Wiener processes, respectively.
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FIGURE 1. Illustration of the proposed deconvolution approach.

3) Obtain the CF of the true degradation based on the ratio
of the CF of the observed degradation and the CF of
the ME, (14) and (15) for the IG andWiener processes,
respectively.

4) Apply the FFT to the CF of the true degradation to
obtain the true PDFs at tj, consider the general form
presented in (3).

5) Characterize the true degradation paths based on the
true PDFs at tj.

6) Perform the reliability assessment based on the true
first-passage time distribution.

IV. ESTIMATION OF PARAMETERS FOR THE OBSERVED
DEGRADATION AND THE MEASUREMENT ERROR
In this Section, we discuss the estimation of parameters that
are needed to perform the previously presented deconvolu-
tion approach. As described in Section II, the first step to
implement the deconvolution approach consists in knowing
the functions and parameters of the observed degradation and
the ME. The proposed approach considers that Zj follows
either an IG process or a Wiener process, and that the ME
follows a Gaussian distribution as G (µε = 0, σ ). Thus, for
any of the two process for the observed degradation, there
are two sets of parameters as θ1 = (µ, λ), and θ2 = (α, β)

that need to be estimated, respectively. It should be noted that
for theME only one parameter is to be estimated (σ ), and this
can be estimated independently of θ1 and θ2.
We first discuss an alternative to obtain σ̂ . Given that σ

represents the standard deviation of the ME, and that this
variation is due to the measurement system, an alternative
to estimate σ may consists in performing a repeatability and
reproducibility (R&R) study to themeasurement system. This
method allows to identify how much of the measurement
system variability is due to three sources of variation known
as variance components, which are the variation of the part,
variation due to the measurement device (also known as

repeatability), and the variation due to the operator (also
known as reproducibility). Although, this method consider
an analytic scheme to improve the performance of the mea-
surement system, the main objective for this paper is only
focused in obtaining σ̂ . Thus, a result of performing a R&R
study consists in estimating the previously discussed vari-
ance components, from these components it is known that
σ̂R&R = σ̂Repet + σ̂Reprod . Where, σ̂R&R captures the vari-
ation due to both the measurement device

(
σ̂Repet

)
and the

operator
(
σ̂Reprod

)
. Both of these variance components are

independent of the part variation, which is governed by a
specific stochastic process. Thus, σ̂R&R may be considered as
an estimate of σ , such as σ̂ = σ̂R&R. More details about R&R
and measurement system analysis can be found in [46]–[48].
Once σ̂ is obtained, the parameters of the specific stochastic
processes need to be estimated.

On the other hand, the estimations of θ̂1 and θ̂2 can be
obtained considering that Zj degradation measurements have
been observed for the ith unit at the corresponding time tj
with i = 1, . . . , n and j = 1, . . . ,m. It is considered that
Zj are independent measurements that are governed, in first
instance by an IG process IG

(
µj, λj

)
and a Wiener process

as G
(
αj, βj

)
. The parameters of interest θ1, and θ2 can be

estimated through direct optimization of the respective log-
likelihood function, which are obtained from (5) and (9), for
the IG and Wiener process, as,

l(θ1) =
n∑
i=1

 m∏
j=1

ln
(
fIG
(
Zj
)) (16)

l(θ2) =
n∑
i=1

 m∏
j=1

ln
(
fW
(
Zj
)) (17)

As discussed by [9] and [49] direct maximization of the
functions presented in (16) and (17) for both the IG and the
Wiener process is consistent and satisfactory, and can be used
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as maximum likelihood estimators as θ̂1 and θ̂2. Thus, for the
observed degradation, both functions are solved for θ1 and θ2
using the optim routine in the R software. By obtaining θ̂1, θ̂2,
and σ̂ , as previously discussed, the deconvolution approach
can be directly implemented. We discuss such implementa-
tion in detail in the next sections.

V. SIMULATION STUDY
A simulation study is considered to obtain the true degra-
dation Sj of simulated data considering the approximation
described in (14) and (15) for both the IG and Wiener pro-
cesses. In first instance, an IG process is used to describe
different realizations of the observed degradation Zj by con-
sidering (5) with parametersµ = 1.3, λ = 1.9. Thus, we con-
sidered n = 10 degradation paths, with m = 10 observation
times which are the same for all the i = 1, 2, . . . , 10 as
tj = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). In addition, the parameters
of the Wiener process that describe the observed degradation
are considered as α = 1.3, β = 1.15.We considered the same
characteristics for the peudo-paths as, n = 10 degradation
paths, with m = 10 observation times which are the same for
all the i = 1, 2, . . . , 10 as tj = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).
The simulated paths for the IG and Wiener processes are
presented in Fig. 2. A common assumption when dealing with
ME is that ε follows a Gaussian distribution with µε = 0 and
σ . Such an approach is considered in this section, such that a
Gaussian distribution with µ = 0, and different values of σ
as (0.1, 0.3, 0.6) are considered in order to study the effect of
the ME on the true degradation.

Considering that Zj = Zi(tj), where Zj contains the
degradation measurements for all i = 1, 2, . . . , n at j, then
Zj ∼ IG

(
µj, λj

)
, and Zj ∼ G

(
αj, βj

)
, for the IG and

Wiener processes, respectively. For the implementation of the
deconvolution approach we estimated the percentile qj from
IG
(
µj, λj

)
, andG

(
αj, βj

)
for j = 1, 2, . . . , 10 and considered

µ = 0, and σ = (0.1, 0.3, 0.6) for every j. Then, the approx-
imation described in (4) was implemented in R software
[50] with P = 600 to obtain f

(
Sj
)
for j = 1, 2, . . . , 10.

Based on f
(
Sj
)
, j = 1, 2, . . . , 10 we constructed pseudo-

degradation paths, which are free of ME and considered as
the true degradation paths. The respective simulated observed
and true degradation paths are compared via box-plots for the
different scenarios of σi at j = 1, 2, . . . , 10 in Fig. 3.
In Fig 4, we also compare at every tj the mean degradation

and standard deviation of the observed degradation and the
three proposed scenarios with ME. Specifically, in Fig. 4a
it can be noted that the mean degradation of the IG pro-
cess with σ = 0.1 approaches the most to the observed
degradation. Whereas, from t4 to t9 the mean degradation
with σ = 0.3 and σ = 0.6 separates the most from the
observed degradation. In Fig. 4b, It can also be noted that
from t5 the standard deviation for the observed degradation
tends to separate from all the scenarios with ME. For the
mean degradation of the Wiener processes in Fig. 4c, it can
be noted that the mean degradation with the highest ME, i.e.
σ = 0.6, separates the most from the other mean trajectories

FIGURE 2. Simulated observed pseudo-degradation paths. a) IG process,
b) Wiener process.

from t7. It can also be noted from Fig. 4d, that the standard
deviation from the observed degradation is higher than the
ME scenarios in almost all tj. Such results imply that, if the
reliability assessment of the product under study is performed
by considering the observed degradation without the ME,
it may be inaccurate.

VI. ILLUSTRATIVE EXAMPLE
In this section, a fatigue crack growth dataset [51], that has
been identified as a case with imperfect degradation mea-
surements, is used to illustrate the degradation modeling with
ME based on deconvolution presented in previous sections.
The degradation dataset describe the crack propagation over
time for 10 devices. In this paper, it is considered that when
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FIGURE 3. Box-plots comparison of the observed pseudo-degradation
paths with the true deconvoluted degradation paths under σi . a) For the
IG process, b) For the Wiener process.

the crack length reaches a critical level of degradation ω =
0.4 mm the device is considered to have failed. The sample
size is n = 10 such that i = 1, . . . , 10, the observation times
tj, j = 1, 2, . . . , 9, are the same for all the samples with
tj = (0.1, 0.2, 0.3, . . . , 0.9) hundred thousand cycles. The
observed degradation Zj , i = 1, . . . , 10, j = 1, . . . , 9 which
describes the crack propagation of the devices is presented in
the cumulative degradation paths in Fig. 5. The measurement
of the cracks lengths at every tj was performed using a vision
system.

In the aims of illustrate the deconvolution approach to
obtain the true degradation from contaminated data for the
IG and Wiener processes, it is considered that µε = 0.

TABLE 1. Estimation of parameters for observed degradation.

As mentioned in Section III-A, the first step of the pro-
posed approach consists in estimating the parameters of the
observed degradation under the IG and Wiener processes
and the parameter of the ME. In the next section, the log-
likelihood functions of the observed degradation are maxi-
mized to estimate the parameters for the observed degradation
and the alternative presented in Section IV to obtain the
standard deviation of the ME is implemented.

A. ESTIMATION FOR THE OBSERVED DEGRADATION AND
MEASUREMENT ERROR
By considering the crack growth dataset, such that Zj degra-
dation measurements have been observed for the ith unit
at the corresponding time tj with i = 1, . . . , 10 and j =
1, . . . , 9. It is considered that Zj follow, in first instance an IG
distribution IG

(
µj, λj

)
and a Gaussian distributionG

(
αj, βj

)
.

The parameters of interest θ1 = (µ, λ), and θ2 = (α, β) are
estimated via MLE as described in Section V.

The optim routine in R was used to maximize the log-
likelihood functions (16) and (17). The obtained estimations
for the parameters of the IG and Wiener processes are pre-
sented in Table 1 along with their respective 95% confidence
intervals. In addition, in the aims of comparing both stochas-
tic processes we also calculated the Akaike information cri-
terion (AIC) for both models, it was found that for the crack
growth dataset the IG process has an AIC of −438.1 and the
Wiener has an AIC of−401.1. It can be noted that IG process
has the lowest value of AIC and thus can be considered as the
best fitting model. This makes sense as the degradation paths
in Fig. (5) are monotone (only increasing). It is well known
that the Wiener process is adequate to model non-monotone
degradation processes, whereas the IG process is adequate to
model monotone degradation processes. In the aims of appli-
cability of the proposed approach we consider both processes
in the next sections to obtain the true degradation.

For this case study, a Gage R&R study was performed
to assess the performance of the measurement system. The
characteristics of the study were: three people were needed to
perform the study, ten devices with cracks were selected, and
three replicates were performed, making a total of 60 read-
ings. The results of the study showed that the standard devia-
tion of the Gage R&R study is σ̂R&R = 0.0006058, which
as mentioned before is the total variation due to the mea-
surement system. Thus, in this paper it is considered that
σ̂ = σ̂R&R = 0.0006058. With the estimated parameters of
the stochastic processes and the estimation of the standard
deviation of the measurement error it is possible to imple-
ment the deconvolution approach proposed in section III-A,
we illustrate the implementation in the next section.
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FIGURE 4. Comparisons at tj of the means and standard deviations of the observed
degradation and the true degradation under the three ME scenarios. a) Means of the IG
processes, b) Standard deviations of the IG processes, c) Means of the Wiener processes,
d) Standard deviations of the Wiener process.

FIGURE 5. Cumulative degradation paths for the degradation dataset.

B. OBTAINING THE TRUE DEGRADATION
The proposed method described in Section III is imple-
mented to obtain the true degradation by considering the
observed degradation parameters estimated in Section VI-A.
As mentioned before, we considered the IG and Wiener pro-
cess to describe the observed degradation, and the parameters

estimated in Table 1 are considered to characterize such
processes. As previously discussed, it is considered that the
ME follows a Gaussian distribution with µε = 0 and σ ,
as the ME for this particular case study is available as σ̂ =
σ̂R&R = 0.0006058. Based on this value of σ̂ and the mean
estimates from Table 1, the proposed deconvolution approach
is implemented in the R software. Following the steps pre-
sented in Section III-A, for the step 2 the CFs defined in (12)
and (13) are considered for the IG and Wiener processes,
respectively. For the step 3, the CFs of the true degradation
were considered as (14) and (15) for the IG and Wiener
observed degradation cases. For the implementation of the
deconvolution, step 4, we firstly estimated the percentile qj
considering the mean estimates in Table 1 for the IG and
Wiener processes at j = 1, 2, . . . , 9. Then, with µε = 0,
and σ̂ we defined the regular grid [D0,D1], with D0 = 0,
D1 = µε + 5σ̂ + qj for every j of the observed degradation
Zj . The approximation described in (4) was performed with
P = 1000. The implementation of the step 5 is illustrated
in Fig. 6, where a comparison of the observed degradation
and true degradation under σ̂ via box-plots for every j is
presented.

In Fig. 6, we present a box-plot comparison for every tj of
the crack growth dataset. As previously described, the true
degradation for the IG andWiener processes was obtained by
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FIGURE 6. Comparison of the observed degradation paths with the true
deconvoluted degradation paths. a) For the IG process, b) For the Wiener
process.

considering the ME as
(
µε = 0, σ̂ = 0.0006058

)
as depicted

in Fig. 6. From both figures, it can be noted the effect of
the ME. Specifically in the true degradation for both the
IG and Wiener processes, it can be noted that the variation
at j = 1, 2, . . . , 9 tends to be smaller. Such behavior of
the true degradation has also be observed in the works of
Si et al. [52], and Pulcini [53]. Furthermore, as seen in Fig. 6,
the degradation paths appear to have a lower variation of the
degradation rate. This denotes that the ME has been excluded
from the true degradation. Such characteristics indeed have
an effect over the reliability assessment of the product, given
that the time when the cumulative degradation reaches the
critical path may occur later or before in time.

FIGURE 7. Comparison of the reliability functions for the observed
degradation, the true deconvoluted degradation and the Wiener model
with ME.

C. RELIABILITY ASSESSMENT
As can be noted in in Fig. 6, it is expected that the reliability
of the product may be miss-estimated if the assessment is
provided by considering the observed degradation. In this
section, according to the step 6 presented in Section III-A,
we present the reliability assessment for the Wiener and IG
processes under ME. For the Wiener processes, it is consid-
ered that Sj ∼ G

(
αj,
(
βj − σ̂

))
, thus the reliability function

can be directly obtained from (8) by considering the true
degradation paths in Fig. 6b under σ̂ . In the aims of compare
the proposed approach based on the Wiener process with
existing models, we also estimated the reliability considering
theWiener process model withME presented by Si et al. [52],
Cheng and Peng [54] and Tang et al. [28]. In Fig. 7,
we present the comparison of the reliability functions for
the observed degradation, the proposed approach based on
true degradation via deconvolution and the Wiener model
with ME.

It can be noted from Fig. 7, that indeed there are obvi-
ous differences between the reliability functions from the
observed degradation and the two reliability functions from
the models based on ME. Furthermore, it should be noted
that both the proposed approach and the Wiener model with
ME agree in that the reliability is greater compared with the
observed degradation. Which means that the reliability may
be underestimated if the observed degradation is considered
to assess the product. On the other hand, the reliability func-
tion from the proposed approach is also different from the
reliability function obtained from the literatureWiener model
with ME. This difference is due because in our approach
we filtered out the ME via deconvolution to obtain the true
degradation, whereas in the Wiener model with ME the error
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FIGURE 8. Comparison of the reliability functions for the observed
degradation and the true deconvoluted degradation paths under the
empirical KM method.

is estimated along with the observed degradation. An impor-
tant advantage of the proposed approach is the possibility of
integrating in themodeling, the performance of themeasuring
system, which was measured via an independent statistical
tool, i.e. the R&R study. This is a practical advantage, as most
of products require the use of specialized measuring systems
to perform the measurement of degradation in reliability tests
and the measuring process is independent of the evolving of
the degradation process.

The failure-time distribution for the observed degradation
under the IG process has closed form in terms of the IG
distribution. In this manner, the observed reliability function
can be easily obtained from (6). However, the PDF of the true
degradation f

(
Sj
)
has a complex form. For this we consid-

ered the deconvolution approach to obtain an approximation
of f

(
Sj
)
. As described in Section VI-B, the true cumulative

degradation paths were constructed by considering Sj for
j = 1, 2, · · · , 9. Thus, for the true degradation under the
IG process we present the failure time distribution consid-
ering σ̂ = 0.0006058 based on the Kaplan-Meier (KM)
method. For this, we estimated the pseudo-failure times of the
true degradation paths presented in Fig. 6a using the approach
presented by [55] and estimated the true reliability function.
In Fig. 8, we present the comparison of the reliability function
of the observed degradation with the reliability function of
the true degradation estimated via KM along with the corre-
sponding 95% confidence intervals.

It can be noted from Fig. 8 that the empirical reliability
based on KM is different from the reliability function esti-
mated from the observed degradation. Specifically, it can
be noted that, as it was found in the reliability functions
of the Wiener processes, the reliability function based on

the true degradation is greater than the reliability of the
observed degradation. It should also be noted that the lower
95% pointwise confidence band of the true reliability based
on KM does not include the reliability of the observed
degradation. Thus, it can also be said that the reliability
may be underestimated if the assessment is performed by
considering the observed degradation instead of the true
degradation.

VII. CONCLUDING REMARKS
In this paper, we propose the use of deconvolution to obtain
the true degradation from the observed degradation and ME.
We considered the Wiener and IG stochastic processes to
describe the observed degradation and a Gaussian distri-
bution to describe the ME. For the implementation of the
deconvolution approach we considered the discrete form of
the FT and implemented the FFT algorithm to obtain the
true degradation from the observed degradation. From the
simulation study we found that the parameter σ from the
ME has an effect on the variation of the degradation paths
in every j and also it has an effect over the mean degradation
rate. Such effects have an impact over the reliability assess-
ment. To illustrate such impact, we considered a crack-growth
degradation dataset and implemented the proposed approach
by considering an estimation of the ME standard deviation as
σ̂ = σ̂R&R = 0.0006058, once obtained the true degradation
we characterized the reliability functions for the Wiener and
IG processes with and without ME. From Fig. 7 and 8, it can
be noted that indeed the ME has an impact over the first-
passage time distributions. From theWiener process, the reli-
ability tends to be greater compared with the reliability of the
observed degradation. From the IG process, the 95% confi-
dence interval for the KM reliability under σ̂ = 0.0006058
does not include the reliability of the observed degradation.
Such impacts are originated because the true degradation
obtained via deconvolution causes that the mean degradation
rate among degradation paths and the variation within paths
be smaller compared to the observed degradation. Although,
in degradation analysis the observed measurements are nor-
mally contaminated with ME, there are other sources of
variation that affect the observed degradation. Such sources
of variation have beenmodeled considering random effects in
the stochastic model that governs the observed degradation.
Thus, more research efforts may be directed in dealing with
the obtaining of true degradation from observed degradation
with random effects via deconvolution. In addition, other
distribution functions can be considered to describe the ME,
such as the t-distribution.
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