
Research Article

International Journal of Distributed
Sensor Networks
2019, Vol. 15(7)
� The Author(s) 2019
DOI: 10.1177/1550147719860412
journals.sagepub.com/home/dsn

A weighted and distributed algorithm
for multi-hop localization

Juan Cota-Ruiz , Rafael Gonzalez-Landaeta,
Jose David Diaz-Roman, Boris Mederos-Madrazo
and Ernesto Sifuentes

Abstract
Multi-hop wireless sensor networks are widely used in many location-dependent applications. Most applications assume
the knowledge of geographic location of sensor nodes; however, in practical scenarios, the high accuracy on position
estimates of sensor nodes is still a great challenge. In this research, we propose a hop-weighted scheme that can be use-
ful in distance-based distributed multi-hop localization. The hop-weighted localization approach generates spatial loca-
tions around position estimates of unknown sensors and computes local functions that minimize distance errors among
hop-weighted and static neighboring sensors. The iterative process of each unknown sensor to re-estimate its own loca-
tion allows a significant reduction of initial position estimates. Simulations demonstrate that this weighted localization
approach, when compared with other schemes, can be suitable to be used as a refinement stage to improve localization
in both isotropic and anisotropic networks. Also, under rough initial position estimates, the proposed algorithm achieves
root mean square error values less than the radio range of unknown sensors, in average, with only a few iterations.
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Introduction

Wireless sensor networks (WSNs) are emerging as moni-
toring systems that can take control over large geographi-
cal areas. They have become a reality due to recent
advances in micro-electromechanical systems (MEMs),
embedded processing, and wireless communications
allowing that many deployed sensor nodes can communi-
cate among them over the wireless medium. Sensor nodes
(e.g. smart devices) are autonomous in the sense that they
have the ability to acquire, store, process, and transmit
over short distances physical or chemical phenomenon
quantities. However, in most cases, sensor nodes are
equipped with batteries without rechargeable and replace-
able nature, which force minimizing the energy wastage.

Detecting physical or chemical events from the envi-
ronment is an important and common task in many

research areas. Such events become relevant if they are
wireless-stamped with parameters such as time of
occurrence and spatial location. A WSN is aimed to
correlate these parameters with sensor data, where time
and space have been discussed recently.1–3 Thus, accu-
rate location of sensor nodes plays a fundamental role
to figure out where the sensed data are coming from.
Moreover, the position information of sensor nodes is
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crucial in location-aware applications like wildlife
tracking, search and rescue, traffic management, mili-
tary affair, and disaster areas to mention a few.

Locating sensor nodes can be trivially solved by
adding a GPS (or other schemes to self-localize) into
each sensor node; however, this technique has been
blamed for the nature such as costly and energy-
consuming which hinders the application in practice. In
many situations, a WSN is deployed in a structured
manner where sensor nodes are placed by hand or via
autonomous robots. In this case, the location sensor
problem represents a minimum challenge since the
location of sensor nodes could be known a priori.
However, when there are location constraints (e.g.
remote or inaccessible areas like battlefield or disaster
regions), sensor nodes could be dropped from an air-
craft for environmental monitoring, that is, in an ad
hoc manner where there is not information about sen-
sor node locations a priori. However, due economic
constraints, only a small fraction of the randomly
deployed sensors can often be equipped with GPS sys-
tems. These sensor nodes are called beacons or anchor
nodes (ANs), and the rest of sensors, called non-
anchors nodes or unknown sensors (USs), must esti-
mate their locations using the known positions of ANs
and radio-frequency (RF) transmissions with neighbor-
ing sensors.4,5 The last approach, which relies on ANs
to localize, is named anchor-based localization that
indirectly produces absolute positions in USs. Also,
when the localization technique is based on inter-sensor
measurements, it is commonly called a range-based
localization technique. In range-based schemes, there
are some measurements—like time of arrival (ToA),
time difference of arrival (TDoA), received signal
strength (RSS), angle of arrival (AoA), or combination
of them—that can be employed to estimate distances
among neighboring sensors.6,7

Due sensor nodes communicate over short dis-
tances, data are transmitted from sensor nodes to a
gateway node (i.e. sink node) using multi-hop routing
protocols. To self-localize, in range-based multi-hop
networks, every US must estimate its distance to at
least three non-collinear ANs (in a two-dimensional
(2D) scenario). Thus, once an US has obtained its ini-
tial position estimate (e.g. using trilateration or any
other scheme), a refinement stage can be carried out
in order to improve its own position estimation using
information collected from one-hop neighboring
sensors.

Once deployed, wireless connections among sensor
nodes determine the type of network topology, and it
basically depends on factors such as the number and
radio-range of sensors, environmental conditions, geo-
graphic structures, and how sensor nodes are distribu-
ted. For instance, Figure 1(a) shows an anisotropic
network where the estimated distance between two

sensor nodes (e.g. those located around the circle in
opposite directions) tends to be a curved line and gen-
erates large errors since it is proportional to the hop-
count between them. However, Figure 1(b) shows a
connected network (i.e. non-isolated sensor nodes)
where approaches like DV-hop, Euclidean-propagation,
DV-distance, and their variants can be used for inter-
node distances.8 Here, for high density and uniform
distribution, the estimated distance between two non-
neighboring sensors tends to be a straight line. Figure
1(c) depicts an ill-connected network that shows that
there are no paths between every pair of sensor nodes
(a path is a route that joints two non-neighboring sen-
sors with inter-node wireless connections).

As can be seen, localization algorithms in multi-hop
networks are highly dependent on topologies and errors
on distance estimates. In view of this problem, some
research works have proposed robust schemes that help
to reduce errors on distance estimates for multi-hop
networks considering irregular topologies.9–16 For
instance, Zheng et al.16 propose a regularized extreme
learning machine method (RELM) for multi-hop locali-
zation. This scheme is composed of three stages: train-
ing, modeling, and locating the nodes. The method
creates a model with inter-node anchor information.
Finally, distance estimations between USs and ANs are
computed using the network model. Even though this
methodology can be suitable to be implemented over
irregular network topologies, the model is highly
dependent on both the number and the position of the
anchors. Also, Akbas et al.17 presents a methodology
to estimate distances between USs and ANs, which is
based on the minimum number of hops between a set
of stationary ANs and a set of USs floating over a
river. This approach requires a manual positioning of
the ANs alongside the river, and the radio range of the
ANs must be larger than the USs. Another approach to
estimate distances between ANs and USs is introduced
in Cota-Ruiz et al.18 This scheme finds out all possible
routes with the minimum number of hops between an
AN and an US using a recursive shortest path algo-
rithm (RSPA); for each found route, an estimated dis-
tance is calculated based on the sum of inter-node RSS
measurements, and the final estimate is calculated by
averaging all distance routes. The drawback of this
approach is the time-computation to calculate all possible
routes between two non-neighboring sensors whose com-
plexity increases for dense networks of sensor nodes.
Another scheme to estimate distances between two non-
neighboring sensor nodes is addressed in Chen et al.19

This approach, signal similarity-based localization
method (SSLM), generates a numerical value that relates
the RSS similarity between two neighboring sensors. This
process is applied to each pair of connected sensor nodes
to finally estimate the distance between ANs and USs
using the shortest path routing algorithm.
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Commonly, the mathematical formulation of the node
placement problem requires to solve a non-linear and
non-convex optimization problem, and iterative algo-
rithms must be applied in order to minimize errors on
position estimates.20–24 For instance, in Cota-Ruiz
et al.,24 a distributed iterative localization algorithm is
used as a refinement stage where each US must compute
a local objective function, composed by a constrained set
of position estimates equally spaced, in order to minimize
the sum of error distances with one-hop neighboring sen-
sors using the l1-norm. This scheme is suitable to be
implemented with resource-limited devices since it is a
derivative-free and a low-complexity refinement method.

In this research, we modify the algorithm presented
in Cota-Ruiz et al.24 to create a distributed weighted-
hop localization (DWHL) algorithm that can be useful
as a refinement stage for static multi-hop localization.
This scheme uses hops proximity between USs and
ANs to improve position estimates. As a result, USs

nearer to ANs will have more weight than those located
far away from anchors. After initial estimates are
solved by USs, they can apply the proposed approach
to improve their position estimates. Results show that
errors in the initial position estimates (i.e. obtained
from approaches like RELM, SSLM, RSPA, DV-hop,
and DV-distance) are greatly reduced after using this
approach even for anisotropic network topologies.

The rest of the work is organized as follows. Section
‘‘The power observation: a common range-based mea-
surement used in wireless sensor network localization’’
explains the RSS technique. Section ‘‘The range-based
multi-hop localization’’ describes the problem formula-
tion in multi-hop network localization. Section ‘‘The
distributed weighted-hop localization algorithm’’ details
the proposed algorithm. Section ‘‘Performance of the
proposed localization scheme in multi-hop networks’’
shows experimental results, and section ‘‘Conclusion’’
concludes the research.

Figure 1. Multi-hop wireless networks: (a) a connected network with a circular uniform distributed topology. It contains 100
sensors distributed over a 2D square area of 200 m 3 200 m. (b) A connected network with uniformly randomly distributed sensor
nodes. It contains 100 sensors placed over a 2D square area of 200 m 3 200 m. (c) A partial connected network with a uniform
distributed topology. It contains 100 sensors distributed over a 2D square area of 200 m 3 200 m.
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The power observation: a common range-
based measurement used in wireless
sensor network localization

Even though the RSS technique suffers from fading
and shadowing, it is a low-cost and a common method
used in range-based WSN localization. The received
signal strength indicator (RSSI) technology is a com-
mon feature integrated into most wireless devices and
does not require special hardware support to estimate a
distance between two sensor nodes. The RSS technique
uses the concept that the power of a transmitted RF
signal diminishes with the distance traveled; and if two
sensor nodes are within a detecting range, the signal
strength can be measured by an RSSI. As a first
approximation, the noise-free case, suppose that at a
unit distance d0 and a d distance from a transmitter,
the signal has a strength Pr(d0) and Pr(d), respectively.
Then using

Pr(d)=
Pr(d0)

dhp
ð1Þ

the distance d can be deduced from Pr(d) if the path loss
coefficient hp of the environment is known. Commonly,
power measurements are mostly represented in logarith-
mic scale, then equation (1) is stated as

Pr
dB(d)=Pr

dB(d0)� 10hplog10

d

d0

� �
ð2Þ

However, a more realistic model frequently used for
wireless radio propagation is represented by the ideal
received power+noise power as follows

P̂r
dB(d)=Pr

dB(d)+XsSH
ð3Þ

and the noisy measured power P̂r
dB can be represented

in a logarithmic form as

P̂r
dB(d)= Pr

dB(d0)� 10hplog10

d

d0

� �� �
+XsSH

ð4Þ

where XsSH
is a log-normal random variable with stan-

dard deviation sSH that accounts for environmental
and shadowing effects. As aforementioned, if the hp of
the environment is known, the estimated distance d̂ can
be deduced from equation (4) as

d̂ = d0 � 10
Pr

dB
(d0)�P̂r

dB
(d)

10�hp ð5Þ

d̂ = d0 10
Pr

dB
(d0 )�Pr

dB
(d)

10�hp � 10
�XsSH

10�hp

� �
= d � e ð6Þ

where the error e is directly affected by XsSH
. As can be

observed from equation (6), this estimated distance can
be expressed in additive form as shown in equation (7)
considering d0 = 1 m

d̂ = d + d 10
�XsSH

10�hp � 1

� �
ð7Þ

The range-based multi-hop localization

Assuming that all sensor nodes have been randomly
positioned over a large and inaccessible terrain, have
the same circular radio range R, communicate over
short distances, and a few of them have been a priori

identified (called ANs), the remaining sensor nodes
(called USs) can be localized using wireless communica-
tions with other sensor nodes.5 Also, considering that
all sensor nodes are statics and have an integrated hard-
ware to estimate their distances from neighboring sen-
sors, it can be stated that multiple hops between an US
and an AN would commonly be presented,4 leading to
a multi-hop network construction. The performance of
a localization process is closely related to three impor-
tant stages, described below.

� Ranging: how to estimate distances between
neighboring sensors and non-neighboring sen-
sors (e.g. USs and ANs).

� Initial positioning: how to estimate locations of
USs given some noisy pairwise distance measure-
ments between USs and ANs and a trilateration
method.

� Final positioning: how to improve locations of
USs given some noisy pairwise distance measure-
ments among one-hop neighboring sensors.

This research limits the discussion to two dimen-
sions. The sensor field is formed by N sensor nodes
S= fs1, s2, . . . , sNg, randomly deployed in a 2D area.
There is a set of M unknown sensors P=
fp1, p2, . . . , pMg with true positions T= ft1, t2, . . . , tMg
to be located with position estimates pi = ½xi, yi�T and
N �M anchor nodes A= fa1, a2, . . . , aN�Mg, with ref-

erence positions aj = ½xj, yj�T that know a priori their

locations. Consider the ratio between unknown sensors
and anchor nodes as 20:1 or M..(N �M).
Furthermore, all sensor nodes (i.e. ANs and USs) have
the same radio area coverage R, considered circular.
Thus, due to the limited range of coverage in each sen-
sor, any sensor si (or anchor ai) will have a restricted
number of neighboring sensors defined by the set

ai = fjjdij\Rg ð8Þ

where �k k denotes the Euclidean norm, and
dij = ti � tj

�� ��= ai � tj
�� �� is the true distance between

the unknown sensor si (or anchor ai) and all its neigh-
boring sensors j. If there is a link between two neigh-
boring sensors, we can assume that they can estimate
their distances with techniques like the RSS (or any
other schemes).6 Thus, we can describe
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rij = dij + eij 8j 2 ai ð9Þ

as the noisy range measurement between the sensor si

(or anchor ai) and its neighboring sensor sj, where eij

represents a distance error caused by environmental
conditions.4 Clearly, partial connectivity among sensor
nodes is present, and distance estimates between
unknown sensors and anchors might be multiple hops.
For range-based localization methods, it is necessary
that each unknown sensor knows the estimated dis-
tances to at least three non-collinear anchors in order to
calculate its own initial location using trilateration or
any other localization technique.25 A variety of meth-
ods to estimate distances between two non-neighboring
sensors are achieved by routing algorithms.12,16,18,19,26

The combination network, sensornodes, linksf g can
be represented in a mathematical form as fG,V,Lg,
respectively, where G=(V,L) is the graph. V=
fv1, v2, . . . , vNg represents the set of vertices, and L is
the set of edges. Let Li = f‘in1

, ‘in2
, . . . , ‘ink

g be the set
of edges that the vertex vi has to other vertices, and the
cardinality of Li is known as the degree of vi. Thus, if
an edge ‘ij joints two vertices vi and vj where both
belong to V, then vi is incident with vj and vice versa.
In this way, if ‘ij can be associated with a weight (e.g.
the distance rij), we can define R as the abutment
matrix of the weighted graph. Also, it is common to
denote A as the adjacency matrix of G.

A path in a graph (or network) is conformed by link-
ing two non-incident vertices (or non-neighboring sen-
sor nodes) with an alternating sequence of n distinct
vertices (or sensor nodes) where consecutive vertices are
incident with each other as shown the next equation

Puk = ‘s0s1
, ‘s1s2

, ‘s2s3
, . . . , ‘sn�1sn

f g ð10Þ

where s0 = su and sn = ak . Clearly, Puk represents a
path between the non-incident vertices vu and vk . For
unweighted networks, the length of the path corre-
sponds to the number of links (or hops). However, most
of the network systems tend to be weighted, and the
estimated distance between two non-neighboring sensor
nodes is a challenging concept in many applications.
Thus, in weighted networks, the elements of the adja-
cency matrix A take the weight of each link to become
R, as before described.

Without loss of generality, consider R(Puk) as the
noisy estimated distance between two non-neighboring
sensors su and ak (i.e. an unknown sensor and an
anchor node, respectively), separated by n hops, where
such distance is computed as

R(Puk)=
X
i= 0

n�1

rsisi+ 1
ð11Þ

where s0 = su and sn = ak . Here, the estimated distance
R(Puk) can be obtained from methods as those

mentioned in previous works.8,12,16,19,27 In case there is
not a path between su and ak , the estimated distance
R(Puk) is defined as R(Puk)=‘.

Similarly to equation (8), let us define the set of k
anchors with known distances to a sensor si as follows

bi = fkjR(Pik)\‘g ð12Þ

Then, to get initial estimates for each unknown sen-
sor in the network P= fp1, p2, p3, . . . , pMg, the next
optimization problem (13) must be solved

min
P

XM
i= 1

X
k2bi

j pi � akk k � R(Pik)j
 !

ð13Þ

which minimizes range estimates between unknown
sensors and anchor nodes. Once initial estimates are
calculated, a refinement stage can be applied in order
to improve position estimates. The mathematical for-
mulation for the refinement stage can be stated as
follows

min
P

XM
i= 1

X
j2ai

j pi � pj

�� ��� rijj
 !

ð14Þ

which minimizes range estimates among one-hop
neighboring sensors. Basically, the range-based multi-
hop localization problem requires two set of range
measurements for each si : ai and bi, where the set bi

is commonly used for initial estimates and the set ai is
used in the refinement process. As can be observed,
equations (13) and (14) become a non-linear and NP-
hard problems,20,21,24 and iterative optimization algo-
rithms must be employed to minimize errors on posi-
tion estimates.

Figure 2. A constrained-discrete region of unknown sensor si

composed by 25 candidates centered in its current position pi.
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The distributed weighted-hop localization
algorithm

The non-linear global optimization problem of equa-
tion (14) cannot be solved efficiently in a central
node for practical situations due the computational
complexity and wireless packet requirements to be re-
transmitted toward the central sensor node for process-
ing. Instead, this problem is divided and solved in
sub-optimization problems (i.e. a divide and conquer
scheme) in a distributed way.20,21,23,28 Thus, once a sen-
sor si obtains its initial estimate, with a trilateration
scheme, it performs a distributed process using equa-
tion (14) as follows

1. The sensor node si waits to receive position
updates from its neighboring sensors sj, 8j 2 ai.

2. Upon receiving the neighboring sensor packet,
the sensor si updates its own position using a
weighted constrained-local search area, and it
obtains a new position that minimizes error dis-
tances with its neighboring sensors.

3. The sensor node si broadcasts its new position
estimates to its neighboring sensors.

4. The last and current position estimates are eval-
uated with a metric for criterion stopping. If the
process continues, it will return to the first step;
otherwise, it leaves of transmitting its position.
This iterative process is detailed in the next
paragraphs.

Given a position estimation pi for a sensor si, it
requires a new search region A in order to reduce error
distances with its neighboring sensors ai. The sum of
error distances of si with its neighboring sensors can be
stated as

E(pi)=
X
j2ai

pi � pj

�� ��� rij

�� �� ð15Þ

The scalar value obtained in equation (15) con-
straints the search region A as shown in Figure 2, where
Ni is the cardinality of the set ai.

As can be observed from Figure 2, the search region
area is located in the middle of the actual position pi of
the sensor si, and it is a set of 25 candidates that must
be evaluated with the aim of reducing error distances
with neighboring sensors. The weighted-local optimiza-
tion function is described in equation (16)

min
pi2A

X
j2ai

pi � pj

�� ��� rij

�� ��wij

 !
ð16Þ

where wij is a weighted value of the sensor si regarding
to its neighboring sensor sj, and its value can be derived
as follows. Let us to consider Hi = fhjjj 2 aig, where hj

is the minimum number of hops between the sensor sj

and its nearest anchor. Thus, wij can be computed as

wij =
max Hið Þ+ 1� hjP

j2Hi

max Hið Þ+ 1� hj

� � 8hj 2 Hi ð17Þ

To describe graphically the last procedure, Figure 3
shows a small network conformed by three anchor
nodes (i.e. red points with letter A) and 13 unknown
sensors (i.e. blue points with letter S). Wireless connec-
tivity among sensor nodes is shown with dashed lines,
and anchor nodes have the maximum hierarchical level
of one. Sensor nodes that are at one-hop of distance of
any anchor will receive the next higher priority level of
two, and so on; therefore, the unknown sensor s12 has
the hierarchical level of four since it is far away three
hops of the nearest anchor A3. These priority levels can
be derived by each sensor node in a distributed way
using the well-known DV-hop algorithm.8

Clearly, n-hops are required to reach the three
anchors from any unknown sensor. In Figure 3, if we
consider the set vector of neighboring sensors of s6,
then a6 = fs2, s3, s5, s8g and Hi = f2, 2, 3, 3g, respec-
tively, so the weighted-set vector of s6 becomes

fw62,w63,w65,w68g=
2

6

2

6

1

6

1

6

� 	
. Clearly, sensors s2 and

s3 which are nearer to anchors than sensors s5 and s8

have more weight. In this manner, sensor nodes that
have high-priority levels tend to pull sensor nodes with
low-priority levels avoiding large errors on initial posi-
tion estimates.

Figure 3. Typical network connectivity where the hierarchical
levels are assigned to each unknown sensor.
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Performance of the proposed localization
scheme in multi-hop networks

As before described, a range-based localization algo-
rithm faces the first challenge problem in how estimate
distances between USs and ANs that are commonly
separated by several hops; good initial estimates for
USs are highly dependent on factors like the network
topology, the accuracy of estimated distances between
sensor nodes, and the localization algorithm. However,
large errors on initial estimates can be present in multi-
hop localization. In the next sections, the proposed
weighted algorithm is evaluated under two different
scenarios: isotropic and anisotropic networks as shown
Table 1. The root mean square error (RMSE) evaluates
the errors of position estimates. The metric is shown in
equation (18)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i= 1

N

pi � tik k2

vuut ð18Þ

Here, �k k is the Euclidean norm, pi and ti represent the
position estimation of sensor si and its true position,
respectively; and N is the number of USs in the net-
work. Also, the localization process uses the
Levenberg–Marquardt (LM) method described in
Cota-Ruiz et al.25 to obtain initial estimates.

To analyze the accuracy performance of the pro-
posed algorithm, 10 different sensor networks are cre-
ated for each topology as shown in Table 1.

Specific changes in US parameters like varying the
size of radio range and the magnitude-error in range
measurements are carried out to analyze the perfor-
mance of the proposed scheme. Each sensor si com-
putes the sum of error distances with neighboring
anchors as

E(pi)=
X
k2bi

j pi � akk k � R(Pik)j ð19Þ

where R(Pik) represents the estimated distance between
the sensor si and the anchor ak obtained by techniques
like DV-hop, DV-distance, RELM, SSLM or RSPA.

Next, the sensor si using reference positions ak and
range estimates R(Pik) for fk = 1, 2, . . . , (N �M)g
computes its initial position using a lateralization
method (e.g. LM algorithm). As final step and using
equation (20), the sensor si finds a position that mini-
mizes the error distance with its reference positions as

min
pi2A

X
k2bi

j pi � akk k � R(Pik)j
 !

ð20Þ

where the size of the searching area A of Figure 2 is
calculated using equation (19) and the value Ni, the car-
dinality of bi. The next sections analyze the accuracy
performance of the proposed approach under isotropic
and anisotropic networks.

Table 1. Setup of networks to evaluate the accuracy performance of the proposed refinement localization algorithm where the
estimation distance between USs and ANs are calculated under different schemes like DV-hop, DV-distance, RELM, RSPA, and SSLM
methods.

Topology Isotropic network Anisotropic network

Number of networks 10 10
USs:ANs ratio 100:5 100:5
Area deployment 200 m 3 200 m 200 m 3 200 m
Ranging errors sSH = 1 dB sSH = 3 dB sSH = 1 dB sSH = 3 dB
Range of sensor nodes (meters) 35, 40, 45 35, 40, 45 35, 40, 45 35, 40, 45

US: unknown sensors; AN: anchor nodes.

Figure 4. Network parameters, the degree of nodes and the
hierarchical level of unknown sensors, are extracted from 10
isotropic networks at different radio ranges.

Cota-Ruiz et al. 7



Range-based multi-hop localization over randomly
and uniformly distributed sensor networks

In this section, we test the proposed DWHL algorithm
under different WSN scenarios. In the first part, we
create 10 multi-hop networks in MATLAB (2010,
ver. 7.10) as shown in Figure 1(b). Each network con-
sists of N = 100 sensor nodes, and each sensor node is
considered with a fixed circular radio range R. The sen-
sor nodes are uniformly and randomly distributed over
a 200 m 3 200 m area, and only 5% of the total
deployed sensor nodes acts as reference or ANs. Noisy
range measurements among sensors are generated
under the RSS technique.19,24 To calculate the distance
estimates between USs and ANs, the next approaches
are considered in this research: DV-hop, DV-distance,
RSPA, SSLM, and RELM. Also, it is assumed that in
all multi-hop networks there is at least one path
between any unknown sensor si to any anchor node ak .
Thus, each unknown sensor in the network is able to
compute its initial position estimation with a

trilateration method (i.e. the LM method in this
research).25 Once the initialization stage is achieved,
the DWHL refinement algorithm is run in each
unknown sensor to improve position estimates.

For each network, five non-collinear anchors are
chosen and radio ranges of R = 35 m, R = 40 m, and
R = 45 m are programmed in order to generate multi-
hop isotropic networks. To generate errors in distance
estimates, under the RSS ranging technique,24 it is using
an attenuation factor of hp = 2:6 with different stan-
dard deviations sSH = 1 dB and sSH = 3 dB as shown
in Table 1.

Figure 4 depicts two important parameters obtained
from the 10 isotropic networks. For instance, in the
right side of Figure 4, the degree of a node, taken as
the average of the 10 networks, is shown at different
radio ranges. In a similar way, the left side of the figure
shows the hierarchical level of nodes also considering
the average of the 10 networks.

The right side of Figure 4 highlights that increasing
the radio range also increases the degree of each node

Figure 5. Combination of [initial-estimates]+ (the refinement algorithm DWHL) at 15 iterations to improve position estimates
for unknown sensors distributed over isotropic networks at different radio ranges: (a) R = 35 m (b) R = 40 m (c) R = 45 m. Noisy
Distance measurements with Gaussian distribution and 1 dB of standard deviation. Initial-estimates: ‘‘¤’’ = [DV-DISTANCE with
LM]+ (DWHL), ‘‘�’’ = [DV-HOP with LM]+ (DWHL), ‘‘<’’ = [RELM with LM]+ (DWHL), ‘‘*’’ = [RSPA with LM]+ (DWHL),
‘‘:’’ = [SSLM with LM]+ (DWHL).
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in the network while the left side of the figure presents
an opposite behavior by decreasing the hierarchical
level of nodes (i.e. the minimum number of hops to the
closest anchor node plus one as is shown in Figure 3).
Thus, increasing the radio range of sensor nodes helps
the localization process.

In the first test, we consider that both USs and ANs
have a radio range of R = 35 m, and distance mea-
surements among neighboring sensors are corrupted
according to sSH = 1 dB. In this way, the 10 multi-hop
networks are generated. For each network, USs must
estimate distances to ANs using the aforementioned
range-based schemes to obtain their initial position esti-
mates using the LM method.25 Next, each unknown
sensor si runs the DWHL algorithm to refine initial
estimates during 15 iterations. This procedure is
repeated for each one of the 10 multi-hop networks
and the average RMSE at each iteration, marked as
‘‘},’’ is plotted in Figure 5(a).

Even though, there are isotropic networks for these
experiments, a radio range of R = 35 m increases the

number of hops between ANs and USs generating large
errors on distance measurements (e.g. affecting initial
position estimates). The best accuracy performance is
obtained by the combination of DV-distance and
DWHL schemes, marked with ‘‘¤,’’ starting with 24.5 m
and finishing with 18.9 m of error, respectively. The
worst accuracy performance is registered by the combi-
nation of RELM and DWHL schemes, marked with
‘‘<,’’ with initial and final values of 26.7 and 24.1 m,
respectively. However, the refinement algorithm presents
a good performance reducing initial errors in all cases.

However, as expected, increasing the radio range in
each sensor node si to R = 40 m and R = 45 m pro-
duces better initial and final position estimates as
depicted Figure 5(b) and (c), respectively, where the
best accuracy performance in both cases is provided by
the combination of DV-distance and DWHL methods,
while the worst case is also presented by the RELM
and DWHL approaches; but as mentioned before,
DWHL has a great performance reducing initial errors
in all cases.

Figure 6. Combination of [initial-estimates]+ (the refinement algorithm DWHL) at 15 iterations to improve position estimates
for unknown sensors distributed over isotropic networks at different radio ranges: (a) R = 35 m (b) R = 40 m (c) R = 45 m. Noisy
Distance measurements with Gaussian distribution and 3 dB of standard deviation. Initial-estimates: ‘‘¤’’ = [DV-DISTANCE with
LM]+ (DWHL), ‘‘�’’ = [DV-HOP with LM]+ (DWHL), ‘‘<’’ = [RELM with LM]+ (DWHL), ‘‘*’’ = [RSPA with LM]+ (DWHL),
‘‘:’’ = [SSLM with LM]+ (DWHL).
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Another interesting analysis consists of increasing
errors in range measurements. Keeping both, the posi-
tion set of unknown sensors and anchors positions for
each one of the 10 benchmark networks, the distance
estimation errors among neighboring sensors is
increased to sSH = 3 dB instead of sSH = 1 dB. Thus,
for a radio range of R = 35 m, distance estimates
between ANs and USs are computed by the methods
DV-distance, DV-hop, RELM, RSPA, and SSLM, and
initial estimates are calculated in every case using the
LM algorithm. For each case, the refinement algorithm
is run during 15 iterations, and the average of the 10
benchmark networks are plotted in Figure 6(a). Clearly,
initial and final errors on position estimates increase as
a consequence of also increasing error distances among
neighboring sensors when compared with Figure 5(a),
and a similar behavior is exhibited by the combination
of DV-distance with DWHL showing the best perfor-
mance, and RELM with DWHL methods ending up
with the worst performance. Finally, as expected in uni-
form and randomly distributed WSNs, increasing the
radio range in each sensor node si to R = 40 m and
R = 45 m produces better initial and final position esti-
mates as reveled by Figure 5(b) and (c), respectively.

Figure 7. Network parameters, the degree of nodes and the
closeness to anchor nodes, are extracted from 10 circular-shape
networks at different radio ranges.

Figure 8. Combination of [initial-estimates]+ (the refinement algorithm DWHL) at 15 iterations to improve position estimates
for unknown sensors distributed over anisotropic networks at different radio ranges: (a) R = 35 m (b) R = 40 m (c) R = 45 m.
Noisy Distance measurements with Gaussian distribution and 1 dB of standard deviation. Initial-estimates: ‘‘¤’’ = [DV-DISTANCE
with LM]+ (DWHL), ‘‘�’’ = [DV-HOP with LM]+ (DWHL), ‘‘<’’ = [RELM with LM]+ (DWHL), ‘‘*’’ = [RSPA with
LM]+ (DWHL), ‘‘:’’ = [SSLM with LM]+ (DWHL).
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Comparing initialization stages between Figures 5(a)
and 6(a), 5(b) and 6(b), and 5(c) and 6(c), we can
observe that methods based in the hop-count to esti-
mate distances among non-neighboring sensors like the
DV-hop and the RELM approaches produce similar
initial estimates in both cases. The reason is that these
schemes do not depend on errors in distance measure-
ments; they use the average-hop between anchor posi-
tions. Conversely, range-based distance schemes like
RSPA, SSLM, and DV-distance are highly dependent
on the accuracy in distance estimates. Whatever the
case, in the refinement stage, the DWHL algorithm
achieves to decrease the RMSE in all tests.

Evidently, the DV-distance in combination with the
proposed algorithm provides the best accuracy perfor-
mance than the other schemes, and better results are
obtained by increasing the radio range of sensor nodes.
This combination can be implemented in a distributed
way with a low complexity and computational cost.
However, the RELM approach in combination with
the proposed algorithm indicates the worst accuracy

performance under this type of network distribution.
However, the RELM method is suitable to be imple-
mented over irregular network topologies as those ana-
lyzed in the next section.

Range-based multi-hop localization over irregular
topologies of sensor networks

This section analyzes the accuracy performance of the
proposed DWHL scheme under anisotropic networks.
We consider that all deployed networks are of the form
of these ones presented in Figure 1(a), where there is a
path between every pair of nodes, and five of the 100
sensor nodes are anchors distributed around the circle.
The tests for this section run also of the same form as
the described in last section ‘‘Range-based multi-hop
localization over randomly and uniformly distributed
sensor networks,’’ where 10 anisotropic networks with
noisy range measurements among neighboring sensors
are created. Figure 7 shows two important parameters

Figure 9. Combination of [initial-estimates]+ (the refinement algorithm DWHL) at 15 iterations to improve position estimates
for unknown sensors distributed over anisotropic networks at different radio ranges: (a) R = 35 m (b) R = 40 m (c) R = 45 m.
Noisy Distance measurements with Gaussian distribution and 3 dB of standard deviation. Initial-estimates: ‘‘¤’’ = [DV-DISTANCE
with LM]+ (DWHL), ‘‘�’’ = [DV-HOP with LM]+ (DWHL), ‘‘<’’ = [RELM with LM]+ (DWHL), ‘‘*’’ = [RSPA with LM]+
(DWHL), ‘‘:’’ = [SSLM with LM]+ (DWHL).
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of the evaluated anisotropic networks: the degree of
nodes and the hierarchical level of unknown sensors.

Similar to isotropic networks, the concentration of
neighboring nodes per sensor, considering the same
deployed area and the same number of sensor nodes,
increases accordingly with the increment of the radio
range and the hierarchical level also decreases.
However, an important behavior must be taken into
account for this kind of circular-shape topology; the
degree of nodes is bigger than the isotropic one since
most unknown sensors are concentrated in small area
around the boundary of the circle.

The first test consists of evaluating the accuracy per-
formance of the proposed refinement DWHL algo-
rithm at different initial estimates. Initial estimates are
computed using the range-based schemes (i.e. RELM,
RSPA, SSLM, DV-hop, and DV-distance) to estimate
distances between USs and ANs; and the method LM
provides the initial position estimate for each US.
Ranging error among neighboring sensors, with the

RSS technique, is sSH = 1 dB.24 Thus, the initialization
stage (i.e. range-based method and LM scheme) fol-
lowed by the refinement algorithm (i.e. the DWHL
algorithm at 15 iterations) is applied for each one of
the 10 networks and the average is taken as the estima-
tor. This procedure is repeated for R = 35 m,
R = 40 m, and R = 45 m. Figure 8(a) shows results
with R = 35 m. Clearly, algorithms based on hops like
RELM and DV-hop present better initial estimates (i.e.
27.1 and 23.3 m, respectively) over range-based
approaches like RSPA, SSLM, and DV-distance
schemes (i.e. 58.9, 54.9, and 49 m, respectively) when
irregular network topologies are considered. In aver-
age, the refinement algorithm brings off better results
for range-based methods than hop-based methods.
However, the best accuracy performance results of the
combination DV-hop and DWHL approaches.

Figure 8(b) shows accuracy results on position esti-
mates when the radio range of every sensor node is
increased to R = 40 m. In this case, only the

Figure 10. RMSE behavior of the proposed algorithm (DWHL) with 15 iterations at different initial estimates [random values inside
of a circle area] using radio ranges of (a) R = 35 m, (b) R = 40 m and (c) R = 45 m. ‘‘¤’’ = [CA = R]+ (DWHL), ‘‘�’’ = [CA = 2 � R]
+ (DWHL), ‘‘<’’ = [CA = 3 � R]+ (DWHL), ‘‘�’’ = [CA = 4 � R]+ (DWHL), ‘‘:’’ = [CA = 5 � R]+ (DWHL), ‘‘+ ’’ = [CA = 6 � R]
+ (DWHL). All distance estimates among sensor nodes consider a standard deviation sSH = 1 dB of error and sensor nodes have an
isotropic distribution.
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range-based schemes improve their initial position
estimates as expected. However, the combination
DV-hop with DWHL still provides the best accuracy
results over these irregular topologies. This starts at
22.5 m of error and finishes with 17.4 m of error.
Also, it can be seen that the refinement algorithm
achieves a substantial error reduction in all cases,
least with the RELM approach, which practically
remains with the same error (i.e. around 28 m) after
15 iterations. Finally, using a radio range of
R = 45 m in all sensor nodes, the position estimates
are improved in all cases as depicted Figure 8(c).
However, it must be remarked that the refinement
algorithm provides the best improvement on reducing
position errors when the DV-hop scheme is used as
initialization stage reaching a final RMSE of 12.6 m.
Then, even though the RELM method is aimed to be
used over irregular topologies, the proposed scheme
achieves better results in combination with the others
initialization stages.

However, increasing errors on distance estimates
among neighboring sensors over the 10 benchmark net-
works to sSH = 3 dB seems that position estimates also
would increase the error. Nevertheless, it has the oppo-
site effect as shown Figure 9.

For instance, for R = 35 m of Figure 9(a), initiali-
zation stages present an error of 28.7 m in average,
while for R = 35 m of Figure 8(a), initialization stages
yield an error of 42.6 m in average. Also, final position
estimates of Figure 9(a) yield an error of 19.9 m in
average, and final position estimates of Figure 8(a) pro-
vide an error of 25.4 m in average. Similar behaviors
are presented when the radio range of sensor nodes is
increased to R = 40 m and R = 45 m as depicted
Figure 9(b) and (c), respectively. As expected, the pro-
posed weighted localization algorithm has the capacity
to provide low errors on position estimates in a distrib-
uted manner with a low computational cost, and it has
the ability to be implemented in a sensor node with low
computational capabilities. Moreover, it can be used as

Figure 11. RMSE behavior of the proposed algorithm (DWHL) with 15 iterations at different initial estimates [random values inside
of a circle area] using radio ranges of (a) R = 35 m, (b) R = 40 m and (c) R = 45 m. ‘‘¤’’ = [CA = R]+ (DWHL), ‘‘�’’ = [CA = 2 � R]
+ (DWHL), ‘‘<’’ = [CA = 3 � R]+ (DWHL), ‘‘�’’ = [CA = 4 � R]+ (DWHL), ‘‘:’’ = [CA = 5 � R]+ (DWHL), ‘‘+ ’’ = [CA = 6 � R]
+ (DWHL). All distance estimates among sensor nodes consider a standard deviation sSH = 3 dB of error and sensor nodes have an
isotropic distribution.
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a refinement stage after simple and easily implementa-
ble schemes like DV-hop or DV-distance schemes.

As final test, the proposed algorithm is analyzed with
random initial positions for each unknown sensor. For
each unknown sensor, it is defined a circular area with
radio range R and centered at the true position. Then, a
random position is generated inside of it, which is used
as an initial estimate. Once all unknown sensors have
initial random estimates, the DWHL algorithm is per-
formed at 15 iterations in a distributed way to improve
position estimates. The process, the initial random esti-
mates and refinement stages, is recreated 10 times for
each one of the 10 benchmark networks to finally be
averaged. Also, to test robustness and accuracy of the
proposed approach under rough initial estimates, the
circular area is increased according to CA= k � R,
where k= 1, 2, . . . , 6.

In the case of the 10 isotropic networks with
sSH = 1 dB (i.e. the error introduced in distance mea-
surements among neighboring sensors). Figure 10
shows the error in the position estimates using the
RMSE metric at different radio ranges and initial esti-
mates. Figure 10(a) depicts how initial estimates

increase in average 20 m when the CA increases by
R = 35 m. Thus, for a CA = 6�R = 210 m, the pro-
cess generates an initial RMSE of 121 m and a final
RMSE of 27.2 m after 15 iterations, which is lower
than the radio range of sensor nodes. Moreover, Figure
10(b) and (c) shows a similar behavior for R = 40 m
and R = 45 m when increasing the CA, used to gener-
ate random initial estimates; however, even when there
are high errors on initial estimates, the final RMSE val-
ues are lower than the former ones since the hierarchi-
cal level of nodes decreases and the degree of nodes
increases when R increases as shown Figure 4, which
helps to the refinement algorithm to reduce errors on
position estimates.

In addition, the DWHL algorithm is tested with the
same set of the 10 isotropic networks, but now using a
sSH = 3 dB. As can be observed in Figure 11, RMSE
results are very similar to the last one using
sSH = 1 dB, but due to higher errors on distance esti-
mates, the proposed method produces, in general,
slightly higher RMSE values than the previous one.
However, in all cases, the RMSE value is lower than
the radio range of sensor nodes.

Figure 12. RMSE behavior of the proposed algorithm (DWHL) with 15 iterations at different initial estimates [random values inside
of a circle area] using radio ranges of (a) R = 35 m, (b) R = 40 m and (c) R = 45 m. ‘‘¤’’ = [CA = R]+ (DWHL), ‘‘�’’ = [CA = 2 � R]
+ (DWHL), ‘‘<’’ = [CA = 3 � R]+ (DWHL), ‘‘�’’ = [CA = 4 � R]+ (DWHL), ‘‘:’’ = [CA = 5 � R]+ (DWHL), ‘‘+ ’’ = [CA = 6 � R]
+ (DWHL). All distance estimates among sensor nodes consider a standard deviation sSH = 1 dB of error and sensor nodes have a
circular-shape distribution.
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Figure 12 shows the accuracy performance of the
DWHL algorithm using the set of the 10 anisotropic
networks, described at the beginning of this section, with
sSH = 1 dB. In spite of the irregular network topologies,
RMSE results do not show a drawback of this topology
with respect to isotropic networks depicted in Figure 10.
Moreover, when sensor nodes have a radio range of
R = 35 m, accuracy on position estimates from irregu-
lar topologies achieves better results than isotropic net-
works. However, increasing sSH from 1 to 3 dB over the
same set of the 10 anisotropic networks, the position
error estimates also increase as can be visualized in
Figure 13; however, even in the worst scenario with
sSH = 3 dB, R = 35 m, and an initial estimate of
121.5 m, observed in Figure 13(a), the final RMSE after
15 iterations yields a high error reduction reaching a
value of 27.5 m, lower than the radio range R.

Although the topologies are irregular, the estimating
positions after 15 iterations show similar accuracy
results from those ones obtained with regular

topologies at different radio ranges, which indicates
that the proposed approach is not sensitive of the net-
work topology; however, it must be remarked that
anchor nodes are uniformly randomly distributed in
each network. As expected, initial position estimates
yield very similar results for both regular and irregular
network topologies at any radio range since initial esti-
mates do not depend on neither the topology nor error
distances between sensor nodes.

As can be observed from Figures 10–13, for con-
nected networks with regular or irregular distribution
of sensor nodes, the proposed localization scheme
would represent a good option when an accurate dis-
tributed node localization algorithm with low computa-
tional complexity should be a priority. As final remark,
it is important to observe how the refinement algorithm
only requires around five iterations, in average, to
reach the lowest RMSE value for any test, which shows
that the speed of convergence can be suitable in distrib-
uted iterative localization algorithms.

Figure 13. RMSE behavior of the proposed algorithm (DWHL) with 15 iterations at different initial estimates [random values inside
of a circle area] using radio ranges of (a) R = 35 m, (b) R = 40 m and (c) R = 45 m. ‘‘¤’’ = [CA = R]+ (DWHL), ‘‘�’’ = [CA = 2 � R]
+ (DWHL), ‘‘<’’ = [CA = 3 � R]+ (DWHL), ‘‘�’’ = [CA = 4 � R]+ (DWHL), ‘‘:’’ = [CA = 5 � R]+ (DWHL), ‘‘+ ’’ = [CA = 6 � R]
+ (DWHL). All distance estimates among sensor nodes consider a standard deviation sSH = 3 dB of error and sensor nodes have a
circular-shape distribution.
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Conclusion

In this research, we propose a weighted method useful
for localization in static multi-hop networks. The pro-
posed scheme represents an improvement of that pre-
sented in Cota-Ruiz et al.24 This approach introduces
spatial locations and local functions to minimize errors
of distance estimates among neighboring sensors using
a weighted-hop function. To test the accuracy perfor-
mance of the proposed algorithm, initial estimates are
generated in a variety of forms like random values
inside of a circular area or by classical methods as
RELM, RSPA, SSLM, DV-hop, and DV-distance
algorithms in combination with the LM method. The
improvement if initial position estimates is carried out
iteratively by the weighted-hop localization algorithm.
Localization tests realized over multi-hop isotropic and
anisotropic networks demonstrate that the proposed
approach, in combination with range-based or hop-
based methods, can provide sufficient accuracy in posi-
tion estimates with low-complexity computation to be
considered in most location-dependent applications.
Moreover, given rough initial estimates, the proposed
algorithm is able to reduce high errors less than the
radio range of sensor nodes with a few iterations. Also,
the accuracy performance of the proposed algorithm
does not show dependence with the network topology;
however, we must remark that anchor positions also
play an important role in the accuracy performance of
the proposed scheme.
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