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Abstract Bankruptcy prediction has acquired great relevance for financial institu-
tions due to the complexity of global economies and the growing number of corporate
failures, especially since the world financial crisis of 2008. In this paper, the problem
of corporate bankruptcy prediction is faced bymeans of four linear classifiers (Fisher’s
linear discriminant, linear discriminant classifier, support vector machine and logis-
tic regression), which are designed on the dissimilarity space instead of the classical
feature space. Experimental results indicate that the prediction methods implemented
with the dissimilarity representation perform considerably better than the same tech-
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niques when applied onto the feature space, in terms of overall accuracy, true-positive
rate and true-negative rate.

Keywords Bankruptcy prediction · Dissimilarity representation · Linear classifier ·
Qualitative variables

1 Introduction

In brief, bankruptcy refers to financial failure of a corporate or an individual, which
not only leads to significant costs to shareholders and creditors but also may result
in a considerable macroeconomic impact (Altman 1993; Zopounidis and Dimitras
1998). In order to avoid the financial losses associated with the failure, financial
analysts have long seen the need for the early discovery of bankruptcy. This is themain
reason why bankruptcy prediction is deemed as a subject of key relevance for financial
institutions. As a consequence, improving the performance of existing techniques and
building highly effective models have attracted the attention of many researchers and
practitioners (Aziz and Dar 2006).

A vast amount of techniques have been developed to help decision-makers and
analysts in predicting financial failure. The most traditional approaches have been
based on statistical and operational research methods (Balcaen and Ooghe 2006), such
as factor analysis (West 1985), linear and multivariate discriminant analysis (Altman
et al. 1977; Karels and Prakash 1987), logit analysis (Ohlson 1980; Jones and Hensher
2004; Tseng and Lin 2005), probit analysis (Zmijewski 1984), linear and quadratic
programming (Kwak et al. 2012), and data envelopment analysis (Cielen et al. 2004;
Premachandra et al. 2009).

After the Basel II recommendations issued by the Basel Committee on Banking
Supervision in 2004, financial institutions realized the need of using more com-
plex systems based upon computational intelligence techniques. Unlike the statistical
models, these methods do not assume any specific prior knowledge, but automati-
cally extract information from past observations. Kumar and Ravi (2007) reported
a comprehensive review of statistical and computational intelligence methods in
the context of bankruptcy prediction. Among some other techniques, support vector
machines (Shin et al. 2005; Min and Lee 2005; Erdogan 2013), genetic and evolu-
tionary algorithms (Lensberg et al. 2006; Acosta-González and Fernández-Rodríguez
2014), artificial neural networks (Wilson and Sharda 1994; Sun and Shenoy 2007;
Cleofas-Sánchez et al. 2016; Zhao et al. 2016), rough sets (Slowinski and Zopouni-
dis 1995; Mckee 2000), and hybrid and classifier ensembles (Verikas et al. 2010;
Fedorova et al. 2013; Abellán andMantas 2014; Tsai 2014) have received much atten-
tion. Many works have empirically compared and contrasted these soft computing
methods (Alfaro et al. 2008; Chen 2012; Olson et al. 2012; Erdal and Ekinci 2013;
Tsai et al. 2014).

All these statistical and computational intelligence techniques applied in the field
of bankruptcy prediction are based on the assumption that samples are represented by
a set of features (explanatory variables), which defines a feature space. These features
usually correspond to financial ratios and/or macroeconomics indicators, either repre-
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sented as continuous variables or discretized in a straightforwardmanner as qualitative
information. However, in a few cases the samples are described bymeans of qualitative
variables whose values are gathered from expert judgments (Kim and Han 2003).

Apart from the feature space, there exist other approaches to pattern representation
that could also be exploited for very distinct financial applications. One is the dis-
similarity representation, in which samples to be classified/predicted are derived from
pairwise dissimilarities (distances from other samples in the data set) (Pȩkalska and
Duin 2002). The justification for constructing classifiers in a dissimilarity space is that
a dissimilarity measure should be small for similar samples and large for distinct sam-
ples, thus allowing for efficient and more reliable discrimination of classes. Another
important characteristic is that the dimensions of a dissimilarity space symbolize
homogeneous types of information and therefore, all dimensions can be considered as
equally relevant. On the other hand, for a complex problem, a simple linear prediction
model in a dissimilarity space could separate the classes more easily than the same
classifier in a feature space (Pȩkalska et al. 2002).

Taking into account the practical advantages of the dissimilarity representation
over the classical feature-based one (Pelillo 2013), this paper faces the problem of
corporate bankruptcy prediction in a way different from that traditionally followed
by the methods reported in the literature. As far as we know, the dissimilarity-based
paradigm, which has shown to be truly effective on various real-life problems, has
not been applied in the financial scenario. Accordingly, the present paper analyzes the
performance of four standard linear classifiers built on the dissimilarity space for the
discovery of corporate financial failure using a data set whose explanatory variables
are qualitative, and compares them with their feature-based counterparts. The reasons
for focusing this study on linear models are threefold (Yuan et al. 2012): (1) they are
good handling sparse data; (2) they are easy to describemathematically, computational
simple and easy to interpret; and (3) when applied to dissimilarity data, they often lead
to very good performance (Pȩkalska et al. 2002).

The remaining of the paper is organized as follows. Fundamental concepts related to
the dissimilarity representation are summarized inSect. 2. The predictionmethodology
proposed in this paper is described in Sect. 3. Next, Sect. 4 introduces the bankruptcy
database and describes the experimental set-up. Results are presented and discussed
in Sect. 5. Finally, a number of concluding remarks and possible directions for future
research are outlined in Sect. 6.

2 Dissimilarity Space

From a practical viewpoint, the bankruptcy prediction problem can be defined as a
binary classification problem where a new input sample has to be categorized into one
of the predefined classes based on a number of observed variables or features related to
that sample. Formally, it can be described as follows: Given a set of past observations
T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each example xi is characterized by
a vector of m features, [xi1, xi2, . . . xim], and yi denotes the class (bankrupt/non-
bankrupt), then the bankruptcy prediction problem consists of constructing a model δ
to predict the value y for a new input sample x, that is, δ(x) = y.
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Traditional prediction models rely on the description of examples through a set
of explanatory variables. A reliable alternative to the feature (variable) space is the
dissimilarity space proposed byPȩkalska andDuin (2002), inwhich the dimensions are
definedbyvectorsmeasuring pairwise dissimilarities between examples and individual
prototypes from a given representation set R = {p1, . . . , pr }, where r is its cardinality.
This set can be chosen as the complete training set T , a set of generated prototypes,
a subset of T that covers all classes, or even an arbitrary set of labeled or unlabeled
samples (Pekalska et al. 2006). Although the representation set can be selected either
in a systematic or in a random way, it has been shown that both strategies produce
similar classification results (Duin et al. 1999).

Given a dissimilarity measure d(·, ·), which is required to fulfill the positivity
(d(xi , x j ) > 0 if xi is distinct from x j ) and the reflectivity (d(xi , xi ) = 0) con-
ditions but it might be non-metric, a dissimilarity representation is defined as a
data-dependent mapping function D(·, R) from T to the dissimilarity space. This
means that every example xi ∈ T can directly be represented by an r -dimensional
vector in the dissimilarity space, D(xi , R) = [d(xi , p1), . . . , d(xi , pr )], that is, each
dimension corresponds to a dissimilarity to a prototype from R. Therefore, dissimilar-
ities between all examples in T to R are represented by a matrix D(T, R) of size n×r ,
which corresponds to the dissimilarity representation we want to learn from (Pȩkalska
and Duin 2005).

D(T, R) =

⎡
⎢⎢⎢⎣

d(x1, p1) d(x1, p2) · · · d(x1, pr )
d(x2, p1) d(x2, p2) · · · d(x2, pr )

...
...

. . .
...

d(xn, p1) d(xn, p2) · · · d(xn, pr )

⎤
⎥⎥⎥⎦ (1)

In general, a drawback related to the use of features is that completely different
examples may have the same feature representation, which results in class overlap
(examples that belong to different classes are represented by the same feature vectors).
In the dissimilarity space, however, only identical examples (with the same class label)
have a zero-distance, which means that there does not exist class overlapping. On
the other hand, the dissimilarity-based classifiers may be robust against variations in
scale (Duin and Pȩkalska 2012). Note that in principle, any standard classifier can be
built on the dissimilarity space in the same way as on the feature space.

3 Methodology

This section provides a general overviewof the completemethodology for constructing
the model and classifying new corporate samples. Figure 1 shows a flowchart of the
learning and prediction processes for both a classical feature-based representation
(black lines) and a dissimilarity-based representation (red lines).

Using a feature-based representation, the learning stage (continuous lines) simply
consists of building the classifier with the training set T . In the case of a dissimilarity-
based representation, the first step of learning consists of choosing a representation
set R, whose prototypes will be used to measure the pairwise dissimilarities to the
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Fig. 1 Flowchart of the proposed methodology

training examples in T . Next, the training set T is mapped into a dissimilarity space,
which will be finally used to build the classifier.

In the testing stage (dashed lines), when a new sample x has to be classified, it
is mapped into the dissimilarity space by calculating the dissimilarity between x and
all prototypes in the representation set R, which results in a one-dimensional matrix
(vector) D(x, R) = [d(x, p1), . . . , d(x, pr )]. This dissimilarity vector D(x, R) is
passed through the prediction model for assigning a class label y to the new sample x.

4 Database and Experimental Protocol

The database used in the present experiments was taken from the UCIMachine Learn-
ing Database Repository (Lichman 2013). This is a subset of samples collected during
the period 2001–2002 from one of the largest commercial banks in Korea (Kim and
Han 2003). It consists of 250 instances, with about 43% of them labeled as bankrupt.
Each sample is represented by explanatory variables that correspond to levels (neg-
ative, average, and positive) of six qualitative risk factors (see Table 1) evaluated by
loan officers. These risk factors are the ones established and used by the bank in order
to estimate the default risk of manufacturing and service companies. Since all these
variables were categorical, they were first converted into numeric values (negative =
1, average = 2, and positive = 3) as reported in the paper by Kim and Han (2003), and
then these were normalized in the range [0, 1].

Even though the key question of this paper is not to select themost relevant explana-
tory variables, two feature ranking methods were applied to evaluate the usefulness
of each variable: the ReliefF algorithm and the Pearson’s correlation-based approach.
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Table 1 Description of the explanatory variables

Risk factor (variable) Meaning

Industry risk (IR) Stability and growth of the company, degree of competition within the
company, and overall conditions of the company

Management risk (MR) Efficiency and stability of management and organization structure

Financial flexibility (FF) Ability of the company for financing from direct and indirect financial
market and other sources

Credibility (CR) Reputation of the company associated with credit history, reliability of
information provided by the company, and the relationship with
financial institutions

Competitiveness (CO) Degree of competitive advantage determined by market position and
the capacity of core technology

Operating risk (OP) Volatility and stability of procurement, efficiency of production, and
stability of sales

Table 2 Relevance of the explanatory variables

Ranking

ReliefF CO (0.438)–FF (0.293)–CR (0.247)–OP (0.046)–MR (0.020)–IR (0.007)

Pearson CO (0.204)–OP (0.159)–CR (0.152)–MR (0.101)–FF (0.048)–IR (0.016)

The former evaluates the worth of a variable by repeatedly sampling an instance and
considering the value of the given variable for the nearest instance of the same and
different classes, whereas the latter evaluates the worth of a variable by measuring the
correlation between it and the class. Results in Table 2 indicate that competitiveness
(CO) is the most meaningful variable and the industry risk (IR) corresponds to the
least relevant feature in terms of both ranking scores.

Bearing in mind that the purpose of this study is to compare both feature repre-
sentations in the field of bankruptcy prediction, not to select the most meaningful
variables, the experiments focused on four linear classifiers: the Fisher’s linear dis-
criminant (FLD), the linear discriminant classifier (LDC), a support vector machine
(SVM) with a linear kernel and the soft-margin constant C = 1.0, and the logistic
regression (logit) model (this is considered a classical econometric method that can be
viewed as a reference approach for various financial applications). The performance
of these techniques was explored both on the feature space (FS) and the dissimilarity
space (DS). For the latter case, we chose the representation set R to be equal to a per-
centage of examples from the training set T , varying from 1 to 50% with a step size
of 1. Here two variants were used: (1) the representation set was randomly drawn by
picking examples from T without taking care of their class label (R-DS), and (2) the
representation set was created by randomly selecting the same proportion of examples
from each class (RC-DS).

The commonmethod to evaluate the performance of bankruptcy prediction systems
when databases are small or medium sized corresponds to K -fold cross-validation
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because it appears to be a better estimator than other strategies, such as bootstrap
with a high computational cost or re-substitution with a biased behavior (García et al.
2015).Here a stratifiedfivefold cross-validationwas applied: the data setwas randomly
divided into five stratified blocks of equal size; for each fold, four blocks were pooled
as the training set, and the remaining part was used as an independent test set. Thus,
the learning procedure was run a total of five times on different training sets and the
results from predicting the class of the test samples were averaged across the five trials.
Note that stratification allows to preserve the class proportions of the whole data set
into each one of the blocks, thus reducing the prior probability of data set shift and
the variance in the estimation process (Santafe et al. 2015).

In most financial applications, it is important to assess not only the overall accuracy
of the model, but also the true-positive and true-negative hits because the misclassi-
fication costs are usually asymmetric (the cost of predicting a bankrupt sample as
non-bankrupt is generally much higher than the opposite situation) (Caouette et al.
2008). The true-positive rate (or sensitivity) is the proportion of positive samples that
are correctly predicted, whereas the true-negative rate (or specificity) is the propor-
tion of negative cases that are correctly predicted. Note that we have considered that
the bankrupt examples shape the positive class and the non-bankrupt ones form the
negative class.

5 Results and Discussion

Figures 2 and 3 display the accuracy, the true-positive rate (TPr) and the true-negative
rate (TNr) averaged across the five runs. For each predictionmodel, we have plotted the
results for the feature space and also the results of the two variants for the dissimilarity
space when varying the percentage of examples from T that have been chosen to
generate the representation set R. Note that the line parallel to X -axis corresponds
to the case of the feature space, which indicates that the results do not depend on
the size of R because they were achieved by learning directly from the training set T .
These plots show that the models built with any of both approaches to the dissimilarity
representation perform much better than the respective feature-based classifiers.

If the focus is on the plots of Fig. 3, it is remarkable and important to notice
that differences between the dissimilarity space and the feature space are especially
significant in the case of the true-positive rate, which refers to the number of hits on
the most critical class because of the high cost of failing in the prediction of bankrupt
samples.

When comparing R-DS and RC-DS, the plots in Figs. 2 and 3 indicate that in
general, there do not exist differences in prediction performance, independently of
the classifier used. However, when the percentage of prototypes is less than 5%, the
option of generating the set R with the same proportion of examples from each class
(RC-DS) performs slightly better than the R-DS variant.

Tables 3 and 4 report a summary of the experimental results for 10, 20, 30, 40 and
50% of prototypes used to built the representation set. As can be observed, using a
dissimilarity space instead of a feature space consistently produces considerable gains
in terms of accuracy, true-positive rate and true-negative rate. In the case of accuracy,
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Fig. 2 Accuracy rates when varying the size of the representation set

whilst the performance of the prediction models on the feature space is about 51–58%,
that on the dissimilarity space is about 96–99%. Differences are even more significant
when the performance is assessed by means of the true-positive rate, especially with
the Fisher’s linear discriminant model. On the other hand, various configurations of
the dissimilarity representation yield 100% of true-negative rate. These results support
the claim that the linear models generally lead to very high performance when they
are built on the dissimilarity space.

To gain some insight into these results, we have projected the data onto a two-
dimensional subspace through PCA. Figure 4 shows the scatter plots of the original
feature space and the two variants of the dissimilarity space (for the percentages of
prototypes reported in Tables 3, 4). In addition, as the size of the original training
set is 250 × 6 (250 examples and 6 explanatory variables), we have also included
the scatter plots of the dissimilarity representations obtained by random selection of
six examples, which results in a matrix D(T, R) of size 250 × 6. By this, one can
compare the class distribution on both spaces under identical conditions (sizes).

As can be seen in Fig. 4, the overlap between bankrupt and non-bankrupt examples
is very high in the feature space, whereas both dissimilarity-based variants give rise
to good separability between classes, irrespective of the size of the representation set
R. The lack of separability between classes in the feature space may result in many
false-positives or false-negatives, which helps to explain the low performance of the
prediction models when they were applied on this space.
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Fig. 3 True-positive and true-negative rates when varying the size of the representation set
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Table 3 Summary of accuracy
rates

% FLD LDC Logit SVM

FS – 0.5160 0.5480 0.5840 0.5480

R-DS 10 0.9640 0.9680 0.9480 0.9880

20 0.9640 0.9840 0.9360 0.9840

30 0.9920 0.9920 0.9520 0.9840

40 0.9920 0.9920 0.9680 0.9960

50 0.9920 0.9960 0.9680 0.9880

RC-DS 10 0.9680 0.9640 0.9360 0.9880

20 0.9800 0.9880 0.9600 0.9760

30 0.9920 0.9920 0.9640 0.9920

40 0.9880 0.9960 0.9680 0.9960

50 0.9960 0.9640 0.9760 0.9920

Table 4 Summary of true-positive and true-negative rates

% TPr TNr

FLD LDC Logit SVM FLD LDC Logit SVM

FS – 0.1221 0.3472 0.5165 0.3472 0.8111 0.6988 0.6369 0.6988

R-DS 10 0.9165 0.9065 0.9165 0.9909 1.0000 0.9719 0.9724 0.9862

20 0.9165 0.9719 0.9065 0.9909 1.0000 0.9931 0.9581 0.9788

30 0.9909 0.9818 0.9251 0.9727 0.9931 1.0000 0.9722 0.9931

40 0.9818 0.9818 0.9537 0.9909 1.0000 1.0000 0.9791 1.0000

50 0.9818 0.9909 0.9437 0.9909 1.0000 1.0000 0.9862 0.9860

RC-DS 10 0.9338 0.9623 0.8874 0.9909 0.9929 0.9653 0.9722 0.9860

20 0.9537 0.9909 0.9537 0.9636 1.0000 0.9860 0.9650 0.9862

30 0.9818 0.9909 0.9346 0.9818 1.0000 0.9929 0.9860 1.0000

40 0.9719 0.9909 0.9537 0.9909 1.0000 1.0000 0.9793 1.0000

50 0.9909 0.9156 0.9719 0.9909 1.0000 1.0000 0.9791 0.9931

6 Conclusions and Future Work

In the present study, we have explored the feasibility of applying the dissimilarity
representation to effectively discriminate between bankrupt and non-bankrupt com-
panies. To this end, four well-known linear prediction techniques (FLD, LDC, SVM
and logit) have been implemented both on the feature space and the dissimilarity space
and tested over a database generated by a commercial bank in Korea.

The experimental results have demonstrated that all the linear models here ana-
lyzed for bankruptcy prediction perform clearly better on the dissimilarity space than
on the feature space in terms of accuracy, true-positive rate and true-negative rate.
Projection of data onto a two-dimensional subspace has shown that the dissimilarity
representation provides significantly higher separability between classes than the orig-
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Fig. 4 Distribution of the bankrupt (red diamond) and non-bankrupt (blue star) classes in a two-dimensional
space. (Color figure online)

inal feature representation, which allows to understand why the dissimilarity-based
prediction models outperform their feature-based counterparts.

In the future, it would be of interest to perform further simulation studies that com-
pare linear and non-linear prediction models on both the dissimilarity and the feature
spaces. Other research directions might include the application of the methodology
described in this paper to analyze the effects of class imbalance and data set shift on
the dissimilarity-based models for bankruptcy prediction or even for other economic
and financial problems. A final avenue for further research is to study the applicability
of the dissimilarity representation to select the most relevant explanatory variables.
This is a non-trivial problem that may require a significant effort, but deserves to be
taken into account.
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Pȩkalska, E., & Duin, R. P. W. (2002). Dissimilarity representations allow for building good classifiers.
Pattern Recognition Letters, 23(8), 943–956.
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