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Abstract

Most modern products that are highly reliable are complex in their inner and
outer structures. This situation indicates quality characterization by the interac-
tion of multiple performance characteristics, which motivates the utilization of
robust reliability models to obtain robust estimates. It is paramount to obtaining
substantial information about a product's life cycle; therefore, when multi-
ple performance characteristics are dependent, it is important to find models
that address the joint distribution of performance degradation of such. In this
paper, a reliability model for products with 2 fatigue-crack growth characteristics
related to 2 degradation processes is developed. The proposed model consid-
ers the dependence among degradation processes by using copula functions
considering the marginal degradation processes as inverse Gaussian processes.
The statistical inference is performed by using a Bayesian approach to esti-
mate the parameters of the joint bivariate model. A time-scale transformation is
considered to assure monotone paths of the degradation trajectories. The com-
parison results of the reliability analysis, under both dependent and independent
assumptions, are reported with the implementation of the proposed modeling
in a case study, which consists of the crack propagation data of 2 terminals of an
electronic device.
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1 INTRODUCTION

Degradation information of specific characteristics are obtainable for most products. This information can be useful to
make inferences about the life of the product.1 Although the obtained information may be different depending of the
product under study, in some, it is possible to measure the physical degradation as a function of time. In others, instead,
measures of the performance degradation of the product may be available. Meeker and Escobar2 presented examples in
which degradation processes are modeled, taking into consideration the effect of accelerating variables, and described
specific models for degradation curves. Usually, these models start with a deterministic description of the degradation
process, and after this, randomness is introduced to describe the variability in initial conditions and parameters of the
model as the product properties.

There are several classes of degradation models that have been comprehensively studied and applied to the reliability
analysis of degradation data. The gamma process has been identified as a good model for degradation processes given
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the characteristics that its increments are independent and nonnegative, having a gamma distribution with an identi-
cal scale parameter.3-6 Moreover, considering its monotonicity property and that performance can only decrease over
time, this is why it is considered to be suitable to model wear, crack growth, corrosion, consumption, fatigue, etc.7-13

Although the use of gamma process may be complicated when dealing with the first-time passage distributions, given
that the obtained probability distribution function (PDF) has no explicit form. This implies the use of approximations
to the Birnbaum-Saunders distribution and the inverse Gaussian distribution, which consider a discrete version of the
first passage times of the gamma process and the central limit theorem to approach the passage time of the normalized
cumulative degradation increments with a critical level to the Birnbaum-Saunders distribution.8,14,15

The geometric Brownian motion as a degradation process has been presented as another important alternative. The
sample path of this process, as in the case of the gamma process, is also monotone. Different applications of this process
in degradation analysis can be found in the works of Park and Padgett,9 Elsayed and Liao,16 Park and Padgett,17 and
Chiang et al.18

The inverse Gaussian (IG) process is another important choice for degradation modeling; this process also provides
monotone degradation paths, and it is closely related to the Wiener process with drift. Indeed, it can be treated as the first
passage distribution of a Wiener process. An important practical advantage of the IG process over the gamma process is the
closed form of its first-time passage distribution. In addition, as described by Ye and Chen,19 this process is flexible when
the incorporation of random effects and covariates is of interest in the modeling of degradation process, which accounts
for heterogeneities. Several recent studies have been presented considering the IG process as a degradation model; Wang
and Xu20 presented a method for incorporating random effects and covariates in the IG process and presented a scheme
for maximum likelihood estimation (MLE) on the basis of the Expectation-Maximization (EM) algorithm. Ye and Chen19

extended the method proposed by Wang and Xu20 by proposing 2 different approaches to incorporate random effects in
the IG process. The first approach consisted in letting the drift parameter of the IG process be a random variable and
assuming that the inverse drift parameter follows a truncated normal distribution, and the second approach consisted in
letting the volatility parameter of IG be a random variable and that follows a gamma distribution. Peng21 introduced a
new model based on the inverse normal-gamma mixture of an IG process; in this model, the parameters of the models
can vary from unit to unit by using the natural conjugate distribution for IG data.

Given that most of the modern highly reliable products are complex in their inner and outer structures, the degradation
research topic continues to draw great interest. Considering that, the quality of a certain product might be characterized by
the interaction of multiple performance characteristics (PC), which may be dependent. Then, it is important to consider
the joint distribution of the multiple degradation processes. The use of copula functions is an appealing way for dealing
with multivariate distributions constructed from marginal densities. Different ways of using copula functions with degra-
dation data can be found in the works of Liu et al,22 Sari et al,23 Pan et al,24 and Wang and Pham.25 Liu et al22 proposed a
bivariate degradation model on the basis of IG processes with s-dependence between the marginal degradation processes
and the random drift model proposed by Ye and Chen.19 They also presented the joint modeling of the IG processes via
copula functions and MLE estimations of the parameters via the 2-stage EM algorithm. Although MLE is an important
estimation method, it may have some disadvantages when dealing with degradation data, as mentioned by Peng et al,26

for example, few availability of degradation measures and the no possibility of incorporating historical information about
the data into the modeling. Peng et al26 presented different Bayesian schemes for the estimation of a univariate IG process
with random effects.

In this paper, the degradation modeling of 2 PC considering 2 IG processes via copula functions is considered. As
the bivariate joint distributions are complex, the estimation of the parameters is performed via the Gibbs sampling and
Markov chain Monte Carlo (MCMC) simulation. Firstly, a simulation study considering the proposed estimation approach
and the MLE are carried out. A bivariate model based on IG processes and a copula function is considered to illustrate
the advantages of the Bayesian approach over the MLE. The 2 schemes are compared on the basis of the mean square
error of the estimated parameters. Secondly, the proposed model is implemented in a case study that consists of crack
propagation data of 2 terminals of an electronic device. As part of the estimation process, we considered a second run of
the Gibbs sampling by taking the posterior information obtained of the first run as prior information for the second run.
In addition, the fitting of the IG process in the case study is evaluated by also fitting the case study degradation data set to
the gamma and geometric Brownian motion processes. Considering the best fitting estimations, the reliability assessment
of the device under study is performed by assessing the dependence of the terminals.

The rest of the paper is organized as follows. In Section 2, the univariate IG process with time-scale transformation
is presented. In Section 3. The bivariate modeling of the 2 IG processes is introduced considering copula functions. In
Section 4, the inference method based on Gibbs sampling is presented. In addition, a simulation study is performed to
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compare the performance of the Gibbs sampling and the MLE. In Section 5, the case study is presented to illustrate the pro-
posed models. The IG model is compared with other stochastic processes with the aim to determine the best-fitting model.
In addition, the reliability assessment is provided. In Section 6, the concluding remarks and discussion are provided.

2 IG PROCESS WITH TIME-SCALE TRANSFORMATION

Before the bivariate IG process is defined, we first introduce the marginal IG processes. Each one of these processes
represents the degradation of a PC of the device under test. We consider that the degradation path over time is modeled
by a stochastic process {Z(t); t > 0}. Specifically, it is considered that an IG process governs the degradation process of a
PC. The IG process with drift parameter (𝜇) and diffusion parameter (𝜆) has the following characteristics,

• Z(t) − Z(s) = ΔZ(t) follows an IG distribution IG (𝜇[𝜏(t) − 𝜏(s)], 𝜆[𝜏(t) − 𝜏(s)]2).
• Z(t) has independent increments, ie, Z(t4) − Z(t3) and Z(t2) − Z(t1) are independent, ∀t1 < t2 < t3 < t4,

where, 𝜏(t) is a monotone increasing function. In this case, 𝜏(t) is considered as a monotone time-scale transformation
𝜏(t) = 𝜏(t, 𝛾) with the form 𝜏 = t𝛾 , given that this transformation can be used when dealing with power relationships27

such as the case study presented in this paper. Considering that, ΔZ(t) is governed by IG (𝜇𝜏(t, 𝛾), 𝜆[𝜏(t, 𝛾)]2) with mean
𝜇𝜏(t, 𝛾) and variance 𝜇3𝜏(t, 𝛾)/𝜆 and has the following PDF,

𝑓 (ΔZ(t)) =

√
𝜆𝜏2(t, 𝛾)

2𝜋ΔZ3(t)
exp

{
−𝜆(ΔZ(t) − 𝜇𝜏(t, 𝛾))2

2𝜇2ΔZ(t)

}
(1)

and cumulative distribution function (CDF)

F (ΔZ(t)) = Φ
[√

𝜆

ΔZ(t)

(
ΔZ(t)
𝜇

− 𝜏(t, 𝛾)
)]

+ exp
{

2𝜆𝜏(t, 𝛾)
𝜇

}
× Φ

[
−
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𝜆
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+ 𝜏(t, 𝛾)
)]

, (2)

where Φ is the standard normal cumulative distribution function.
As the degradation path of a product's PC is governed by IG (𝜇𝜏(tA𝛾), 𝜆[𝜏(t, 𝛾)]2), then when the path reaches a critical

degradation value 𝜔, the lifetime T𝜔 of the product is defined as T𝜔 = inf {Z(t) ≥ 𝜔}. Given the monotonicity property of
the IG process, it is well known19,20 that the reliability function of the product under study can be obtained as

R(t) = Φ

[√
𝜆

𝜔

(
𝜔

𝜇
− 𝜏(t, 𝛾)

)]
+ exp

{
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−
√

𝜆
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. (3)

Now, consider that a product has 2 PCs and that they are marginally governed by an IG process with the previously
described time-scale transformation. During a degradation test, N units are tested, and M measurements for all the units
are observed up to the termination time T, which results in degradation measurements Zik(tj) of the ith unit at the corre-
sponding time tj, i = 1, 2, … , N, j = 1, 2, … , M, and k = 1, 2 PC. Then, the degradation data can be presented as follows

X2N×M =
(

Z1
Z2

)
=

⎛⎜⎜⎜⎜⎜⎝

Z11(t1) · · · Z11(tM)
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⋱
· · ·
· · ·
⋱
· · ·

⋮
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⋮
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⎞⎟⎟⎟⎟⎟⎠
. (4)

According to the independent increment property of the IG process and ΔZik(tj) = Zik(tj) − Zik(tj − 1), t0 = 0, Δ𝜏
(

t𝑗 , 𝛾k
)
=

𝜏
(

t𝑗 , 𝛾k
)
−𝜏

(
t𝑗−1, 𝛾k

)
= t𝛾k

𝑗
−t𝛾k

𝑗−1 for i= 1, 2, … , N, j= 1, 2, … , M, and k= 1, 2 PC. Thus, it is possible to obtain independent
random variables

ΔZ𝑖𝑘(t𝑗) ∼ IG
(
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.

The PDF of ΔZik(tj) is defined as follows:
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where, i = 1, 2, … , N, j = 1, 2, … , M, and k = 1, 2.
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If 𝜔k is the critical degradation level of each PC for k = 1, 2, then the CDF of T𝜔k can be obtained from Equation (3) as
P(Zik(tj) ≥ 𝜔k).

3 BIVARIATE MODELING VIA COPULA FUNCTIONS

Copulas are parametric functions that join univariate distributions into multivariate distribution functions. Most of them
have convenient parametric forms, which allows the modeling of the dependence structure among marginal distribution
functions.28 The copula approach to model dependence is linked to the Sklar theorem representation29

H(x, 𝑦) = C {F(x),G(𝑦)} , x, 𝑦 ∈ R

F ∈ F𝜑, G ∈ G𝜔, C ∈ C𝜃,

where, F(x), G(y) are marginal CDFs and x, y are random variables. If H(x, y) is a joint distribution with marginal distri-
butions F(x) and G(y), then a unique copula C can be obtained for x, y. Thus, a bivariate copula is a CDF defined in [0, 1]2

with uniform marginal distributions [0, 1]. There are different copula functions with one parameter that can be used such
as the Archimedean family.30 In this case, some Archimedean copulas are considered to jointly model the 2 degradation
processes ΔZi1(tj) and ΔZi2(tj) as follows:

H
(
ΔZi1, (t𝑗)ΔZi2(t𝑗)

)
= C
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U𝑖𝑗1,V𝑖𝑗2

)
,
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)
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(
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)
are defined on the basis of Equation (2)
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(
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, k = 1, 2.

Considering any of the copula functions from the Archimedean family with one parameter described in Table 1 as
c(u, v; 𝜃) = 𝜕C(Ui j1, Vi j2)/𝜕Ui j1𝜕Vi j2 to be the bivariate PDF of the 2 degradation processes. Then, the likelihood and
log-likelihood functions are described as

L(𝜇1, 𝜆1, 𝛾1, 𝜇2, 𝜆2, 𝛾2, 𝜃) =
N∏

i=1

M∏
𝑗=1

[
c(U𝑖𝑗1,V𝑖𝑗2; 𝜃) · 𝑓(ΔZi1(t𝑗)) · 𝑓 (ΔZi2(t𝑗))

]
(6)

l (𝜇1, 𝜆1, 𝛾1, 𝜇2, 𝜆2, 𝛾2, 𝜃) =
N∑

i=1

M∑
𝑗=1

[
ln

(
c(U𝑖𝑗1;V𝑖𝑗2; 𝜃)

)
+

2∑
k=1

ln
(
𝑓

(
ΔZ𝑖𝑘(t𝑗)

))]
. (7)

The product is considered to have failed if any of the PC reaches the critical degradation level 𝜔k, k = 1, 2. Thus, the
reliability function can be described as

R(t) = P {Z(t1) < 𝜔1,Z(t2) < 𝜔2} = C (P (Z(t1) < 𝜔1) ,P (Z(t2) < 𝜔2)) . (8)

TABLE 1 One parameter bivariate copulas

Copula C(u, v) Parameter

Plackett 1 + (𝜃 − 1)(u + v) −
√

1 + (𝜃 − 1)(u + v)2 + 4𝜃(1 − 𝜃)∕(𝜃 − 1)∕2 𝜃 ≥ 0
Frank 𝜃−1 ln [1 + (exp{𝜃u} − 1)(exp{𝜃v} − 1)(exp{𝜃} − 1)−1] 𝜃 ≠ 0
Gumbel exp{−[(−(ln u)𝜃 + (− ln v)𝜃)]1/𝜃} 𝜃 ≥ 1
Clayton (u−𝜃 + v−𝜃 − 1)−1/𝜃 𝜃 > 0
Joe 1 − [(1 − u)𝜃 + (1 − v)𝜃 − (1 − u)𝜃(1 − v)𝜃]1/𝜃 𝜃 ≥ 1
AMH uv/1 − 𝜃(1 − u)(1 − v) −1 ≤ 𝜃 ≤ 1
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4 ESTIMATION OF PARAMETERS BASED ON A BAYESIAN APPROACH

Considering that Zik(tj) for k = 1, 2 have been observed for N units at time points tj for i = 1, 2, … , N, j = 1,
2, … , M, then the degradation increments ΔZik(tj) are independent random variables that follow IG distributions as
IG (𝜇kΔ𝜏(tj, 𝛾k), 𝜆kΔ𝜏2(tj, 𝛾k)). The bivariate models are constructed by using the different copula functions described
in Table 1 for the marginal IG processes k = 1, 2. The Bayesian approach is implemented by considering the fol-
lowing scheme of prior distributions: noninformative prior distributions are considered for the parameters of interest
𝛿 = (𝜇1, 𝜆1, 𝛾1,𝜇2, 𝜆2, 𝛾2, 𝜃). In general, truncated normal prior distributions 𝑇𝑁

(
a𝜇k , b𝜇k

)
with mean hyperparameter

a𝜇k and scale hyperparameter b𝜇k are considered for 𝜇k, k = 1, 2, to avoid negative values of the mean parame-
ters of the marginal IG processes. A gamma prior distribution 𝐺𝑎

(
𝜗𝜆k , 𝜅𝜆k

)
with shape hyperparameter 𝜗𝜆k and scale

hyper-parameter 𝜅𝜆k are considered for 𝜆k, k = 1, 2, given that the gamma distribution is the conjugate prior distribution
of 𝜆k. Noninformative normal distributions N

(
a𝛾k , b𝛾k

)
with mean hyper-parameter a𝛾k and scale hyper-parameter b𝛾k

are considered for 𝛾k, k = 1, 2. For the association parameter (𝜃) of the copula function, the prior distribution is defined
depending of the considered Archimedean copula. For example, for the Frank copula, a noninformative normal distri-
bution N(a𝜃 , b𝜃) is considered. For the Gumbel and Joe copulas, a noninformative uniform distribution U(c𝜃 , d𝜃) with
c𝜃 = 1 is considered. For the Clayton and Plackett copulas, a noninformative uniform distribution U(c𝜃 , d𝜃) with c𝜃 = 0 is
considered. For the AMH copula, a noninformative uniform distribution U(c𝜃 , d𝜃) with c𝜃 = − 1 and d𝜃 = 1 is considered.

Considering the previously described a priori distributions for 𝛿 = (𝜇1, 𝜆1, 𝛾1,𝜇2, 𝜆2, 𝛾2, 𝜃) and the likelihood function
described in (6), the joint posterior distribution can be expressed as

𝑝
(
𝛿; ΔZ𝑖𝑘(t𝑗)

)
∝ 𝑓𝑇𝑁 (𝜇1) · 𝑓𝑇𝑁 (𝜇2) · 𝑓a(𝜆1) · 𝑓a(𝜆2) · 𝑓N(𝛾1) · 𝑓N(𝛾2) · 𝑓 (𝜃) · L

(
ΔZ𝑖𝑘(t𝑗); 𝛿

)
. (9)

It can be noted that the joint posterior distribution in (9) results in a nonstandard complex form. However, the MCMC
can be utilized to estimate the parameters of interest (𝛿) from model (9). The procedure consists in generating samples
from this joint posterior distribution. In this case, the Gibbs sampling algorithm is utilized to obtain such samples from the
joint distribution. Important information about this algorithm can be found in the works of Gelfand and Smith,31 Casella
and George,32 Smith and Roberts,33 and Gelman et al.34 Generally, the algorithm consists in dividing the parameter vector
into d subvectors, 𝛿 = (𝛿1, … , 𝛿d), such that each iteration of the algorithm cycles through the subvectors of 𝛿, drawing
each subset conditional on the value of all vectors. This process can be seen as generating a realization of a Markov chain
that is built from a set of base transition probabilities. When the base transition probabilities are applied in sequence, the
algorithm can be described as simulating a homogeneous Markov Chain 𝛿(1), 𝛿(2), 𝛿(3), … , in such case, the procedure for
generating 𝛿(t) from 𝛿(t − 1) can be summarized as follows35:

Pick 𝛿t
1 from the distribution for 𝛿1 given 𝛿

(t−1)
2 , 𝛿

(t−1)
3 , … , 𝛿

(t−1)
n

Pick 𝛿t
2 from the distribution for 𝛿2 given 𝛿

(t)
1 , 𝛿

(t−1)
3 , … , 𝛿

(t−1)
n

⋮

Pick 𝛿t
i from the distribution for 𝛿i given 𝛿

(t)
1 , … , 𝛿

(t)
i−1, 𝛿

(t−1)
i+1 , … , 𝛿

(t−1)
n

⋮

Pick 𝛿t
n from the distribution for 𝛿n given 𝛿

(t)
1 , 𝛿

(t)
3 , … , 𝛿

(t)
n−1.

The new value for 𝛿i − 1 is used immediately when picking the next value for 𝛿i.
The implementation of the Gibbs sampling algorithm for the estimation of the parameters from Equation (9) is per-

formed using the OpenBUGS package software.36 Zeros trick is used in OpenBUGS given that the log-likelihood is not
a standard distribution.37 In general, the zeros trick consists in introducing the term l(𝛿;ΔZik(tj)) into the joint distribu-
tion. The trick consists in telling to OpenBUGS that a datum 0 has been observed from a Poisson distribution with mean
−l(𝛿;ΔZik(tj)). If −l(𝛿;ΔZik(tj)) exceeds the unity, then −l(𝛿;ΔZik(tj)) + Q is used for some suitable big Q. In Appendix A,
the general code for the implementation of the zeros tricks under the different copula functions is provided.

4.1 Performance comparison between the Bayesian approach and MLE
As previously stated, the estimation of parameters is performed via MCMC on the basis of the Gibbs sampling. However,
another alternative may consist in obtaining the estimates of the parameters on the basis of MLE. To compare the perfor-
mance of these 2 estimation methods, a simulation study is presented in this section. A bivariate IG model based on the
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TABLE 2 Mean parameters estimations under MLE and Bayesian approach.
MSE within parenthesis

Sample Size Parameter MLE Bayesian
𝜇1 5.4141 (0.5195) 5.3941(0.2789)
𝜆1 7.8515 (6.8556) 7.574(5.9662)

n = 30 𝜇2 6.3126 (0.4953) 6.2931(0.2132)
𝜆2 8.3749 (5.3325) 8.1789(4.9116)
𝜃 10.8282 (1.2635) 10.7882(1.1569)
𝜇1 5.2705 (0.2631) 5.2144(0.1777)
𝜆1 7.7095 (1.7855) 7.5507(1.5241)

n = 50 𝜇2 6.32467 (0.6637) 6.2572(0.4563)
𝜆2 8.2235 (1.3365) 8.0541(1.3159)
𝜃 11.0136 (0.9853) 10.7867(0.9561)
𝜇1 5.1016 (0.0959) 5.1032(0.0649)
𝜆1 7.5853 (1.2978) 7.6137(1.1941)

n = 100 𝜇2 6.1219 (0.1128) 6.1594(0.07588)
𝜆2 8.0909 (1.9297) 8.1032(2.0033)
𝜃 10.1137 (0.9112) 10.1916(0.7588)

Frank copula is considered to perform the simulation study. Sample sizes of 30, 50, and 100 are simulated from the bivari-
ate model with parameters (𝜇1 = 5, 𝜆1 = 7,𝜇2 = 6, 𝜆2 = 8, 𝜃 = 10). By using the copula38 package in R, the different samples
were simulated and then fitted using the fitMvdc function to obtain the MLE estimations. The noninformative prior distri-
butions described in the previous section are considered for (𝜇1, 𝜆1,𝜇2, 𝜆2, 𝜃) in the Bayesian estimation scheme. By using
OpenBUGS, MCMC chains of size 10 000 were taken for the parameters of interest. The average value of the estimates
and their respective mean square error (MSE), based on 100 replications, are presented in Table 2.

From Table 2, it can be noted that the Bayesian estimators perform better than the obtained via MLE approach, but
it can also be noted that the differences in estimations tend to be smaller as the sample size increases. Thus, it can be
noted that the MSE tend to stabilize in the MLE approach as the sample size increases. It should be noted that, in some
degradation analysis, there may be small sample sizes of data to perform the reliability assessment. In such situations,
the Bayesian approach is a good option to perform the estimations of the parameters of interest.

5 CASE STUDY

In this section, the case study is presented, which consisted in the fatigue-crack propagation of 2 cracks in 2 terminals of
an electronic device. Each device has 2 terminals whose function is to transfer a signal to a receptor. These terminals are
depicted in Figure 1A. As can be noted in Figures 1A and B, a wire is compressed between the 2 legs of the terminal. This
is performed via the fusion welding process by 2 electrodes that make contact with the 2 legs of the terminal. Because of
the mechanical stress caused by the electrodes, some cracks may be present in the terminals, as can be seen in Figure 1B.

FIGURE 1 Configuration of terminals of the case study. A, terminals and receptor; B, crack of the terminal [Colour figure can be viewed at
wileyonlinelibrary.com]
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The propagation of the cracks to a certain critical length can lead to failure of the device because of the inability of
transferring the signal to the receptor. Given that the fatigue-crack growth is of interest, a degradation test based on
vibration fatigue can be considered to study the propagation of cracks in the terminals. Ten devices were available for the
experimental study as every device has 2 terminals, 2 sets of fatigue-crack growth data sets were obtained. The 10 devices
were mounted in a dynamic shaker device of a vibration chamber and were subjected to sinusoidal-type vibration profiles
or cycles. The crack propagations for both terminals were measured every 0.1 hundred thousand cycle until 0.9 hundred
thousand cycle. The measurements for every crack were performed at the same measurement times via a vision system.
The obtained data is presented in Table 3, the units are in millimeters. In Figure 2, the crack degradation paths for the 2
terminals of every device are illustrated.

TABLE 3 Crack propagation data for terminals 1 and 2

Hundred Thousands of Cycles
Terminal Device 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0 0.014 0.018 0.016 0.021 0.089 0.09 0.02 0.06 0.014
2 0 0.031 0.017 0.075 0.011 0.024 0.025 0.08 0.01 0.043
3 0 0.011 0.069 0.07 0.03 0.01 0.01 0.01 0.012 0.073
4 0 0.03 0.02 0.08 0.03 0.05 0.06 0.09 0.02 0.055

Terminal 1 5 0 0.01 0.012 0.08 0.031 0.05 0.05 0.01 0.035 0.015
6 0 0.011 0.05 0.09 0.026 0.084 0.085 0.022 0.036 0.016
7 0 0.017 0.012 0.07 0.01 0.015 0.016 0.01 0.099 0.03
8 0 0.026 0.016 0.01 0.01 0.012 0.01 0.01 0.021 0.016
9 0 0.03 0.08 0.051 0.072 0.09 0.09 0.03 0.08 0.033

10 0 0.08 0.012 0.016 0.032 0.01 0.01 0.02 0.013 0.034

1 0 0.01 0.02 0.025 0.052 0.058 0.018 0.017 0.06 0.042
2 0 0.09 0.071 0.011 0.075 0.012 0.022 0.09 0.03 0.028
3 0 0.01 0.05 0.021 0.037 0.024 0.016 0.011 0.063 0.03
4 0 0.016 0.06 0.011 0.017 0.023 0.071 0.01 0.01 0.04

Terminal 2 5 0 0.036 0.06 0.08 0.028 0.038 0.039 0.044 0.09 0.08
6 0 0.014 0.088 0.01 0.082 0.083 0.012 0.016 0.03 0.056
7 0 0.037 0.027 0.014 0.018 0.028 0.04 0.07 0.02 0.072
8 0 0.035 0.051 0.019 0.069 0.093 0.01 0.07 0.014 0.023
9 0 0.067 0.081 0.013 0.012 0.011 0.034 0.011 0.01 0.046

10 0 0.025 0.027 0.012 0.012 0.075 0.036 0.018 0.017 0.04

FIGURE 2 Cumulative degradation paths. A, Terminal 1; B, Terminal 2
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The propagation of the cracks can be seen as a degradation process and, therefore, as a stochastic process. As the device
has 2 terminals, the crack propagation of every terminal can be seen as degradation processes. Considering that the cracks
are from different positions, it is important to assess the dependence of the crack propagation of the terminals for every
device. It is considered that the device has failed if the length of any of the 2 cracks crosses the critical limit of 0.663 mm.
Such critical level of degradation was obtained by considering the total width of the terminal defined by the customer of
the product. In this case, if a crack length exceeds the total width of the terminal, a failure of the system can be obtained
given the inability of the product to transfer a signal the receptor.

The fatigue-crack-growth data from the terminal 1 is considered to be modeled with an IG process F

(
ΔZi1(t𝑗)

)
,

whereas the fatigue-crack-growth data from the terminal 2 is also considered to be modeled with an IG process
F

(
ΔZi2(t𝑗)

)
. According to Ye and Chen19 and Ye and Xie,39 the IG process is a limiting compound Poisson process with

independent and positive increments, which means that the degradation process can be considered as accumulations of
additive and irreversible damage caused by a sequence of external random shocks. This certainly justifies the use of the
IG process in the case study as can be noted in the behavior of the degradation paths in Figure 2. Furthermore, the first
passage time distribution of the IG process is closely related to the Birnbaum-Saunders distribution,19 which is a life dis-
tribution model that is derived from a physical fatigue process where crack growth causes a failure such as the case study
presented in this paper.

The copula functions listed in Table 1 are used to describe the dependence of the IG processes in the form of
H(ΔZi1(tj),ΔZi2(tj)). It can be noted from Figure 2, that the degradation paths are not linear in the function of the cycles;
this justifies the use of the monotone time-scale transformation 𝜏 = t𝛾 .

5.1 Parameters estimation
The parameters of interest 𝛿 = (𝜇1, 𝜆1, 𝛾1,𝜇2, 𝜆2, 𝛾2, 𝜃) are estimated, in general, using MCMC via Gibbs the sampling
by using a sample drawn from their respective posterior distributions as described in (9). The posterior distribution
of parameters 𝛿 given the data is P (𝛿 | Data), and is defined as P (𝛿 | Data) ∝ L(Data | 𝛿) P(𝛿), where L(Data | 𝛿) is
the likelihood function of the model and P (𝛿) is the respective prior distribution for 𝛿 = (𝜇1, 𝜆1, 𝛾1,𝜇2, 𝜆2, 𝛾2, 𝜃). It is
assumed that there is prior independence among the parameters. Estimation of the parameters was performed by using
the algorithm presented in Appendix A and implemented in OpenBUGS. As the log-likelihood function in Equation (7) is
not a standard distribution in OpenBUGS, the zeros trick was implemented in the algorithm specifying the log-likelihood
function l(𝜇1, 𝜆1, 𝛾1,𝜇2, 𝜆2, 𝛾2, 𝜃). Two sets of initial values are considered in the algorithm to assess the convergence of
the parameters of interest; the sampling of the parameters was monitored using the analysis of the trace plots and the
Brooks-Gelman-Rubin statistic.40

The prior distributions, as well as their hyperparameters, are given as follows. Noninformative a priori truncated normal
distributions 𝑇𝑁

(
a𝜇k , b𝜇k

)
for parameters (𝜇k) are considered. The hyperparameters are ak = 0, for k = 1, 2, and precision

parameter 1∕b2
k = 1 × 10−9, for k = 1, 2. For 𝜆k, the gamma hyperparameters are considered as 𝜗𝜆k = 1 and 𝜅𝜆k = 0.01.

For (𝛾k, 𝜃), noninformative a priori normal distributions were considered, with hyperparameters a𝛾k = 0 and precision
parameter 1∕b2

𝛾k
= 1×10−9 and a𝜃 = 0 and precision parameter 1∕b2

𝜃
= 1×10−9. A total of 5000 iterations were considered

for burn-in, and 10 000 were considered for estimation purposes. A summary of the obtained estimations is presented in
Table 4. As 2 sets of initial values were determined for every parameter, the Brooks-Gelman-Rubin statistic was calculated
for the parameters of interest. In general, it was found that convergence is achieved in every parameter. In Appendix B,
the trace plots for the estimated parameters of the bivariate models under different copulas are provided.

The estimation of the parameters of the IG processes considering nondependence were also performed by considering
only the marginal IG distributions of both terminals without the copula functions; the results are presented in Table 5. In
this case, the parameters were also estimated by using a Bayesian approach. Considering noninformative a priori gamma
distributions 𝐺𝑎

(
𝜗𝜆k , 𝜅𝜆k

)
for parameters (𝜆k) and noninformative a priori truncated normal

(
a𝜇k , b𝜇k

)
distributions

for (𝜇k).
From the credible intervals in Table 4, it can be noted that, in all bivariate models, the estimations of the parameters vary

significantly, specifically in (𝜇k, 𝜆k, 𝜃). Such significant variation can be reduced in all parameters by incorporating prior
information about these parameters in the Bayesian estimation process. Considering the posterior parameters obtained
in Table 4 as prior information and by integrating such information with the observed degradation data set in Table 3,
a second implementation of the MCMC in OpenBUGS was carried out. The AHM and Frank copulas are considered to
illustrate the informative process. It can be noted by the boxplots in Figure 3, that the variation in the estimation of the
parameters of interest is reduced. This improvement of estimation results is mainly due to the evolutive integration of
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TABLE 4 Summary of estimations obtained considering dependence between terminals

Copula Parameter Mean Sda MCb Error t0.025 t0.5 t0.975

𝛾1 1.0390 0.0631 0.0003 0.9219 1.0360 1.1690
𝛾2 1.0270 0.0614 0.0003 0.9132 1.0250 1.1550
𝜆1 4.8460 0.7255 0.0079 3.5180 4.8080 6.3570

Plackett 𝜆2 5.9750 0.9019 0.0093 4.3440 5.9200 7.9000
𝜇1 0.3789 0.0368 0.0009 0.3165 0.3759 0.4604
𝜇2 0.3855 0.0342 0.0006 0.3273 0.3827 0.4617
𝜃 0.9095 0.2766 0.0033 0.4887 0.8681 1.5460
𝛾1 1.0380 0.0631 0.0003 0.9214 1.0360 1.1690
𝛾2 1.0290 0.0634 0.0003 0.9118 1.0270 1.1590
𝜆1 4.8290 0.7248 0.0052 3.5200 4.7920 6.3640

Frank 𝜆2 5.9770 0.8906 0.0061 4.3550 5.9320 7.8710
𝜇1 0.3796 0.0379 0.0006 0.3162 0.3759 0.4639
𝜇2 0.3856 0.0346 0.0003 0.3266 0.3827 0.4610
𝜃 −0.4427 0.5772 0.0145 −1.5700 −0.4355 0.6821
𝛾1 1.0400 0.0628 0.0004 0.9220 1.0370 1.1710
𝛾2 1.0240 0.0607 0.0004 0.9123 1.0210 1.1490
𝜆1 4.8110 0.7147 0.0079 3.5270 4.7650 6.3220

Gumbel 𝜆2 5.9530 0.9015 0.0099 4.3190 5.9090 7.8270
𝜇1 0.3791 0.0376 0.0007 0.3148 0.3766 0.4595
𝜇2 0.3897 0.0350 0.0005 0.3305 0.3863 0.4669
𝜃 1.0540 0.0436 0.0006 1.0020 1.0430 1.1610
𝛾1 1.0330 0.0632 0.0007 0.9169 1.0310 1.1630
𝛾2 1.0230 0.0627 0.0007 0.9068 1.0210 1.1540
𝜆1 4.7830 0.7217 0.0077 3.4820 4.7480 6.2940

Clayton 𝜆2 5.9100 0.8829 0.0110 4.3060 5.8670 7.7590
𝜇1 0.3769 0.0374 0.0004 0.3135 0.3733 0.4629
𝜇2 0.3867 0.0353 0.0003 0.3262 0.3835 0.4659
𝜃 0.0846 0.0749 0.0011 0.0023 0.0642 0.2736
𝛾1 1.0420 0.0639 0.0006 0.9231 1.0390 1.1750
𝛾2 1.0250 0.0613 0.0005 0.9097 1.0230 1.1500
𝜆1 4.8100 0.7149 0.0074 3.5190 4.7730 6.3050

Joe 𝜆2 5.9750 0.8814 0.0095 4.3880 5.9340 7.8250
𝜇1 0.3826 0.0380 0.0005 0.3199 0.3783 0.4680
𝜇2 0.3921 0.0351 0.0003 0.3313 0.3892 0.4707
𝜃 1.1020 0.0831 0.0014 1.0040 1.0820 1.3100
𝛾1 1.0370 0.0626 0.0004 0.9234 1.0350 1.1670
𝛾2 1.0290 0.0638 0.0004 0.9120 1.0260 1.1620
𝜆1 4.8290 0.7178 0.0074 3.5200 4.7910 6.3400

AMH 𝜆2 5.9890 0.9111 0.0098 4.3560 5.9440 7.9150
𝜇1 0.3798 0.0379 0.0007 0.3151 0.3763 0.4664
𝜇2 0.3866 0.0351 0.0004 0.3278 0.3834 0.4640
𝜃 −0.2330 0.2741 0.0029 −0.7909 −0.2241 0.2740

aStandard deviation
bMonte Carlo

TABLE 5 Summary of estimations obtained without considering dependence

Terminal Parameter Mean Sda MCb Error t0.025 t0.5 t0.975

𝛾1 1.038 0.06171 4.12 × 10-4 0.9228 1.035 1.166
1 𝜆1 4.862 0.7274 0.003833 3.547 4.825 6.394

𝜇1 0.3776 0.03669 1.65 × 10-4 0.3151 0.3741 0.4601
𝛾2 1.026 0.0618 3.61 × 10-4 0.912 1.024 1.155

2 𝜆2 6.013 0.8945 0.00464 4.382 5.969 7.9
𝜇2 0.3868 0.0341 1.41 × 10-4 0.3287 0.384 0.461

aStandard deviation
bMonte Carlo
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FIGURE 3 Boxplots comparison of noninformative and informative estimations for parameters of the bivariate AHM-IG and Frank-IG
models [Colour figure can be viewed at wileyonlinelibrary.com]

posterior and prior distributions in the Bayesian estimation scheme. In addition, if historical information is available, it
is expected that the estimation process performs even better. Such integration of information is critical for the situation
when few degradation observations are available. Given that, as denoted in Section 4.1, the Bayesian scheme performs
better than MLE when small sample sizes are considered, and MLE performs better as the sample size increases. Both
aspects (few availability of degradation information and integration of prior information) present an advantage of the
considered Bayesian estimation scheme for degradation analysis, which cannot be fulfilled with the MLE scheme.

Considering the estimates of the bivariate models obtained from the informative process, it is also possible to obtain
information about the level of dependence between the degradation processes by considering the parameter 𝜃 from each
copula function, which can be related to the Kendall coefficient in different forms depending on the treated copula.41

The Kendall coefficient provides a good alternative to measure the level of dependence between the marginal distribu-
tions from the copula. Kendall's coefficients obtained from every copula are: 0.056 for Frank, 0.051 for Gumbel, 0.041 for
Clayton, 0.055 for Joe, and −0.049 for AMH. In the case of the Plackett copula, the Kendall coefficient does not have a
closed form (Fredricks and Nelsen, 2007), so the Spearman coefficient was computed as follows: 0.21.

In addition, information criteria can be used to obtain the best-fitting copula model. In order to obtain such model, the
Akaike information criterion (AIC) is used, which is an important tool for model selection.42 This criterion is defined as
AIC = − 2 × l(𝛿) + 2k, where, l(𝛿) is the evaluated log-likelihood function from Equation (7) for every copula, and k is
the number of parameters. By using this criterion, the next results were obtained: −8213 for Plackett, −8296 for Frank,
−8216 for Gumbel, −8210 for Clayton, −8204 for Joe, and −8213 for AMH. As can be noted, there are slightly differences
for the AIC of every copula function. However, the Frank copula has the smallest value; this may indicate that the Frank
copula is the better-fitting model for the marginal degradation processes and their dependence structure. However, the
Kendall coefficient from the Frank copula is 0.056, which indicates nondependence; as when the Kendall coefficient from
the Frank copula tends to 0, it implies nondependence. In Figure 4, the bivariate PDFs of the best-fitting copulas are
illustrated.

We also considered the goodness of fit testing for the bivariate models based on copula functions. The test is based on
an empirical process that compares the empirical copula with a parametric estimate of the copula derived under the null
hypothesis H0 : C ∈ C0, which indicates that the dependence structure of the multivariate copula based distribution (C)

http://wileyonlinelibrary.com
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FIGURE 4 Bivariate PDF for copula functions: A, Frank; B, Gumbel; C, Clayton; D, Joe

is well represented by a specific parametric family (C0) of copulas. The test statistic is based on the rank-based version
of the Cramer-von Mises statistic.43 Large values of this statistic lead to the rejection of the null hypothesis. In addition,
p-values were computed using parametric bootstrap by considering the copula package38 in the R software. The results
were obtained as follows for the different copulas: for the placket copula, the test statistic and p-value were obtained as
0.07575 and 0.03178, respectively; for the Frank copula, 0.02452 and 0.0515, respectively; for the Gumbel copula, 0.039361
and 0.03731; for the Clayton copula, 0.098661 and 0.02488; for the Joe copula, 0.11833 and 0.007463; for the AMH copula,
0.07976 and 0.007463. It can be noted that, if a significance level of 0.05 is considered, then the Frank copula is the only
not rejected, which confirms the best-fitting copula selected via the information criterion.

5.2 Comparison with gamma and geometric Brownian motion stochastic processes
As mentioned before, there are some other alternative models that may be considered to model the degradation data in
Table 3. The gamma and geometric Brownian motion (GBM) processes are good options. In this section, the degradation
data set is fitted to such stochastic processes considering that the best fitting copula is the Frank copula. Considering that,
during the degradation test, N units are tested and M measurements for all the units are observed up to the termination
time T, which results in degradation measurements Zik(tj) of the ith unit at the corresponding time tj, i = 1, 2, … , N, j = 1,
2, … , M and k = 1, 2 PC, and the time-scale transformation 𝜏(t) = 𝜏(t, 𝛾), thus the corresponding PDF of the gamma and
GBM motion processes are defined as follows, respectively:

𝑓a
(
ΔZi(t𝑗)

)
=

ΔZi(t𝑗)vΔ𝜏(t𝑗 ,𝛾)−1

𝛤
(

vΔ𝜏(t𝑗 , 𝛾)
)

uvΔ𝜏(t𝑗 ,𝛾)
exp

{
−
ΔZ(t𝑗)

u

}
𝑓GBM

(
ΔZi(t𝑗)

)
= 1√

2𝜋Δ𝜏(t𝑗 , 𝛾)𝜎′ΔZi(t𝑗)
exp

{
−
(
ln

(
ΔZi(t𝑗)

)
− 𝛼′Δ𝜏(t𝑗 , 𝛾)

)2

2𝜎′2Δ𝜏(t𝑗 , 𝛾)

}
.
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Thus, the corresponding bivariate models based on copula functions for the gamma and GBM processes are defined as
follows, for any of the 2 stochastic processes:

𝑓
(

Zi1(t𝑗),Zi2(t𝑗)
)
= c

(
F1

(
Zi1(t𝑗)

)
,F2

(
Zi2(t𝑗)

))
× 𝑓1

(
Zi1(t𝑗)

)
× 𝑓2

(
Zi2(t𝑗)

)
with k = 1, 2 PC, i = 1, 2, … , N, j = 1, 2, … , M.

The log-likelihood function is described as in (7) as

l (𝛿) =
N∑

i=1

M∑
𝑗=1

[
ln

(
C
(

U𝑖𝑗1,V𝑖𝑗2; 𝜃
))

+
2∑

k=1
ln

(
𝑓a or GBM

(
ΔZ𝑖𝑘(t𝑗)

))]
.

Information criteria are also considered to define the best-fitting model. The gamma and GBM bivariate models were
fitted to the degradation data set in Table 3, and the corresponding AIC values were obtained. For the bivariate IG based
on the Frank copula model, the AIC value was observed as −8296, the AIC value obtained for the bivariate gamma based
on the Frank copula model was −8418, whereas the AIC value obtained for the bivariate GBM based on the Frank copula
model was −3230. As the bivariate model based on IG processes has the lowest value of AIC, it is considered that the
bivariate IG model is the best-fitting model for the presented degradation data set as the marginal PDF in the bivariate
copula function can be defined before the bivariate joint model is fitted. The degradation data sets for terminals 1 and
2 were fitted to the IG, gamma, and GBM stochastic processes marginally. The AIC criterion was also considered with
the next results: for terminal 1, the AIC value for the IG process resulted in −4190, for the gamma process in −4160, and
for the GBM process in −4034. It can be noted that the IG process has the lowest value of AIC, so the IG process is the
best-fitting model for terminal 1. For terminal 2, the AIC value for the AIC resulted in −4162, for the gamma process in
−4097, and for the GBM process in −4022. It can also be noted that the IG process has the lowest value of AIC, so the IG
process is also the best-fitting model for terminal 2.

5.3 Reliability estimation
Considering the estimated parameters of the bivariate IG-Frank model, it is possible to assess the reliability of the device
under study taking into account the Equations (3) and (8). In addition, taking into account the estimates in Table 5, it is
possible to assess the reliability of the device considering that there is no dependence between the degradation processes.
The reliability functions are compared in Figures 5 and 6 for terminals 1 and 2, respectively.

The nondependence assessment can be confirmed by the reliability functions in Figures 5 and 6, where it can be
noted that the functions from the dependent and independent scenarios constantly overlap from the beginning to
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FIGURE 5 Comparison of reliability functions with and without dependency for terminal 1 [Colour figure can be viewed at
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FIGURE 6 Comparison of reliability functions with and without dependency for terminal 2 [Colour figure can be viewed at
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FIGURE 7 Comparison of reliability functions for the best-fitting dependent copula y nondependent models [Colour figure can be viewed
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the end. In addition, in Figure 7, the reliability functions, along with the corresponding credible intervals, of the 2 termi-
nals considering the best-fitting copula, are presented. The reliability functions of the terminals considering the obtained
estimations under the independent scenario are also presented in Figure 7. It can be noted that, as in Figures 5 and 6, the
reliability functions, along with credible intervals in Figure 7, are almost identical. Thus, the 2 terminals may be deemed
as independent, and the reliability assessment may be obtained individually without considering the dependence struc-
ture. In addition, all the reliability functions of terminal 2 are smaller most of the time than the reliability functions of
terminal 1. Even if there is no dependence between the degradation processes of the terminals, both are parallel compo-
nents of the electronic device, and the failure of either can cause a failure of the device. Based on this, it can be noted that
the reliability of the product should be decided by terminal that first reaches the critical level of degradation, which, in
this case, may be the terminal 2.
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6 CONCLUDING REMARKS AND DISCUSSION

This article proposes a joint bivariate modeling of 2 degradation processes governed by IG processes via copula functions;
the estimation of the parameters of interest is performed with MCMC via the Gibbs sampling, and reliability insights are
provided to deal with the dependent and independent degradation of 2 PC. From the case study presented, it was found
that the dependence structure between the degradation processes can be assessed by the copula functions. In this case,
the best-fitting copula is the Frank copula; nevertheless, the Kendall coefficient is close to 0, which may indicate that
there is no dependence between the degradation processes. It can be noted from Figure 7, that the reliability functions
of the dependent and independent scenarios constantly overlap, which denotes that the degradation of the 2 terminals
are indeed independent. Thus, the reliability should be assessed independently. The validity of the IG process was also
checked by fitting the degradation data set to the gamma and geometric Brownian motion processes. It was found that,
according to the AIC values, the IG process fits better the data set either jointly and marginally. In addition, as mentioned
in the introduction section, the Bayesian estimation approach has the advantages of a good performance when few degra-
dation measures are available and the possibility of incorporating prior information in the modeling. Such advantages
have been cleared by performing, in first instance, a simulation study considering the MCMC-based Gibbs sampling esti-
mation scheme and the MLE and comparing the performances via MSE. It was found that, with small sample sizes, the
Bayesian estimation scheme performs better than the MLE. Furthermore, the estimations perform even better by intro-
ducing prior information as denoted in Figure 3. The case study presented may be used for further research. It can be
noted that none of the terminals reached the critical level of degradation. Given that the reliability function depends on
the degradation trajectories reaching such critical value, further research is needed. However, it should be noted that the
reliability function of the first passage time distribution of the IG process is closed in the form of an IG distribution. Thus,
the estimated parameters of the IG process directly define the first passage time distribution in terms of the critical level
of degradation and the estimated parameters of the IG process, as can be noted in (4). Further research may be directed to
consider the confidence intervals of the estimated IG process parameters and performing Monte Carlo simulations with
(4), such that a wider variety of parameters estimations in terms of the first passage time distribution can be assessed.
In addition, future work can be extended considering the characteristics of the case study; this could be treated as an
s-dependent competing risk model.
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APPENDIX A: OpenBUGS CODE FOR ESTIMATION OF THE BIVARIATE MODELS UNDER
DIFFERENT COPULA FUNCTIONS

model {
C <- 1000000
for (i in 1:N)
{
for(j in 1:M-1)
{
zeros[i,j] <- 0
zeros[i,j] ˜ dpois(zeros.mean[i,j])
zeros.mean[i,j] <- -L[i,j] + C
# Frank copula function
#L[i,j] <- log( theta * exp( -theta * ( u[i,j] + v[i,j] ) ) * ( 1 - exp( -theta ) ) / ( exp( -theta ) + exp( -theta *
#( u[i,j] + v[i,j] ) ) - exp( -theta * u[i,j] ) - exp( -theta * v[i,j] ) ) / ( exp( -theta ) + exp( -theta * ( u[i,j] + v[i, j] ) )
#- exp( -theta* u[i,j] ) - exp( -theta * v[i,j] )))
# Joe copula function
#L[i,j] <- log( pow( ( pow( (1 - u[i,j]), theta) + pow( (1 - v[i,j]), theta) - (pow( (1 - u[i,j]), theta) * pow( (1 - v[i,j]),
#theta) ) ), ((1/theta) - 2)) * pow( (1 - u[i,j]), (theta - 1)) * pow( (1 - v[i,j]), (theta - 1)) * ( theta - 1 + pow( (1 - u[i,j]),
#theta) + pow( (1 - v[i,j]), theta) - pow( (1 - u[i,j]), theta) * pow( (1 - v[i,j]), theta)))
# Clayton copula function
L[i,j] <- log( pow( pow( u[i,j], - theta) + pow( v[i,j], - theta) - 1, -1 / theta - 2 ) * pow( u[i,j], - theta -1) * pow( v[i,j],
- theta - 1) * (1 + theta))
# Placket copula function
#L[i,j] <- log( (theta * (1 + ((u[i,j] - (2 * u[i,j] * v[i,j]) ) + v[i,j]) * (theta - 1))) / pow( (pow((1 + (theta - 1) * (u[i,j] + v[i,j])),
2) - 4 * u[i,j] * v[i,j] * theta * (theta - 1)), 3/2))
# AMH copula function
#L[i,j] <- log( (1 + (theta * ( (1 + u[i,j]) * (1 + v[i,j]) - 3)) + (pow(theta, 2) * (1 - u[i,j]) * (1 - v[i,j]) )) / pow( (1 - (theta * (1
- u[i,j]) * (1 - v[i,j]))), 3))
# Gumbel copula function
#L[i, j] <- log( exp( -pow( pow( -log(u[i,j]) ,theta) + pow( -log(v[i,j]), theta) , 1/theta) ) * pow(-log(u[i,j]), theta-1) *
#pow( -log(v[i,j]), theta-1) / u[i,j] / v[i,j] * pow( pow( -log(u[i,j]), theta) + pow( -log(v[i,j]), theta),1/theta - 2) *
#( pow( pow( -log(u[i,j]), theta) + pow( -log(v[i,j]), theta), 1/theta) + theta -1 ))

#Cumulative distributions for inverse Gaussian processes
u[i,j]<- phi(sqrt(lam.su / Z.u[i,j]) * ((Z.u[i,j] / mu.u) - ts.u[i,j] )) + (exp((2*lam.u[i,j]) / miu.u[i,j]) * phi(-sqrt(lam.su /
Z.u[i,j]) * (ts.u[i,j] + (Z.u[i,j] / mu.u))))
v[i,j]<- phi(sqrt(lam.sv / Z.v[i,j]) * ((Z.v[i,j] / mu.v) - ts.v[i,j] )) + (exp((2*lam.v[i,j]) / miu.v[i,j]) * phi(-sqrt(lam.sv / Z.v[i,j])
* (ts.v[i,j] + (Z.v[i,j] / mu.v))))
# Marginal inverse Gaussian distributions
Z.u[i,j] ˜ dinv.gauss(miu.u[i,j], lam.u[i,j])
Z.v[i,j] ˜ dinv.gauss(miu.v[i,j], lam.v[i,j])
#Inverse Gaussian parameters with time scale transformation
miu.v[i,j] <- mu.v * ts.v[i,j]
lam.v[i,j] <- lam.sv * (pow(ts.v[i,j], 2))
ts.v[i,j]<-(pow( t[j+1] ,gam.v) - pow( t[j], gam.v ))
#Inverse Gaussian parameters with time-scale transformation
miu.u[i,j] <- mu.u * ts.u[i,j]
lam.u[i,j] <- lam.su * (pow(ts.u[i,j], 2))
ts.u[i,j]<- (pow( t[j+1] ,gam.u) - pow( t[j], gam.u ))
}
}
#theta ˜ dnorm(0, 1.0E-9) #a priori distribution for Frank copula function
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#theta ˜ dunif(1, 100) #a priori distribution for Gumbel copula function and Joe copula function
theta ˜ dunif(1.0E-6, 100) #a priori distribution for Clayton copula function and Plackett copula function
#theta ˜ dunif(-1,1) #a priori distribution for AMH copula function
mu.u ˜ dnorm(0, 1.0E-9) I(0, ) #a priori distribution for mean parameter of inverse Gaussian process
gam.u ˜ dnorm(0, 1.0E-9) #a priori distribution for time-scale transformation parameter
lam.su ˜ dgamma(1, 0.01) #a priori for shape parameter of inverse Gaussian process
mu.v ˜ dnorm(0, 1.0E-9) I(0, ) #a priori distribution for mean parameter of inverse Gaussian process
gam.v ˜ dnorm(0, 1.0E-9) #a priori distribution for time-scale transformation parameter
lam.sv ˜ dgamma(1, 0.01) #a priori for shape parameter of inverse gaussian process
}
list(t=c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), N=10, M=10,
Z.u= structure(
.Data = c(
0.014, 0.018, 0.016, 0.021, 0.089, 0.090, 0.020, 0.060, 0.014,
0.031, 0.017, 0.075, 0.011, 0.024, 0.025, 0.080, 0.010, 0.043,
0.011, 0.069, 0.070, 0.030, 0.010, 0.010, 0.010, 0.012, 0.073,
0.030, 0.020, 0.080, 0.030, 0.050, 0.060, 0.090, 0.020, 0.055,
0.010, 0.012, 0.080, 0.031, 0.050, 0.050, 0.010, 0.035, 0.015,
0.011, 0.050, 0.090, 0.026, 0.084, 0.085, 0.022, 0.036, 0.016,
0.017, 0.012, 0.070, 0.010, 0.015, 0.016, 0.010, 0.099, 0.030,
0.026, 0.016, 0.010, 0.010, 0.012, 0.010, 0.010, 0.021, 0.016,
0.030, 0.080, 0.051, 0.072, 0.090, 0.090, 0.030, 0.080, 0.033,
0.080, 0.012, 0.016, 0.032, 0.010, 0.010, 0.020, 0.013, 0.034),
.Dim = c(10, 9)),
Z.v= structure(
.Data = c(
0.010, 0.020, 0.025, 0.052, 0.058, 0.018, 0.017, 0.060, 0.042,
0.090, 0.071, 0.011, 0.075, 0.012, 0.022, 0.090, 0.030, 0.028,
0.010, 0.050, 0.021, 0.037, 0.024, 0.016, 0.011, 0.063, 0.030,
0.016, 0.060, 0.011, 0.017, 0.023, 0.071, 0.010, 0.010, 0.040,
0.036, 0.060, 0.080, 0.028, 0.038, 0.039, 0.044, 0.090, 0.080,
0.014, 0.088, 0.010, 0.082, 0.083, 0.012, 0.016, 0.030, 0.056,
0.037, 0.027, 0.014, 0.018, 0.028, 0.040, 0.070, 0.020, 0.072,
0.035, 0.051, 0.019, 0.069, 0.093, 0.010, 0.070, 0.014, 0.023,
0.067, 0.081, 0.013, 0.012, 0.011, 0.034, 0.011, 0.010, 0.046,
0.025, 0.027, 0.012, 0.012, 0.075, 0.036, 0.018, 0.017, 0.040),
.Dim = c(10, 9)))
#Initials for Frank copula
list(gam.u = 1.5, lam.su = 10, mu.u = 10, gam.v = 1.5, lam.sv = 10, mu.v = 10, theta = 4)
list(gam.u = 2.5, lam.su = 15, mu.u = 5, gam.v = 2.5, lam.sv = 15, mu.v = 5, theta = 2)
#Initials for Gumbel and Joe copula
list(gam.u = 2.5, lam.su = 15, mu.u = 15, gam.v = 2.5, lam.sv = 15, mu.v = 15, theta = 2)
list(gam.u = 1.5, lam.su = 5, mu.u = 0.5, gam.v = 1.5, lam.sv = 5, mu.v = 0.5, theta = 4)
#Initials for Clayton and Plackett copula
list(gam.u = 1.5, lam.su = 10, mu.u = 1, gam.v = 1.5, lam.sv = 10, mu.v = 2, theta = 4)
#Initials for AMH copula
list(gam.u = 2, lam.su = 15, mu.u = 1.5, gam.v = 2, lam.sv = 25, mu.v = 2, theta = 0.5)
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APPENDIX B: TRACE PLOTS OF THE ESTIMATED PARAMETERS FOR THE BIVARIATE
MODELS UNDER DIFFERENT COPULAS

FIGURE B1 Trace plots of the estimated parameters for the bivariate models under several copulas [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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