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Abstract
In general, gene expression microarrays consist of a vast number of genes and very few samples, which represents a critical
challenge for disease prediction and diagnosis. This paper develops a two-stage algorithm that integrates feature selection and
prediction by extending a type of hetero-associative neural networks. In the first level, the algorithm generates the associative
memory,whereas the second level picks themost relevant genes.With the purpose of illustrating the applicability and efficiency
of the method proposed here, we use four different gene expression microarray databases and compare their classification
performance against that of other renowned classifiers built on the whole (original) feature (gene) space. The experimental
results show that the two-stage hetero-associative memory is quite competitive with standard classification models regarding
the overall accuracy, sensitivity and specificity. In addition, it also produces a significant decrease in computational efforts
and an increase in the biological interpretability of microarrays because worthless (irrelevant and/or redundant) genes are
discarded.

Keywords Associative memory · Gene selection · Disease prediction · Gene expression microarray

1 Introduction

Gene expression microarray is a high-throughput genomic
technology in research and clinical management that allows
to record and monitor the expression levels of thousands of
genes simultaneously within a few different samples. The
expression level of a gene can be viewed as an estimate of the
concentration of its mRNA transcript in a cell at a given time.
The primary objective of using microarrays is to classify or
predict the category of a sample based on its gene expres-
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sion profile. A plethora of computational methods have been
applied to the analysis of microarrays [18,31], and in partic-
ular to discriminate between cancerous and non-cancerous
tissues, to characterize distinct types or subtypes of tumors
and even to predict the reaction to a specific therapeutic drug
and the risk of relapse [9,33,37,46].

Nonetheless, the use of microarrays for classification
poses a crucial computational challenge arising from the
huge number of genes (G) and the limited quantity of sam-
ples (n) [14]. The number of genes is usually of the order of
thousands, but the number of samples is below a hundred.
This problem is known as the ‘large G, small n’ or ‘curse of
dimensionality’ phenomenon, which increases the difficulty
of classification significantly, degrades the generalization
capability of classifiers and hinders the understanding of
the relationships between genes and samples [13,16,23,38].
Moreover, only a few relevant genes are needed [5,7,17,47].
The most common practice to address this question is to use
some feature (gene) selection method by choosing a small
portion of informative variables that contribute most to any
subsequent task for clinical identification, classification, pre-
diction or interpretation.

Feature selection focuses on the deletion of irrelevant,
noisy and redundant genes from the microarrays with the
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aim of preserving the genes that best discriminate samples
of different classes (tissue categories, disease states or clin-
ical outcomes). Besides, it also helps to identify patterns of
gene expression associated with a particular disease. On the
other hand, it has to be remarked that the need of applying
feature selection is imperative in the case of gene expression
microarrays not only owing to the extremely large number
of input variables, but also because a considerable amount of
them can be highly correlated with other variables. Over the
last decades, many different algorithms have been developed
for gene selection using filter, wrapper, embedded and hybrid
methods [5,7,19,30,35,39,43,49].

In the present paper, we introduce a technique to clas-
sify the gene expression microarray data with a two-stage
associative memory. The first stage involves the construction
of a hybrid associative neural network, whereas the second
stage allows for the selection of the most relevant (differ-
entially expressed) genes for the classification of the tissue
samples. Thus, the purpose of this study is twofold: (i) to
analyze the practicability of this hybrid connectionist model
when applied to the classification of gene expressionmicroar-
rays and (ii) to compare its performance with that of several
standard prediction algorithms that are widely used in the
biomedical domain.

Following the general definition given in the literature, an
associative memory constitutes a content-addressable neu-
ral network based upon matrix algebra [27] that connects
each input vector x with its corresponding output vector y.
In practice, the associative memory takes the form of a con-
nection weight matrix W = [wi,j]C×G built from a finite set
of n encoded associations, generally known as fundamen-
tal set of associations, {(xμ, yμ) | μ = 1, 2, . . . , n}, where
xμ ∈ R

G correspond to the fundamental input samples of
dimension G and yμ ∈ R

C are the fundamental output sam-
ples of dimension C . Then xμ

j represents the j-th element of

an input sample xμ, and yμ
i indicates the i-th element of an

output sample yμ.
In general, an associative memory can be of two types

depending on the nature of memorized associations: hetero-
associative (e.g., lernmatrix [41], linear associator [4,26],
alpha-beta associative memory [48]) and auto-associative
(e.g., associatron [36], Hopfield network [21], chaotic neu-
ral network [2], bidirectional associative memory [28]). The
hetero-associativememories connect input sampleswith out-
put samples of different nature and formats (i.e., xμ �= yμ),
whereas the auto-associative neural networks are viewed as
a particular case of the former where xμ = yμ and G = C .
On the other hand, while the auto-associative models include
a single layer in which all processing units are completely
connected by feedback links, the hetero-associative memo-
ries consist of more than one layer and each layer is fully
connected to all the others.

Since the seminal works of Steinbuch [41], Anderson [4],
Kohonen [26] and Nakano [36], associative memories have
gradually been the subject of many theoretical and empirical
studies. For instance, the bidirectional associative memory
was applied to the diagnosis of cancer based on the elemen-
tal contents in serum samples [50]. Chartier and Lepage [11]
developed a modified Hopfield network to learn and detect
edges from gray level images. Arya et al. [6] implemented
a face recognition system using auto-associative memory
blocks in parallel. A technique for segmentation and clas-
sification of soft tissues from textural features of medical
images based on a bidirectional associative memory was
designed by Sharma et al. [40]. Sudo et al. [42] introduced
a new associative memory capable of realizing both bidi-
rectional and multidirectional associations. Aldape-Pérez et
al. [3] proposed the use of an associative neural network
for medical decision support systems. Aghajari et al. [1]
suggested a chaotic hetero-associative memory built using a
learning strategy that allows to store and recall a set of associ-
ated patterns even when these are noisy. Vaishnavi et al. [44]
adapted the Hopfield network for isolated word recognition.
Villuendas-Rey et al. [45] presented the naïve associative
classifier, which was based upon a new similarity operator
with the capability to handle missing values and both numer-
ical and categorical data. Cleofas-Sánchez et al. [12] built an
associative memory with a translation of the coordinate axes
for financial distress prediction, showing higher performance
than other classifiers, especially when the data sets exhibited
some overlapping and severe imbalance in class distribution.

Henceforth, the article is organized as follows. Sec-
tion 2 provides a detailed description of the two-stage
hetero-associative neural network that we propose here. The
databases and experimental setup are outlined in Sect. 3,
whereas the classification results are reported and discussed
in Sect. 4. Finally, Sect. 5 summarizes the most remarkable
findings that can be gathered from this study and identifies
some avenues for further research.

2 The two-stage associative memory

The two-level algorithm presented in this paper is based on a
particular implementation of an hetero-associative memory,
which combines the learning stage of the linear associa-
tor with the recall stage of the Steinbuch’s lernmatrix. This
approach differs from the hybrid associative memory intro-
duced by Cleofas-Sánchez et al. [12] in that the former
incorporates a feature selection stage into the original model,
whereas this was merely designed for class prediction. Since
our method merges feature selection and classification based
on associative memories, it will be here referred to as hybrid
hetero-associative memory (HAM).
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It is worth highlighting that the main advantages of this
model over the linear associator and the lernmatrix are
twofold: (i) it can work with real-valued input samples,
whereas the lernmatrix only accepts the values 0 and 1; and
(ii) the input vectors are not constrained to be orthonormal,
unlike the linear associator. Besides, it has to be mentioned
that the hetero-associative memories are generally consid-
ered to be tolerant to noise on the input and incomplete
stimuli.

2.1 Level 1: Construction of the hetero-associative
memory

The first level of the HAM algorithm is devoted to building
a matrixW such that when an input sample xμ is presented,
the stored sample yμ associated with it will be retrieved. This
matrix construction process consists of two sequential steps:

1. For each encoded association (xμ, yμ), calculate the
outer product yμ(xμ)T , where (xμ)T corresponds to the
transpose of xμ.

2. Sum the n outer products to yield the matrix W =
α

∑n
μ=1 y

μ(xμ)T , where α denotes the normalizing con-
stant (usually set to 1/n). The (i, j)-th element of W is
given by

wi, j =
n∑

μ=1

yμ
i x

μ
j .

Moreover, it has to be pointed out that the learning stage
of this hetero-associative memory starts by translating the
coordinate axes to an origin located at the centroid of the
fundamental input samples. The purpose of moving the fun-
damental set is to represent the input samples in a new
G-dimensional space where samples that belong to two dif-
ferent classes are locateddiametrically opposite to eachother,
and the midpoint of the diameter is given by the mean vec-
tor x, that is, the origin of the new coordinate axes. This
translation should provide higher classification performance
because it is expected that samples of different classes will
probably be put quite far apart in separate quadrants.

Let A = {x1, x2, . . . , xn} be a finite set of n fundamental
input samples, let C denote the number of classes, and let
Â = {x̂1, x̂2, . . . , x̂n}be the set of fundamental input samples
translated to the new space. Then the pseudo-code of the
learning stage to build the connection weight matrix W is
presented in Algorithm 1, which is based on the associative
memory proposed by Cleofas-Sánchez et al. [12].

Algorithm 1 Construction stage
1: s ← 0
2: for all xμ ∈ A do
3: s ← s + xμ

4: end for
5: x ← s/n
6: for all xμ ∈ A do
7: x̂μ ← xμ − x
8: k ← 1
9: while k ≤ C do
10: if class(x̂μ) = k then
11: yμ

k = 1
12: else
13: yμ

k = 0
14: end if
15: k ← k + 1
16: end while
17: end for
18: W ← 0
19: for all (x̂μ, yμ) do
20: W ← W + (yμ)(x̂μ)T

21: end for

2.2 Level 2: Feature selection

Let Eμ
i, j be the error of classifying a sample x̂μ to class i

based on gene j expressed as,

Eμ
i, j =

{
1 if wi, j x̂

μ
j y

μ
i < 0

0 otherwise.
(1)

Then the cumulative classification error for gene j can be
defined as,

E j =
C∑

i=1

n∑

μ=1

Eμ
i, j (2)

and let� be a reference value calculated from the cumulative
errors E j for j = 1, 2, . . . ,G,

� = 1

G

G∑

j=1

(

1 − 1

G
E j

)

. (3)

Now we can construct a G-dimensional vector V whose
j-th element is obtained as follows:

v j =
{
1 if

(
1 − 1

G E j
)

> �

0 otherwise.
(4)

Note that those components of vector V whose value is
equal to 0 will correspond to genes that can be deemed as
irrelevant.
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2.3 Classification using the HAMmodel

Once the matrixW and the vector V have been constructed,
the classification of a new input sample x comprises two
steps: (i) to obtain x̂ as a result of translating x according to
step 7 of Algorithm 1, and (ii) to apply the recall stage of
lernmatrix so that x is assigned to some of the C classes.

The recall stage of lernmatrix consists of determining the
elements of the vector yμ associated with an input sample
xμ. The i-th element yμ

i of the class vector yμ is computed
by using the following bipolar output function:

yμ
i =

⎧
⎪⎨

⎪⎩

1 if
∑G

j=1 wi, j (x̂
μ
j v j )

= maxCh=1

[∑G
j=1 wh, j (x̂

μ
j v j )

]

0 otherwise.

(5)

If an input vector x̂μ is assigned to class k, this function
yields a C-dimensional output vector yμ whose k-th element
yμ
k is set to 1 and the rest of elements yμ

j ( j = 1, 2, . . . , k −
1, k + 1, . . . ,C) are set to 0.

3 Experiments

Applicability and efficiency of the newmodel have been ana-
lyzed by conducting a pool of experiments on four gene
expression databases, which have been gathered from a
public repository available at http://datam.i2r.a-star.edu.sg/
datasets/krbd. Table 1 provides a quantitative comparison of
the databases used in the experiments, reporting the number
of genes (features), the cardinality of the data set, the number
of samples in each class, and the imbalance ratio (the size of
the majority class divided by the size of the minority class).
It also includes the T2 measure (it describes the density of
spatial distributions of samples by comparing the number of
samples in the data set to the number of genes) [20].

As can be observed, the properties of the data sets chosen
for the experiments reflect the challenging ‘large G, small n’
problemmentioned in Sect. 1, with small sample size ranging
from 39 to 62 and high dimensionality ranging from 2000 to
7129 genes. This problem can be better seen by the values
of T2, which are all very low (ranging from 0.0084 in CNS
to 0.0310 in Colon). Conversely, differences in size between
both classes are quite small (less than two samples from the

majority class per each sample from the minority class) and
therefore it appears that class imbalance should not represent
a critical problem for these databases.

The CNS data correspond to the outcome of a treat-
ment for central nervous system embryonal tumor, where
the survivors refer to individuals who are alive after receiv-
ing the prescribed treatment and the failures are patients who
passed away. The Colon database consists of 62 samples
collected from individuals with colorectal cancer; the sam-
ples can be tumor or normal tissues (gathered from healthy
parts of the colons of the same individuals). The DLBCL-
Standford database collects samples from two groups of
patients according to the gene expression profiling of dif-
fuse large B cell lymphoma: one group has gene expression
characteristics of germinal center B cells, and the other group
corresponds to genes normally induced during in vitro acti-
vation of peripheral blood B cells. Finally, the Lung-Ontario
database includes gene expression microarrays of individu-
als with non-small cell lung cancer, indicating whether they
experienced relapse of their tumor or they are disease free.

It has to be noted that both DLBCL-Standford and Lung-
Ontario databases contain several features with missing
values. Therefore, to apply the classification models, these
data sets have been preprocessed using the K-means cluster-
ing technique for missing data imputation [22,32].

3.1 Experimental design

We compared the two-level hetero-associative memory
(HAM) against five standard prediction models: the near-
est neighbor (NN) classifier with the Euclidean distance
function, a support vector machine (SVM), a multi-layer per-
ceptron network (MLP), a C4.5 decision tree and a random
forest (RF). The architectures and parameter settings of each
model were defined as follows. The MLP neural network
was designed with the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimization algorithm, two neurons in the hid-
den layer, a sigmoid transfer function, the backpropagation
learning algorithm, a learning rate α = 0.1 and a maxi-
mum number of training epochs equal to 10,000; the SVM
employed a linear kernel because this has been deemed as
one of the best performing functions in numerous biomedi-
cal applications [8], using a soft-margin constant equal to 1.0,
a tolerance of 0.001, a round-off error ε = 1.0E–12 and the

Table 1 Some characteristics of
the databases

# Genes # Samples Class1–Class2 Imbalance T2

CNS 7129 60 Failure (21)–survivor (39) 1.86 0.0084

Colon 2000 62 Tumor (40)–normal (22) 1.82 0.0310

DLBCL-Standford 4026 47 Germinal (24)–activated (23) 1.04 0.0117

Lung-Ontario 2880 39 Relapse (24)–no relapse (15) 1.60 0.0135
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sequential minimal optimization algorithm; the C4.5 clas-
sifier was applied with a pruning confidence factor of 0.25;
and each bag in the RF contained all training samples and the
number of iterations was equal to 100. We also included the
associative memory without feature selection (ASM) [12] to
gain a better understanding of the behavior of HAM.

The fivefold cross-validation method was used in this
study because it seems to be more appropriate and statisti-
cally safe than other well-known techniques, such as holdout
with the need of large data sets to achieve good generalization
or bootstrapping with critical assumptions to be taken (e.g.,
independence of samples and large data size) [10,24]. Each
original set was randomly split into five stratified portions of
equal size; for each fold, four parts were merged to build a
training set, and the remaining block was put aside to have
an independent set for testing purposes. Then the final scores
presented in next section will correspond to the average of
the five trials.

3.2 Performance assessment criteria

In general, most biological and biomedical applications need
to evaluate not only the overall accuracy, but also the true-
positive and true-negative hits because of the asymmetric
costs of false-positives and false-negatives [29,34]. Hence,
the performance of the algorithms has been here evaluated
using three measures calculated from a 2 × 2 confusion
matrix, in which each element indicates the number of cor-
rect/incorrect classifications:

– Accuracy

Accuracy = TP + TN

TP + FN + TN + FP
× 100

– Sensitivity: percentage of positive samples that are classi-
fied correctly

Sensitivity = TP

TP + FN
× 100

– Specificity: percentage of negative samples that are clas-
sified correctly

Specificity = TN

TN + FP
× 100,

where TP and TN refer to the total amount of positive and
negative samples correctly predicted, respectively, while FP
and FN indicate the total number of mispredictions on neg-
ative and positive samples, respectively.

Note that in the present study, the samples that belong to
Class1 have been considered to mold the positive class and
the samples from Class2 have comprised the negative class.

Table 2 Classification accuracy

CNS Colon DLBCL Lung

HAM 68.33 79.03 96.00 75.64

NN 56.67 75.81 74.47 58.97

MLP 65.00 69.35 93.62 58.97

SVM 68.33 80.65 95.74 79.49

C4.5 55.00 83.87 70.21 74.36

RF 61.67 79.03 91.49 69.23

ASM 67.69 77.69 90.88 61.43

The best performing model for each database is in bold

4 Results

Table 2 reports the classification accuracy for each database
using the six prediction algorithms. The best performing
model for each database is shown in boldface. The results
indicate that no method performed the best for all databases,
which reveals the complexity of tumor classification because
of the heterogeneity of gene expression microarray data.

In general, the SVMwas superior to the rest of algorithms
(in fact, this was already known in microarray literature),
but the HAM approach performed equally well as SVM on
the CNS, and even better on DLBCL-Standford. In the case
of CNS, NN and C4.5 appear not to be appropriate choices
because their accuracy was very close to the performance of
the random-guess classifier (i.e., accuracy ≈ 50.00%). Sim-
ilar comments can be drawn for the NN and MLP models on
theLung-Ontario databasewhere their accuracywas 58.97%,
and also for ASM with an accuracy of 61.43%. Regarding
the Colon database, the C4.5 decision tree andMLPwere the
best (83.87%) and the worst (69.35%) algorithms, respec-
tively, while there were no remarkable differences between
HAM, NN, SVM, RF and ASM.

Table 3 summarizes somedescriptive statistics of the accu-
racy results for a complete understanding of the differences
between the six predictionmodels. It can be seen that the clas-
sifier with the highest average accuracy corresponds to SVM,
closely followed by the HAM method. The ranges between
the maximum and minimum values of these two algorithms
were similar, revealing that differences in accuracy were not
critical.

Since the above observations result subjective and qual-
itative in nature, statistical tests can provide more objective
insights into whether there exist some statistically signifi-
cant differences. Our first step was to determine whether the
data are approximately normally distributed. To this end, we
run Shapiro–Wilk, Lilliefors and Jarque–Bera tests because
graphical methods such as the frequency distribution and Q–
Q plots are not very useful when the sample size is small.
Thus, the null and alternative hypotheses for the normality
tests were:
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Table 3 Descriptive statistics of accuracy results

Range Q1 Q3 Mean Std. Dev.

HAM 27.67 73.81 83.27 79.75 11.72

NN 19.14 58.40 74.81 66.48 10.06

MLP 37.35 63.49 76.09 72.41 16.50

SVM 27.41 76.70 84.42 81.05 11.26

C4.5 28.87 66.41 76.74 70.86 12.02

RF 29.82 67.34 82.15 75.36 12.89

ASM 29.45 66.13 80.99 74.42 12.85

Table 4 Normality tests

Shapiro–Wilk Lilliefors Jarque–Bera

HAM 0.599 0.356 0.805

NN 0.133 0.293 0.727

MLP 0.236 0.147 0.710

SVM 0.732 0.416 0.895

C4.5 0.857 0.651 0.869

RF 0.912 0.909 0.845

ASM 0.896 0.901 0.835

– H0: The data follow a normal distribution.
– H1: The data do not follow a normal distribution.

Results of Shapiro–Wilk, Lilliefors and Jarque–Bera tests
are shown in Table 4. All normality tests failed to reject the
null hypothesis (p value < 0.05), which means that there is
not enough evidence to conclude that the data do not follow
a normal distribution.

As the normality assumption was not rejected, we per-
formed paired sample t tests between the set of results
corresponding to each pair of methods. Thus, we checked
whether the mean of accuracies of one model Mi was more
significant than the mean of accuracies of another model Mj

at the 95% confidence level. In this case, the null and alter-
native hypotheses for the t tests were:

– H0: The difference between the means is equal to 0.
– H1: The difference between the means is different from
0.

We rejected the null hypothesis H0 and accepted the alter-
native hypothesis H1 if the p value was less than 0.05.

The numbers marked as bold in Table 5 indicate that the
paired sample t test rejected the null hypothesis (p value
< 0.05). It can be observed that the only cases with statisti-
cally significant differences corresponded to the test between
HAM and NN and the test between SVM and NN. Neverthe-
less, the risk to reject the null hypothesis H0 while it is true

Table 5 Paired sample t tests

(1) (2) (3) (4) (5) (6) (7)

(1) HAM 0.04 0.14 0.26 0.28 0.07 0.19

(2) NN 0.40 0.03 0.41 0.06 0.11

(3) MLP 0.19 0.89 0.52 0.53

(4) SVM 0.19 0.05 0.19

(5) C4.5 0.52 0.68

(6) RF 0.76

(7) ASM

The test rejected the null hypothesis is in bold

Table 6 Genes selected using the HAM model

CNS Colon DLBCL Lung

# Genes 3882 932 1727 1572

% Reduction 45.54 53.40 57.10 45.42

was low for the comparisons of HAM and SVMwith the rest
of models.

To analyze the differences between the two best perform-
ing algorithms (HAM and SVM), we computed four data
complexity measures [20] that allow to quantify the overlap
between classes (F1 and F3) and the class separability (L1
and L2). Thus, we found that Colon constitutes a more com-
plex problem than DLBCL-Standford because the values of
F1 and F3 were 1.083 and 0.000 for Colon, and 2.907 and
0.016 for DLBCL-Standford. Analogously, the values of L1
and L2 were 0.498 and 0.000 for Colon, and 0.141 and 0.032
for DLBCL-Standford. The reasons why we put our atten-
tion on the accuracies for Colon and DLBCL-Standford are
twofold: (i) the highest differences between SVM and HAM
were achieved for the Colon database and (ii) HAM outper-
formed SVM when applied to the DLBCL-Standford data
set.

Table 6 gives the number of genes selected by the HAM
method and the percentage of reduction over the total amount
of genes for each database. It is worth remarking that the use
of the hybrid hetero-associative memory proposed here may
enable significant gains in computational speed and memory
because the irrelevant and/or redundant genes are removed
from the data sets. It was found that the percentage of reduc-
tion was about 45–55% in average, which represents a quite
meaningful amount when the number of genes is very large
(over thousands of genes) as is the case of the microarray
data sets.

Theuse of accuracy to assess the predictionperformance is
not themost suitablemetric in real-life problemswith skewed
class distributions and unequal misclassification costs [25],
as is the case of tumor (cancer) classification/prediction.
Besides, this is also related to the likelihood of false-positives
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Fig. 1 Plots of sensitivity versus specificity for each database

as a result of the ‘large G, small n’ problem in gene expres-
sion databases [15]. Hence, we have also included the values
of sensitivity and specificity to avoid potentially misleading
conclusions drawn from accuracy since this tends to be heav-
ily biased toward the majority class.

Figure 1 displays the classification procedures in a space
where the x-axis shows the sensitivity and the y-axis depicts
the specificity. In such a space, a model with perfect pre-
diction will be placed on the upper right corner (100%
sensitivity, 100%specificity) of the plot. Therefore, the closer
the method is to the upper right corner, the higher the classi-
fication performance on both classes. Nevertheless, for most
biomedical applications it is better not to miss a diagnosis
of disease rather than to err in the classification of a non-
tumor sample,which suggests thatmaximizing the sensitivity
(points close to the right side) is of far more important than
the specificity (points close to the upper side).

One can observe that both HAM and SVMwere the algo-
rithms with the most balanced trade-off between sensitivity
and specificity, whereas the behavior of the remaining mod-
els depended on each particular database, especially in the
case of MLP and RF. For instance, MLP applied to Lung-
Ontario data achieved about 80% of sensitivity and 25% of
specificity, which reveals that it misclassified many nega-
tive samples. On the other hand, RF is located close to the

upper left corner of the plot (very low sensitivity and high
specificity), indicating that this model failed on the predic-
tion of most positive samples (the most important cases), and
therefore, this classifier is of no value at all for this specific
problem. Finally, note that the associative memory without
feature selection also showed a right balance between sensi-
tivity and specificity.

5 Conclusions

This paper has introduced a two-level algorithm for tumor
classification and characterization from gene expression
microarray data. The proposed technique comprises two
stages: the first one aims to construct a particular type of
hetero-associative memory and the second level allows for
the selection of the most differentially expressed genes. The
neural network here designed corresponds to a combination
of the linear associator and the Steinbuch’s lernmatrix, and it
also includes an initial step in which the coordinate axes are
firstly translated to a new origin.

The HAM prediction model has been evaluated on four
gene expression microarray databases and empirically com-
pared to five well-established classifiers (SVM, MLP, NN,
C4.5 and RF) and also to the associative memory without
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feature selection (ASM) by measuring three scores: overall
accuracy, sensitivity and specificity. The results have shown
that the two-level hetero-associative memory has performed
similar to the best prediction model in most cases, but it has
also been observed that these comparisons strongly depend
on the particular characteristics of each database. However,
importantly for practical applications, an attractive advan-
tage of the HAM approach here introduced is the significant
reduction in the number of genes used for classification,
which may lead to a considerable decrease in computational
requirements and help to increase its biological interpretabil-
ity.

The method proposed in this paper represents a meaning-
ful contribution to the collection of strategies for the clas-
sification, characterization and analysis of gene expression
microarrays in cancer research. However, it still constitutes a
first step toward exploring more complex hybridization tech-
niques that merge classification and feature selection through
associative neural networks or other emerging connectionist
models (e.g., deep neural networks), thus providing a better
understanding of medical decisions because a lower number
of genes should be analyzed. Another direction for further
research is to consider the HAM algorithm as a feature selec-
tion method for other classifiers.
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