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Abstract

For a multiplication R-module M we consider the Zariski topology in the set

Spec (M) of prime submodules of M . We investigate the relationship between

the algebraic properties of the submodules of M and the topological properties of

some subspaces of Spec (M). We also consider some topological aspects of certain

frames. We prove that if R is a commutative ring and M is a multiplication

R-module, then the lattice Semp (M/N) of semiprime submodules of M/N is a

spatial frame for every submodule N ofM . WhenM is a quasi projective module,

we obtain that the interval [N,M ] = {P ∈ Semp (M) | N ⊆ P} and the lattice

Semp (M/N) are isomorphic as frames. Finally, as applications we obtain results

about quantales and the classical Krull dimension of M .

2000 Mathematics Subject Classification: 16S90; 16D50; 16P50; 16P70

Introduction

Multiplication modules were introduced by Barnard [5], these modules have been studied by

several authors [2], [3], [12], [18], [22] and [24] . The relationship between the algebraic

properties of a ring and the topological properties of the Zariski topology defined on its prime

spectrum has been studied in [13], [14], [15], [21][28]. Some notions of primeness have been

introduced and investigated in [11], [25], [26]. In this paper, we consider the concept of

prime and semiprime modules given in [19] , [20]. Given a multiplication module M over a

commutative ring R, we consider the Zariski topology for the spectrum Spec (M) of prime

submodules of M . Motived by the results of the Zariski topology [4], [8], we investigate

the relationship between the topological properties of some subspaces of Spec (M) and the

algebraic properties of the submodules of M .

In [16], [17] the authors introduce a framework of a lattice structure theory to analyze the

submodules of a given module; in particular, they specialize in the lattice Sub (M) of submod-

ules of M and they obtain interesting results. These authors also observe some topological
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aspects of certain frames that were constructed in that paper and that consideration eventu-

ally leads to the construction of some spatial frames. A spatial frame F is a frame which is

a lattice isomorphic to the set of open subsets of topological space X. In this paper we take

that point of view and give some interesting results for multiplication modules.

The organization of the paper is as follows: Section 1 provides the necessary material that

is needed for the reading of the next sections. Section 2 is dedicated to prime (semiprime)

modules. We give the relationship between prime (semiprime) submodules of a multiplication

R-moduleM and prime ( semiprime) ideals of the ring R. In Section 3 we consider the Zariski

Topology for a multiplication module M and we study open and closed sets. Section 4 is

dedicated to studying compact, irreducible and dense subspaces. We characterize compact

sets in the form U (N) in terms of finitely generated submodules of M . In section 5 we give

the main results and applications. We prove that {Semp (M) , ∧ , ∨} is a frame for every
ring R and every multiplication R-module M . We also prove that if R is a commutative

ring and M is a multiplication R-module, then Sub (M) is a bilateral quantal. Moreover, we

prove that Semp (M/N) is a spatial frame for all submodules N of M . When M is a quasi

projective module we obtain that [N,M ] = {P ∈ Semp (M) | N ⊆ P} and Semp (M/N) are

isomorphic as frames. As an application, we prove that if R is a commutative ring and

M a faithful multiplication R-module and QM 6= M for all maximal ideals Q of R, then

R has classical Krull dimension if and only if M has classical Krull dimension. Moreover.

cl.K dim (M) = cl.K dim (R).

In this paper all rings are associative with an identity, except for some results where R

will denote a commutative ring with unity and R-Mod will denote the category of unitary left

R-modules. An R-module M is multiplication module if for every submodule N of M , there

exists an ideal I of R such that N = IM .

Let M and X be R-modules. Then X is said to be M -generated if there exists an R-

epimorphism from a direct sum of copies of M onto X. The trace of M in X is defined to be

trM (X) =
∑
f∈HomR(M,X) f (M), thus X is M -generated if and only if trM (X) = X.

If N is a fully invariant submodule of M , we write N ⊆FI M . If N is an essential

submodule of M , we write N ⊆ess M . When a module has no non-zero fully invariant proper
submodules it is called FI-simple module. An R-module M is a duo module if N ⊆FI M for

all submodules N of M .

Let U be an R-module. IfM is an R-module , then U is projective relative toM ( U isM -

projective) in the case for each epimorphism g : M → N and each homomorphism f : U → N

there is an homomorphism f̂ : U →M such that g◦ f̂ = f . An R-moduleM is quasiprojective

if M is M -projective.
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1 Preliminaries

In this section we provide the necessary material that is needed for the reading of the next

sections. We use the product of modules defined in [7] and we show that ifM is a multiplication

R-module ( with R is a ring with commutative multiplication of ideals, in particular when R

being a commutative ring), then this product of modules is commutative and associative.

Definition 1.1. [9, Definition 1.1] Let R be a ring and M ∈ R-Mod. Let K be a

submodule of M and L ∈ R-Mod. We define the product

KML =
∑
{f(K) | f ∈ Hom(M,L)}

Note that if M = R then the Definition 1.1, then KML is the product of left ideals of the

ring R.

Note that given a submodule N of M , there exists a submodule N ⊂ M such that N is

the least fully invariant submodule of M which contains N .

In fact let N =
∑
{f(N) | f ∈ Hom(M,M)}, then N = NMM . Also notice that if K and

L are submodules of M , then

∑{
f
(
K
)
| f ∈ Hom(M,L)

}
=
∑
{f(K) | f ∈ Hom(M,L)} .

Therefore KML = KML.

Proposition 1.2. [9, Proposition 1.3] Let M ∈ R -Mod and K, K ′ be submodules of M ,

then:

1) If K ⊂ K ′, then KMX ⊂ K ′MX for every X ∈ R-Mod.

2) If X ∈ R-Mod and Y ⊆ X, then KMY ⊆ KMX.

3) MMX = trM (X) for every X ∈ R-Mod.

4) 0MX = 0 for every X ∈ R-Mod.

5) KMX = 0 if and only if f(K) = 0 for all f ∈ Hom(M,X).

6) If X,Y are submodules for any module N ∈ R-Mod, thenKMX+KMY ⊆ KM (X+Y ).

7) If {Ki}i∈I is a family of submodules of M , then
[∑
i∈I

Ki

]
MN =

∑
i∈I

Ki MN .

8) If {Xi}i∈I is a family of R-modules, then KM

[⊕
i∈I

Xi

]
=
⊕
i∈I

KMXi.
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Lemma 1.3. Let R be a commutative ring and M ∈ R-Mod. If M is a multiplication

module, then M generates all its submodules.

Proof. Let N ⊆ M be a submodule of M . As M is a multiplication module then there

exists an ideal I of R such that N = IM . On the other hand we have that tMr (N) =∑
f :M→IM f (M). Since R is a commutative ring, then for each t ∈ I we can define the

morphism ft : M → IM such that f (m) = tm. Thus
∑
ft
ft (M) = IM . But

∑
ft
ft (M) ⊆

tMr (N). Thus N = IM ⊆ tMr (N). So tMr (N) = N .

Notice that tMr (N) =
∑
f :M→IM f (M) = MMN . So by Lemma 1.3, we have thatMMN =

N for all submodules N of M .

Proposition 1.4. Let R be a commutative ring andM ∈ R-Mod a multiplication module,

then NML = LMN for all submodules N and L of M .

Proof. We have that N = IM and L = JM where I and J are ideals of R. So

NML =
∑
f :M→L f(IM) = I

∑
f :M→L f(M) = I tMr (L) = IL = I (JM) = (IJ)M . As

R is commutative, then (IJ)M = (JI)M = LMN .

Notice that if R is a ring with commutative multiplication of ideals and M is a multi-

plication module in the sense given by [25] we also obtain the same result of the Proposi-

tion 1.4. Also Note that in this case by Proposition 1.2 (7) we have that N M

∑
i∈I Ki =[∑

i∈I Ki

]
MN =

∑
i∈I (KiMN) =

∑
i∈I (NMKi) for every family of submodules {Ki}i∈I of

M .

Corollary 1.5. Let R be a commutative ring and M a multiplication R-module. If N , L

and K are submodules of M , then (NML)M K = NM (LMK).

Proof. It is clear.

Notice that the previous result is not true in general. We consider the example in [10,

Remark 1.26] in that example we have that L, K are maximal submodules of M = E (S).

Moreover KMK = S and SMK = 0. Therefore (KMK)M K = SMK = 0, but KM (KMK) =

KMS = S. Hence we have that (KMK)M K 6= KM (KMK).

Proposition 1.6. Let R be a commutative ring, M ∈ R-Mod a faithful multiplication

module and P is a prime ideal of R such that PM  M . If I is an ideal of R such that

IM ⊆ PM , then I ⊆ P .
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Proof. As PM  M , then there exists x ∈ M and x /∈ PM . If a ∈ I, then ax ∈ IM .
Thus ax ∈ PM , then by [12, Lemma 2.10] we have that a ∈ P or x ∈ PM . Since x /∈ PM ,
then a ∈ P . Therefore I ⊆ P .

Corollary 1.7. Let R be a commutative ring, M ∈ R-Mod a faithful multiplication

module. Suppose that P and P ′ are prime ideals of R such that PM  M and P ′ M  M .

If PM = P ′M , then P = P ′.

Proof. It is clear.

Corollary 1.8. Let R be a commutative ring, M ∈ R-Mod a faithful multiplication

module such that PM  M for all maximal ideal P of R. If Q is a semiprime ideal of R and

I is an ideals of R such that IM ⊆ QM , then I ⊆ Q.

Proof. We know that Q is a semiprime ideal, then Q = ∩α∈LPα where every Pα is a prime
ideal of R. Hence we obtain that IM ⊆ QM ⊆ PαM for all α ∈ L. Now by Proposition 1.6
we have that I ⊆ Pα for all α ∈ L. So I ⊆ Q.

Corollary 1.9. Let R be a commutative ring and M ∈ R-Mod a faithful multiplication

module such that QM  M for all maximal ideals Q of R. Suppose that P and P ′ are

semiprime ideals of R such that PM = P ′M , then P = P ′.

Proof. It is clear.

2 Prime and semiprime modules

In this section we use the concepts of prime and semiprime modules defined in [18] and [19]

respectively. We give some properties of these modules and we define the radical
√
N of a

submodule N of M . We prove that if M is a faithful multiplication R-module (with R a

commutative ring) and QM 6= M for all maximal ideals Q of R, then
√
IM =

√
IM for

all proper ideals I of R, where
√
I is the radical of the ideal I. We also prove that if R is

a commutative ring and M a faithful multiplication R-module such that QM 6= M for all

maximal ideals Q of R, then a proper submodule N of M is semiprime(prime) in M if and

only if there exists a semiprime(prime) ideal P of R such that N = PM .

We require a goodly number of results from the literature. We include here those results

for convenience of the reader.
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Definition 2.1 (Raggi-Ríos [19]). Let M ∈ R-Mod and N 6= M be a fully invariant

submodule of M . We say that N is prime in (or prime submodule of ) M if for any K, L fully

invariant submodules of M we have that KML ⊆ N implies that K ⊆ N or L ⊆ N . We say

that M is a prime module if 0 is prime in M .

Note that if M = R and I is an ideal of R, then I is prime in R in the sense of Definition

2.1 if and only if I is a prime ideal.

Remark 2.2. In [9, Proposition 1.13] it is shown that ifM generates all its fully invariant

submodules and N is a maximal fully invariant submodule of M , then N is prime in M . So if

R is a commutative ring and M is a multiplication R-module, then by [12, Theorem 2.5] we

have that every proper submodule ofM is contained in a maximal submodule ofM . Moreover

if N is a maximal fully invariant submodule of M , then by [9, Proposition 1.13] and Lemma

1.3 we have that N is prime in M .

Notice that if N is a maximal submodule of M , in general N is not prime in M . In order

to see this, we consider the example given in [9, Example1.12]. In that example the module

M = E (S) is duo but is not a multiplication module. The authors show that M has three

maximal submodules but M does not have prime submodules.

Lemma 2.3. Let R be a ring, M ∈ R-Mod and N ⊆M is a fully invariant submodule of

M . If N is a submodule of K such that K/N is a fully invariant submodule of M/N , then

K is a fully invariant submodule of M .

Proof. It is straightforward.

We require a goodly number of results from the literature. We include here those results

for convenience of the reader.

Lemma 2.4 (Raggi-Ríos [19]). Let R be a ring, M ∈ R-Mod a quasi projective module

and K a fully invariant submodule of M . If N is a submodule of M , then
K +N

N
is a fully

invariant submodule of
M

N
.

Proposition 2.5 (Raggi-Ríos [19]). Let R be a ring, M a quasi projective R-module and

N  M is a fully invariant submodule of M . If M/N is a prime module, then N is prime in

M .

Proposition 2.6 (Raggi-Ríos [19]). Let R be a ring, M an R-module and N ⊆M a prime

submodule of M , then M/N is a prime module.
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Corollary 2.7 (Raggi-Ríos [19]). Let R be a ring, M ∈ R-Mod and N and P submodules

of M such that N ⊆ P . If P/N is prime in M/N , then M/P is a prime module.

Corollary 2.8 (Raggi-Ríos [19]). Let R be a ring, M an R-module and N a submodule

of M . Suppose that P is a proper fully invariant submodule of M such that N ⊆ P . If P is

prime in M , then P/N is prime in M/N .

Lemma 2.9 (Wisbauer [27]). Let R be a ring, M ∈ R-Mod and N a fully invariant

submodule of M . If M is a quasi projective module, then M/N is a quasi projective module.

Corollary 2.10. Let R be a ring,M a quasi projective module, N ⊆FI M and P a proper

submodule of M such that N ⊆ P . If P/N ⊆FI M/N such that M/P is a prime module,

then

i) P/N is prime in M/N .

ii) P is prime in M .

Proof. i) Apply Lemma 2.9 and Proposition 2.5.

ii) Apply Lemma 2.3 and Proposition 2.5.

Proposition 2.11. Let R be a ring, M a quasi projective module and P a fully invariant

submodule of M . The following conditions are equivalents:

i) P is prime in M .

ii) For any fully invariant submodules K, L of M containing P and such that KML ⊆ P ,
then K = P or L = P .

The result in Proposition 2.11 was given in [9, Proposition 1.9]. But we note that it only

needs the hypothesis that M is a quasi projective module. The proof is similar.

Definition 2.12 ( Raggi-Ríos [20]). Let R be a ring and M ∈ R-Mod. A proper fully

submodule N of M is semiprime in M ( or a semiprime submodule of M) if for any fully

invariant submodule K of M such that KMK ⊆ N , then K ⊆ N . We say M is a semiprime

module if 0 is semiprime in M .

Notice that if M = R, then an ideal I of R is semiprime in the sense of Definition 2.12 if

and only if I is a semiprime ideal. Also note that if N is a submodule of M , such that N is

an intersection of prime submodules of M , then N is semiprime in M .

Proposition 2.13. Let R be a ring, M a quasi projective multiplication R-module and

N a proper submodule of M . Then the following conditions are equivalents:

i) N is semiprime in M .
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ii) If m ∈M is such that RmMRm ⊆ N , then m ∈ N .

iii) N is an intersection of prime submodules of M .

The result in Proposition 2.13 was given in [12, Proposition 1.11] but with M projective

in σ [M ]. As M is a multiplication module, then by [25, Note1.5.] we have that M is a duo

module. So we only need the hypothesis that M is a quasi projective module and the proof

of Proposition 3.13 is similar to the proof given in [9, Proposition 1.11].

Notice that the condition ii) implies that there exists prime submodules in M .

Remark 2.14. The results obtained in Proposition 2.6, Corollary 2.7 and Corollary 2.8

for prime submodules of M can also be given in terms of semiprime submodules of M .

We know that if R is a commutative ring and I is an ideal of R, then the radical of I,
√
I,

is defined as:

√
I = {x ∈ R | xn ∈ I for some n ∈ N}

And it can be proven that
√
I = ∩{P ∈ Spec (R) | I ⊆ P}.

In the module case we give the following definition:

Definition 2.15. Let R be a ring, M an R-module and N a fully invariant submodule of

M . The radical of N in M is

√
N = ∩{P ⊆M | P is a prime in M and N ⊆ P}

If M has no prime submodules P such that N ⊆ P , then
√
N = M . In particular

√
M = M .

Remark 2.16. If R is a commutative ring and M is a multiplication module, then by

Remark 2.2 we have that every proper submodule N of M is contained in a prime submodule

of M . Hence we obtain that
√
N  M for all proper submodules N of M .

Corollary 2.17. Let R be a ring, M a multiplication R-module and N a proper fully

invariant submodule of M . If
√
N 6= M , then

√
N is the minimal semiprime submodule of M

such that N ⊆
√
N .

Proof. As
√
N 6= M , then there exists P a prime module in M such that N ⊆ P . So it

is clear that
√
N is a semiprime module. Now let L be a semiprime module in M such that
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N ⊆ L. By Proposition 2.13 we have that L = ∩i∈IQi where Qi is prime in M for all i ∈ I.

Since N ⊆ L, then N ⊆ Qi all i ∈ I. Thus
√
N ⊆ L.

Proposition 2.18. Let R be a ring and M an R-module. Suppose that N and L are fully

invariant submodules of M , then the following conditions hold:

i) If N ⊆ L, then
√
N ⊆

√
L.

ii)
√
N =

√√
N .

iii)
√
N + L =

√√
N +

√
L.

iv)
√
N ∩ L ⊆

√
N ∩

√
L.

v)
√
NML ⊆

√
N ∩

√
L.

Proof. They are straightforward.

If we define N2 =NMN . Then by induction, for any integer n > 2, we define Nn =

NMN
n−1. Note that if N is prime in M , then

√
Nn = N .

Definition 2.19. If R is a commutative ring and M is a multiplication R-module, an

element m ∈M is M -nilpotent if (Rm)
n

= 0 for some n > 0. The M -nilradical N (M) of M

is the set of all M -nilpotent elements in M .

Proposition 2.20. If R is a commutative ring and M is a multiplication R-module, then

the M -nilradical N (M) is a submodule of M .

Proof. If m ∈ N (M) and r ∈ R, then R (rm) = (Rr)m ⊆ Rm. As (Rm)
n

= 0 for some

n > 0, then (R (rm))
n ⊆ (Rm)

n
= 0. Hence rm ∈ N (M). Now let m1, m2 ∈ N (M), then

(Rm1)
n1 = 0 and (Rm2)

n2 = 0 for some n1 > 0 and n2 > 0. AsM is a multiplication module,

then by Proposition 1.4. we have that (Rm2)M (Rm1) = (Rm1)M (Rm2). Thus we can use the

binomial theorem. So (Rm1 +Rm2)
n1+n2−1 is a sum of integer multiples of products (Rm1)

r

(Rm2)
s, where r + s = m + n − 1. We cannot have both r < n1 and s < n2. Hence each of

these products vanishes and therefore (Rm1 +Rm2)
n1+n2−1 = 0. Thus m1 + m2 ∈ N (M).

So N (M) is a submodule of M .
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Proposition 2.21. Let R be a commutative ring and M a non zero multiplication R-

module, then the following conditions hold:

i) N (M) ⊆
√

0.

ii) If N is a prime submodule of M , then ann (M/N) is a prime ideal of R.

iii) If M is a faithful multiplication module and Q is an ideal prime of R such that

QM 6= M , then QM is prime in M .

Proof. i) As M 6= 0, then
√

0 6= M . So
√

0 is the intersection of all prime submodules of

M . If m ∈ N (M), then there exists n > 0 such that (Rm)
n

= 0. So (Rm)
n ⊆ P for all prime

submodule P of M . Thus Rm ⊆ P for all prime submodules P of M . Hence m ∈
√

0. Thus

N (M) ⊆
√

0.

ii) Suppose that I and J are ideals of R such that IJ ∈ ann (M/N). So (IJ)M ⊆ N .

Now we consider the modules K = IM and L = JM . So by proof of Proposition 1.4 we have

that KML = (IJ)M ⊆ N . As N is prime in M , then IM = K ⊆ N or JM = L ⊆ N . Hence

I (M/N) = 0 or J (M/N) = 0. Thus I ⊆ ann (M/N) or J ⊆ ann (M/N).

iii) LetK and L be a submodules ofM such thatKML ⊆ QM . SinceM is a multiplication

module, then there exists I and J ideals of R such that K = IM and L = JM . Hence

(IJ)M = (IM)M (JM) ⊆ QM . So by Proposition 1.6 we have that IJ ⊆ Q. As Q is a prime

ideal, then I ⊆ Q or J ⊆ Q . Thus IM ⊆ QM or JM ⊆ QM . So K ⊆ QM or L ⊆ QM .

Thus QM is prime in M .

Notice that if N = QM where Q is a prime ideal of R, then Q = ann (M/N). In fact as

QM = N = ann (M/N)M , then by Corollary 1.7 we have that Q = ann (M/N). Also note

that if M is a finitely generated module, then by [12, Theorem 3.1] we have that QM 6= M

for all proper ideals Q of R. So if M is as in iii) and M is finitely generated, then QM , is a

submodule prime in M for all prime ideals Q of R.

Corollary 2.22. Let R be a commutative ring, M ∈ R-Mod is a faithful multiplication

module and Q is an ideal prime of R. Suppose that QM 6= M , then Q = ann (M/QM).

Proof. By Proposition 2.21 we have that N = QM is a prime submodule of M and

ann (M/N) is a prime ideal of R . As QM = N = ann (M/N)M , then by Corollary 1.7 we

have that Q = ann (M/N) = ann (M/QM).
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Note that we can obtain similar results to the Proposition 2.21 ii), iii) and Corollary 2.22

in terms of semiprime modules in the following propositions.

Proposition 2.23. Let R be a commutative ring and M a multiplication R-module, then

the following conditions hold:

i) If N is a semiprime submodule of M , then ann (M/N) is a semiprime ideal of R.

ii) If M is a faithful multiplication R-module and Q is a semiprime ideal of R such that

QM 6= M , then QM is semiprime in M .

Corollary 2.24. Let R be a commutative ring, M ∈ R-Mod a faithful multiplication

module and Q a semiprime ideal of R. Suppose that QM 6= M , then Q = ann (M/QM)M .

Proposition 2.25. Let R be a commutative ring and M a faithful multiplication R-

module. Suppose that QM 6= M for all maximal ideals Q of R. If P = ∩α∈LPα with Pα
prime ideal of R for every α ∈ L, then PM = ∩α∈L (PαM).

Proof. As M is a multiplication module, then by Remark 2.16 we have that PαM 6= M

for all α ∈ L. If we put N = PM and N ′ = ∩α∈L (PαM), then PM ⊆ PαM for all α ∈ L.

Thus N ⊆ N ′. On the other hand, by Proposition 2.13 we have that N ′ is semiprime in M .

Moreover we know that N ′ = ann (M/N ′)M . Thus (∩α∈LPα)M ⊆ ann (M/N ′)M . Now by

Proposition 2.23 we have that ann (M/N ′) is a semiprime ideal of R. Thus by Proposition

1.8 we have that ∩α∈LPα ⊆ ann (M/N ′). As ann (M/N ′)
(
M
N ′

)
= 0, then ann (M/N ′)M ⊆

N ′ = ∩α∈L (PαM). Hence ann (M/N ′)M ⊆ PαM for all α ∈ L. So by Proposition 1.6 we

have that ann (M/N ′) ⊆ Pα for all α ∈ L. Thus ann (M/N ′) ⊆ ∩α∈LPα. So we have that

∩α∈LPα = ann (M/N ′). Thus PM = (∩α∈LPα)M = ann (M/N ′)M .

Corollary 2.26. Let R be a commutative ring and M a faithful multiplication R-module.

Suppose that QM 6= M for all maximal ideals Q of R, then a proper submodule N of M is

semiprime (prime) in M if and only if there exists a semiprime (prime) ideal P of R such that

N = PM .

Proof. ⇒] Suppose that N is semiprime(prime) in M , then by Proposition 2.13, we have

that N = ∩α∈LNα where every Nα is prime inM . Now by Proposition 2.23 (Proposition 2.21)

we know that ann (M/Nα) semiprime(prime) ideal of R and Nα = ann (M/Nα)M . Thus N =

∩α∈LNα = N = ∩α∈L [ann (M/Nα)M ]( or N = ann (M/N)M). By Proposition 2.25 we

have that N = [∩α∈L ann (M/Nα)]M (or N = ann (M/N)M). Moreover ∩α∈L ann (M/Nα)

(ann (M/N)) is a semiprime (prime) ideal of R.
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⇐] As P is a semiprime(prime) ideal of R, then P = ∩i∈T Pi with every Pi is a prime ideal

of R. Then by Proposition 2.25 we have that N = PM = ∩i∈T (PiM). By Proposition 2.21

we have that PiM is prime in M . Therefore N is semiprime in M .

Theorem 2.27. Let R be a commutative ring and M a faithful multiplication R-module

and QM 6= M for all maximal ideal Q of R. Then
√
IM =

√
IM for all proper ideals I of R.

Where
√
I is the prime radical of I.

Proof. Suppose that
√
I = ∩α∈LPα where every Pα is a prime ideal of R with I ⊆ Pα for

all α ∈ L. Now by Proposition 2.25 we have that
√
IM = ∩α∈L (PαM). As PαM is prime

in M , then
√
IM is semiprime in M . Since I ⊆

√
I, then IM ⊆

√
IM . Therefore

√
IM ⊆

√
IM . On the other hand if we put N = {N ′ ⊂M | N ′ is prime in M and IM ⊆ N ′}, then
√
IM = ∩N ′∈NN

′. Let N ′ ∈ N . So N ′ = P ′M with P ′ prime ideal of R. Thus IM ⊆ P ′M .

By Proposition 1.6 we have that I ⊆ P ′. Therefore
√
I ⊆ P ′. Hence

√
IM ⊆ P ′M = N ′ for

all N ′ ∈ N . Thus
√
IM ⊆

√
IM .

Notice that if N is a proper submodule of M , then N = IM for some proper ideal I of R.

So by Theorem 2.27 we have that
√
N =

√
IM .

3 Zariski Topology for Multiplication Modules

In this section we give the Zariski Topology for a module multiplicationM . We describe open

sets and closed sets of this topology and we give a basis of open sets for the Zariski topology.

We denote Spec (M) = {P | P is a prime submodule of M}.

Several of the followings results have been given recently. We include here those results

for convenience of the reader.

Proposition 3.1 . (Jawad [13], Jawad-Lomp [14] ). Let R be a ring andM a multiplication

R-module, then (Spec (M) , T ) is a topological space,

where T = {U (N) | N ∈ Sub (M)} is the topology and U (N) = {P ∈ Spec (M) | N * P}
are open sets.

Remark 3.2. As U (N) = U
(√

N
)
for all N ∈ Sub (M), then:

T = {U (N) | N ∈ Semp (M) ∪ {M}}. Thus we can consider the open sets as U (N) with

N semiprime in M or N = M .
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Following to [4] we say that T is the Zariski topology and Spec (M) is called the prime

spectrum of M . The topological space (Spec (M) , T ) will be denoted by Z (M).

Lemma 3.3 (Jawad [13]. Jawad-Lomp [14] ). Let R be a ring and M an R-module. If N

and L are submodules of M , then the following conditions hold:

i) U (L) ∩ U (N) = U (LMN).

ii) U (L) = ∅ if and only if L ⊆
√

0.

iii) U (L) = Spec (M) if and only if L = M .

iv) U (L) = U (N) if and only if
√
L =

√
N .

Notice that if M is a semiprime module, then 0 = ∩p∈Spec(M)P . Thus
√

0 = 0.

Let R be a commutative ring and M a multiplication R-module. For each subset E of M ,

we denote V (E) = {P ∈ Spec (M) | E ⊆ P}. Notice that {Ni}i∈I is a family of submodules

of M . Moreover we have that V (∪i∈INi) = V
(∑
i∈I

Ni

)
.

Proposition 3.4. (Jawad [13]. Jawad-Lomp [14] ). Let R be a ring andM an R-module,

then the following conditions hold:

i) If E is a subset of M and 〈E〉 =
∑
m∈E

Rm, then V (E) = V (〈E〉) = V
(√
〈E〉
)
.

ii) V (0) = Spec (M) and V (M) = ∅.

iii) If {Ei}i∈I is a family of subsets of M , then V (∪i∈IEi) = ∩i∈IV (Ei).

iv) If N and L are submodules of M then V (N ∩ L) = V (NML) = V (N) ∪ V (L).

Notice that if 〈E〉 ∈ Sub (M), then the complement V (〈E〉)C of V (〈E〉) is the set U (〈E〉).

Thus the results of Proposition 3.4 show that the sets V (〈E〉) satisfy axioms for closed sets in

the Zariski topology. We also note that V (〈{m}〉)C = V (Rm)
C

= U (Rm) for all m ∈M .

Proposition 3.5. (Jawad [13]). Let R be a ring and M an R-module. Then B =

{U (Rm) | m ∈M} is a basis of open sets for the Zariski topology.

4 Compact, Irreducible and Dense subspaces

In this section we characterize compact sets of the form U (N) in terms of finitely generated

submodules of M . We also characterize irreducible sets of the form U (N) in terms of finitely

uniform submodules of M .

13



Proposition 4.1.(Jawad [13]. Jawad-Lomp [14] ) Let R be a commutative ring and M

a multiplication R-module. Then the following conditions are equivalents:

i) M is finitely generated.

ii) The topological space Z (M) is compact (that is, every open covering of Spec (M) has

a finite subcover).

Corollary 4.2. Let R be a commutative ring and M a multiplication R-module. If M is

finitely generated and N is a submodule of M such that N is a direct summand of M , then

U (N) is compact in Z (M).

Proof. AsN is a direct summand ofM then there exists a submodule L ofM such thatN⊕
L = M . Now let {U (Rmi)}i∈I be an open cover of U (N) and {U (Rmj)}i∈J an open cover of

U (L). We can suppose that U (N)∩U (Rmi) 6= ∅ and U (L)∩U (Rmj) 6= ∅ for all i, j such that

i ∈ I and j ∈ J . So it is clear that {U (N) ∩ U (Rmi)}i∈I and {U (L) ∩ U (Rmj)}i∈J are open

covers of U (N) and U (L) respectively. We claim that [U (N) ∩ U (Rmi)]∩[U (L) ∩ U (Rmj)] =

∅ for all i, j such that i ∈ I and j ∈ J . In fact let P ∈ [U (N) ∩ U (Rmi)]∩ [U (L) ∩ U (Rmj)],

then P ∈ U (N) ∩ U (L). So N * P and L * P . As P is a prime submodule of M then

NML * P . Since M is a duo module, then NML ⊆ N ∩ L = 0. Therefore NML ⊆ P for all,

P ∈ Spec (M) is a contradiction. Hence [U (N) ∩ U (Rmi)] ∩ [U (L) ∩ U (Rmj)] = ∅.

Now Spec (M) = U (M) = U (N ⊕ L) = U (N) ∪ U (L), then {U (N) ∩ U (Rmi)}i∈I ∪

{U (L) ∩ U (Rmj)}i∈J is an open cover of Spec (M). By Proposition 4.1 we have that Spec (M)

is compact. So the cover {U (N) ∩ U (Rmi)}i∈I ∪{U (L) ∩ U (Rmj)}j∈J has a finite subcover.

Let {U (N) ∩ U (Rmi)}ni=1 ∪ {U (L) ∩ U (Rmj)}rj=1 be a finite subcover such that

∪ni=1 (U (N) ∩ U (Rmi)) ∪ {U (L) ∩ U (Rmj)}ri=1.

As [U (N) ∩ U (Rmi)] ∩ [U (L) ∩ U (Rmj)] = ∅ for all i = 1, 2, .., n and j = 1, 2, ..., r, then

{U (N) ∩ U (Rmi)}ni=1 is a finite subcover of {U (N) ∩ U (Rmi)}i∈I .

So U (N) = ∪ni=1 [U (N) ∩ U (Rmi)] ⊆ ∪ni=1U (Rmi). Thus U (N) is compact.

Proposition 4.3. (Jawad [13]. Jawad-Lomp [14] ). Let R be a commutative ring and M

a multiplication R-module. If N is a submodule of M such that U (N) is compact, then there

exists a finitely generated submodule L of N such that U (N) = U (L).

Proposition 4.4. (Jawad [13]. Jawad-Lomp [14] ). Let R be a commutative ring and M

a multiplication R-module. If E is an open subset of Spec (M) such that E is compact, then

there exists a finitely generated submodule L of M such that E = U (L).
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The following definition was given in [8, Commutative Algebra II-4-1].

Definition 4.5. A topological space X is said to be irreducible if X 6= ∅ and that the

intersection of two non-empty open sets of X be always non-empty. A non-empty subset Y of

X is an irreducible set in X if the subspace Y of X is irreducible.

Proposition 4.6. Let R be a commutative ring and M a multiplication R-module. Sup-

pose thatM is a semiprime module. If N is a submodule ofM such that U (N) is an irreducible

set in Z (M), then N is a uniform module.

Proof. Let K 6= 0 and L 6= 0 be proper submodules of N . We claim that U (K) 6= ∅

and U (L) 6= ∅. In fact if U (K) = ∅, then by Lemma 3.3 ii) we have that K ⊆
√

0 =

∩P∈Spec(M)P . As M is a semiprime module, then 0 is a semiprime submodule of M . So
√

0 = ∩P∈Spec(M)P = 0. Thus K = 0 it is a contradiction. Analogously U (L) 6= ∅. Since

U (K) ⊆ U (N) ; U (L) ⊆ U (N) and U (N) is irreducible, then U (K) ∩ U (L) 6= ∅. By

Lemma 3.3 i) we have that U (KML) 6= ∅. Hence KML 6= 0. Since M is a duo module, then

NML ⊆ N ∩ L. Thus N ∩ L 6= 0. So N is a uniform module.

Notice that if R is a commutative ring and M is a multiplication R-module such that

U (M) = Spec (M) is an irreducible set in Z (M), then M is a uniform module.

Proposition 4.7. Let R be a commutative ring and M a multiplication R-module. If N

is a uniform submodule ofM and
√

0 is prime inM , then U (N) is an irreducible set in Z (M).

Proof. We denote
√

0 = Q. Let U (K) 6= ∅ and U (L) 6= ∅ be open sets such that

U (K) ⊆ U (N) and U (L) ⊆ U (N). So N 6= 0 and L 6= 0. By Lemma 3.3 i) we have that

U (L) ∩ U (L) = U (NML). Now if U (KML) = ∅, then KML ⊆ Q. As Q is prime in M , then

K ⊆ Q or L ⊆ Q. On the other hand we have that Q =
√

0 = ∩P∈Spec(M)P . Hence Q ⊆ P

for all P ∈ Spec (M). Thus U (Q) = ∅. Since K ⊆ Q or L ⊆ Q, then U (K) ⊆ U (Q) = ∅ or

U (L) ⊆ U (Q) = ∅, is a contradiction. Thus U (L) ∩ U (L) = U (NML) 6= ∅. Hence U (N) is

irreducible.

Remark 4.8. If M is a prime and duo module, then M is a uniform module. In fact

let N and L be submodules of M such that N ∩ L = 0. As M is a duo module, then

NML ⊆ N ∩ L = 0. Since M is a prime module, then N = 0 or L = 0. So M is a uniform

module. Moreover, when M is a prime multiplication R-module we know that 0 is prime in

M . So
√

0 = 0. Thus U (N) is an irreducible set in Z (M) for all non-zero submodules N of

M .
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Definition 4.9. A subset B of a topological space X is said to be dense in X if U ∩ B
6= ∅ for all open sets ∅ 6= U of X.

Proposition 4.10. Let R be a commutative ring and M a multiplication R-module.

Suppose that
√

0 is a prime submodule of M . If N 6= 0 is a uniform submodule of M such

that U (N) 6= ∅ , then U (N) is dense in the topological space Z (M).

Proof. Let U (L) 6= ∅ be an open set of the topological space Z (M). Suppose that

U (N) ∩ U (L) = ∅. Then by Lemma 3.3 i) we have that U (NML) = ∅. Hence NML ⊆
√

0.

As
√

0 is a prime submodule, then N ⊆
√

0 or L ⊆
√

0. Hence U (N) = ∅ or U (L) = ∅ is a

contradiction. Therefore U (N) ∩ U (L) 6= ∅. So U (N) is dense.

Note that Proposition 4.10 is not true in general. We consider the following example:

Example 4.11 . Let R = Z, p be a prime number and M = Zpn with n ≥ 2. We know

that M is a Z-multiplication module. It is clear that pZpn is a uniform submodule of M .

Moreover pZpn is the only one prime submodule of M . So
√
pZpn = pZpn . Thus we have that

U (pZpn) = ∅. Therefore U (pZpn) is not dense in the topological space Z (M).

Corollary 4.12. Let R be a commutative ring and M a prime multiplication R-module.

If N 6= 0 is a uniform submodule of M , then U (N) is dense in the topological space Z (M).

Proof. We claim that U (N) 6= ∅. In fact if U (N) = ∅, then by Lemma 3.3 ii) we

have that N ⊆
√

0. Now as M is a prime module, then 0 is a prime submodule of M . Thus
√

0 = ∩P∈Spec(M)P = 0. Hence N = 0 is a contradiction. Thus U (N) 6= ∅. So by Proposition

4.10 we have the result.

Note that in Example 4.11, the module M = Zpn is not a prime module.

5 Main Results and Applications

In this section we prove that {Semp (M) , ∧ , ∨} is a frame for every ring R and every multi-
plication R-module M . We also prove that if R is a commutative ring and M a multiplication

R-module, then Sub (M) is a bilateral quantal. Moreover we prove Semp (M/N) is a spa-

tial frame for all submodules N of M . When M is a quasi projective module we obtain

that [N,M ] = {P ∈ Semp (M) | N ⊆ P} and Semp (M/N) are isomorphic as frames. On

the other hand when M is a faithful multiplication R-module and QM 6= M for all maximal
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ideals Q of R, then i) The topological spaces Spec (R) and Spec (M) are homeomorphic ii)

Semp (R) ∼= Semp (M) as frames iii) cl.K dim (M) = cl.K dim (R). As a special result we

obtain that Ψ (M) = {N ⊆M | N +AnnM (Rn) = M , ∀n ∈ N} is a spatial frame for every

multiplication R-module M . The set Ψ (M) was studied by [17]. Finally we show that if R

is a ring and Z (M) is a noetherian topological space, then M has a classical Krull dimension.

Remark 5.1. When R is a commutative ring and M is a multiplication R-module,

then by Proposition 1.2 (7) we have that N M

∑
i∈I Ki =

[∑
i∈I Ki

]
MN =

∑
i∈I (KiMN) =∑

i∈I (NMKi) for every {Ki}i∈I family of submodules of M and for all submodules N of M .

For the definition of frame and quantal see [17 ].

Proposition 5.2. Let R be a commutative ring and M a multiplication R-module, then

{Sub (M) , ≤ , ∨ , ∧ , M , 0, _M_} is a bilateral quantal.

Proof. It is clear that {Sub (M) , ≤ , ∨ , ∧ , M , 0} is a complete lattice where "≤"
denotes ⊆. As R is a commutative ring, then by Corollary 1.5 we have that the product

_M_ : Sub(M)× Sub(M)→ Sub(M) is associative. Moreover by Remark 5.1 we obtain

that NM
∑
i∈IKi =

∑
i∈I (NMKi) for every {Ki}i∈I family of submodules of M and for

all submodules N and L of M . Moreover by Proposition 1.2 (7) we have that:[∑
i∈I Ki

]
M
N =

∑
i∈I (KiMN). Thus by [17, Definition 2.4] we have that

{Sub (M) , ≤ , ∨ , ∧ , M , 0, _M_} is a quantal. Now by Lemma 1.3 we have that

MMN = tMr (N) = N . As M is a duo module, then N is a fully invariant submodule of

M . So NMM = N . Hence {Sub (M) , ≤ ∨ , 0, _M_} is a bilateral quantal.

We denote Semp (M) = {N ⊂M | N is semiprime in M} ∪ {M}. It is easy to prove that

N∧N ′ = N∩N ′ and N∨N ′ =
√
N +N ′ are the meet and join of lattice Semp (M). Moreover

this lattice is complete.

Theorem 5.3. LetR be a ring andM a multiplicationR-module. Then {Semp (M) , ∧ , ∨}
is a frame.

Proof. We know that {Semp (M) , ∧ , ∨} is a complete lattice. Now let N ∈ Semp (M)

and {Ni}i∈I be a family of submodules in Semp (M). We will prove that N ∧ (∨i∈INi) =

∨i∈I (N ∧Ni).

As N ∧ (∨i∈INi) = N ∩
(√∑

i∈I Ni
)
and ∨i∈I (N ∧Ni) =

√∑
i∈I (N ∩Ni). If N = M ,

then we have the result. Suppose that N  M . It is clear that N ∩Nj ⊆ N ∩
(√∑

i∈I Ni
)
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for all j ∈ I. Thus
∑
i∈I (N ∩Ni) ⊆ N ∩

(√∑
i∈I Ni

)
. By Proposition 2.13 we have

that N ∩
(√∑

i∈I Ni
)
is an intersection of prime submodules of M . So

√∑
i∈I (N ∩Ni) ⊆

N ∩
(√∑

i∈I Ni
)
. Now let P prime in M such that

∑
i∈I (N ∩Ni) ⊆ P . Thus N ∩Ni ⊆ P

for all i ∈ I. Since N is a fully invariant submodule of M , we have that NMNi ⊆ N ∩ Ni.
So NMNi ⊆ P . As P is prime in M , then N ⊆ P or Ni ⊆ P . If N ⊆ P , then N ∩(√∑

i∈I Ni
)
⊆ P . Hence N ∩

(√∑
i∈I Ni

)
⊆
√∑

i∈I (N ∩Ni). If N * P , then Ni ⊆ P for

all i ∈ I. Thus
∑
i∈I Ni ⊆ P . So

√∑
i∈I Ni ⊆ P . Therefore N ∩

(√∑
i∈I Ni

)
⊆ P . Hence

N ∩
(√∑

i∈I Ni
)
⊆
√∑

i∈I (N ∩Ni). Therefore N ∩
(√∑

i∈I Ni
)

=
√∑

i∈I (N ∩Ni). So

N ∧ (∨i∈INi) = ∨i∈I (N ∧Ni).

Note that if M is a multiplication R-module and N ∈ Semp (M), then the set [N,M ] =

{P ∈ Semp (M) | N ⊆ P} is a subframe of Semp (M).

Remark 5.4. If R is a ring we know that every semiprime ideal is an intersection of prime

ideals of R. Therefore we have that {Semp (R) , ∧ , ∨} is a frame for every ring R.

We denote O (Spec (M)) = {T , ⊆ , ∪ , ∩} the frame of open subsets of Spec (M), where

T is the Zariski topology of Spec (M).

Theorem 5.5. Let R be a ring and M a multiplication R module, then Semp (M) ∼=
O (Spec (M)) as frames.

Proof. We define Ψ : Semp (M) → O (Spec (M)) such that Ψ (N) = U (N). We claim

that Ψ is an order isomorphism. In fact suppose that N1 ⊆ N2. If P ∈ U (N1), then N1 * P .

Thus N2 * P . So Ψ (N1) ⊆ Ψ (N2). Moreover if Ψ (N1) = Ψ (N2), then N1 = N2. Thus Ψ

is injective. Now let U (N) ∈ O (Spec (M)), by Remark 3.2 we have that N is a semiprime

in M . So Ψ is surjective. Therefore Ψ is bijective and Ψ−1 (U (N)) = N . Now suppose that

U (N1) ⊆ U (N2). Thus if P is prime in M such that N2 ⊆ P , then N1 ⊆ P . As N1 and N2

are semiprime modules, then by Proposition 2.13 we have that N1 ⊆ N2. So Ψ is an order

isomorphism, now by [23, Chapter III Proposition 1.1] we have that Ψ is a lattice isomorphism.

Hence Ψ is a frame isomorphism.

Definition 5.6. Let F be a frame. It is said that F is spatial, if F is isomorphic to O (X)

the frame of open sets of some topological space X.

Corollary 5.7. Let R be a ring and M a multiplication R-module, then Semp (M/N) is

a spatial frame for all submodules N of M .
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Proof. As M is a multiplication R-module, then M/N is a multiplication module. So

by Theorem 5.5 we have that Semp (M/N) ∼= O (Spec (M/N)) for all submodules N of M .

Hence Semp (M/N) is a spatial frame for all submodules N of M .

Lemma 5.8. Let R be a ring and M a multiplication R-module. Suppose that M is quasi

projective and N is a submodule of M , then Semp (M/N) = {P/N | P ∈ Semp (M)}.

Proof. As M is a multiplication module, then M is a duo module. By Remark 2.14 we

have that Semp (M/N) = {P/N | P ∈ Semp (M)}.

Proposition 5.9. Let R be a ring and M a multiplication R-module. Suppose that M is

quasi projective and N ∈ Semp (M), then [N,M ] and Semp (M/N) are isomorphic as frames.

Proof. By Lemma 5.8 we have that Semp (M/N) = {P/N | P ∈ Semp (M)}. So we

can define the morphism φ:[N,M ] → Semp (M/N) such that φ (P ) = P/N . It is clear that

φ is a bijective morphism. Now let P , P ′ ∈ Semp (M), then φ (P ∧ P ′) = φ (P ∩ P ′) =

(P ∩ P ′) /N = (P/N) ∩ (P ′/N) = φ (P ) ∧ φ (P ′). On the other hand, we notice that
√
P + P ′

N
=

√
p

N
+
P ′

N
. Therefore φ (P ∨ P ′) = φ

(√
P + P ′

)
= φ (P ) ∨ φ (P ′). Hence φ

is a morphism of frames. Analogously we can prove that inverse φ−1 is a morphism of frames.

So [N,M ] ∼= Semp (M/N) as frames.

By Proposition 5.9 we note that whenM is a quasi projective multiplication module and N

is a semiprime submodule ofM , then the frame Semp (M/N) can be considered as a subframe

of Semp (M). So we have the following proposition:

Corollary 5.10. Let R be a ring and M a multiplication R-module. If M is a quasi

projective module, then the subframe [N,M ] of Semp (M) is a spatial frame for all semiprime

submodules N of M .

Proof. It follows from Proposition 5.9 and Corollary 5.7.

Theorem 5.11. Let R be a commutative ring and M a faithful multiplication R-module

and QM 6= M for all maximal ideals Q of R. Then the topological spaces Spec (R) and

Spec (M) are homeomorphic.
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Proof. We consider the function ϕ : Spec (R) → Spec (M) such that ϕ (I) = IM . By

Proposition 2.21 we know that IM is prime in M . Moreover by Corollary 1.11 we have that

ϕ is injective. Now if N ∈ Spec (M), then by Proposition 2.21 we know that N = ann (M/N)

M and ann (M/N) is a prime ideal of R. Thus ϕ is an epimorphism. We will show that

ϕ is continuous. Let U (N) an open set of the Zariski´s topology of Spec (M). As M is a

multiplication module and U (N) = U
(√

N
)
, then we can suppose that N is a semiprime

module. Hence N = IM with I is a semiprime ideal of R. We claim that ϕ−1 (U (N)) =

ϕ−1 (U (IM)) = {J ∈ Spec (R) | ϕ (J) ∈ U (IM)} =

{J ∈ Spec (R) | JM ∈ U (IM)} = {J ∈ Spec (R) | IM * JM}. Now by Proposition 1.8

we have that {J ∈ Spec (R) | I * J} = U (I). So ϕ−1 (U (N)) is an open set of Zariski´s

topology of Spec (R). Analogously we show that if U (I) is an open set of Spec (R), then

ϕ (U (I)) is an open set of Spec (M). Therefore Spec (R) and Spec (M) are homeomorphic

topological spaces.

Theorem 5.12. Let R be a commutative ring and M a faithful multiplication R-module

and QM 6= M for all maximal ideals Q of R. Then Semp (R) ∼= Semp (M) as frames.

Proof. We define ϕ : Semp (R) → Semp (M) such that ϕ (I) = IM . We claim that ϕ is

an order isomorphism. In fact let I1, I2 ∈ Semp (R) such that I1 ⊆ I2, then I1M ⊆ I2M . So

ϕ (I1) ⊆ ϕ (I2). Now if ϕ (I1) = ϕ (I2), then I1M = I2M . So by Corollary 1.9 we have that I1

= I2. Thus ϕ is injective. Now let N ∈ Semp (M). As M is a multiplication module then by

Proposition 2.23 and Proposition 2.24 we have that ann (M/N) M = N and ann (M/N) is a

semiprime ideal of R. So ϕ is surjective. Thus ϕ is bijective and ϕ−1 (N) = ann (M/N). Now

suppose that N1, N2 ∈ Semp (M) such that N1 ⊆ N2, then ann (M/N1)M ⊆ ann (M/N2)M .

So by Proposition 1.8 we have that ann (M/N1) ⊆ ann (M/N2). Thus ϕ−1 (N1) ⊆ ϕ−1 (N2).

By [23, Chapter III Proposition 1.1] we have that ϕ is a lattice isomorphism. Hence ϕ is a

frame isomorphism.

Corollary 5.13. Let R be a commutative ring and M a faithful multiplication R-module

and QM 6= M for all maximal ideals Q of R. Then there exists a bijective correspondence

between Spec (R) and Spec (M).

Proof. Let P be a prime ideal of R. By Proposition 2.21 we have that PM is prime in

M . Thus the restriction ϕ|Spec(R) : Spec (R) → Spec (M) is injective. Now if N is prime

in M , then by Proposition 2.21 we have that ann (M/N) is a prime ideal of R. Moreover

N = ann (M/N)M . Therefore ϕ|Spec(R) is surjective. So ϕ|Spec(R) is bijective.

20



From the Definition 1.1. we note that it is natural to consider the annihilator of a module.

The next definition was given in [6].

Definition 5.14. Let M and K be R-modules. The annihilator of K in M is defined as:

AnnM (K) = ∩{Ker (f) | f ∈ Hom (M,K)}

Notice that AnnM (K) is a fully invariant submodule ofM and it is the greatest submodule

of M such that AnnM (K)M K = 0.

In [17, Section 5] the authors define Ψ (M) which is a frame given by condition on annihi-

lators. They show that Ψ (M) is a spatial frame. When M is a duo module ( in particular a

multiplication module) we have that

Ψ (M) = {N ⊆M | N +AnnM (Rn) = M , ∀n ∈ N}

In [17 ] the following is shown: 1) If N ∈ Ψ (M), then N2 = N [Proposition 5.3 ]. 2) If

K,N ∈ Ψ (M), thenK∩N = KMN [ Proposition 5.4], 3) If {Ni}i∈J ⊆ Ψ (M), then
∑
i∈J Ni ∈

Ψ (M) [Proposition 5.5]. To prove those results the authors contend that NM
∑
i∈J Ki =∑

i∈J NMKi, happens when M is projective in σ[M ]. But when M is a multiplication R-

module (with R a commutative ring) by Remark 5.1 we do not need that hypothesis to prove

the same results.

For the definition of a spatial frame, see [16, Quantales Definition 4.31].

Theorem 5.15. Let R be a commutative ring. If M is a multiplication module. Then

Ψ (M) is a spatial frame.

Proof. It is similar to the proof given in [17, Theorem 5.6].

Note that if R is a ring with a commutative multiplication of ideals and M is a R-

multiplication module, then we have that Ψ (M) is a spatial frame.

The classical Krull dimension of a module M

The classical Krull dimension of a poset (X, ≤) was defined in [1]. We use the poset

(Spec (M) ,⊆) and we give the classical Krull dimension for an R-module M .

Set Spec−1 (M) = ∅, and for an ordinal α > −1 define
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Specα (M) =

P ∈ Spec (M) | P ≤ Q ∈ Spec (M)⇒ Q ∈
⋃
β<α

Specβ (M)


If an ordinal α with Specα (M) = Spec (M) exists, then the smallest of such ordinals is

called the classical Krull dimension of M ; it is denoted by cl.K dim (M).

Notice that if M is a multiplication module, then by Remark 2.2 we have that M has

maximal submodules which are prime submodules of M .

So Spec0 (M) = {P ∈ Spec (M) | P is a maximal submodule of M}.

Remark 5.16. Let M be an R-module. Then by [1, Proposition 1.4] we have that M

has classical Krull dimension if and only if the poset (Spec (M) ,⊆) is noetherian.

Notice that if M is a noetherian R-module, then the poset (Spec (M) ,⊆) is noetherian,

therefore M has classical Krull dimension.

Theorem 5.17. Let R be a commutative ring and M a faithful multiplication R-module

and QM 6= M for all maximal ideals Q of R. Then R has classical Krull dimension if and

only if M has classical Krull dimension. Moreover. cl.K dim (M) = cl.K dim (R).

Proof. By Theorem 5.12 and Corollary 5.13 we have that ϕ (P1) ⊆ ϕ (P2) ⇔ P1 ⊆ P2

where P1 and P2 are prime ideals of R. Therefore ϕ (Specα (M)) = Specα (R) for all ordinal

α. Moreover ϕ is injective. Hence cl.K dim (M) = δ ⇔ cl.K dim (R) = δ.

The following definition was given in [13, Definition 3.26].

Definition 5.18. A topological space (X, T ) is said to be noetherian if and only if every

ascending (descending) chain of open (closed) subsets is stationary, equivalently if and only if

every open subset is compact.

Proposition 5.19. Let R be a ring and M a multiplication R-module. Suppose that

Z (M) is a noetherian topological space, then M has a classical Krull dimension.

Proof. If P1 ⊆ P2 ⊆ ... ⊆ Pn..... is a chain in Spec (M), then U (P1) ⊆ U (P2) ⊆ ... ⊆

U (Pn) ..... is a chain in Z (M). As the Zariski Topology is noetherian, then there exists a

natural number k such that U (Pk) = U (Pk+1). Now if Pk  Pk+1, then Pk+1 ∈ U (Pk), a

contradiction. Therefore Pk = Pk+1. So (Spec (M) , ⊆) is a noetherian set. Thus M has

classical Krull dimension.
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