
The Use of Digital Games to Teaching Computer
Graphics: an Open Opportunity

José Saúl González-Campos
Estudis d'Informàtica,

Multimèdia i Telecomunicació
Universitat Oberta de Catalunya

Barcelona, Spain
jsaulg@uoc.edu

Joan Arnedo-Moreno
Estudis d'Informàtica,

Multimèdia i Telecomunicació
Universitat Oberta de Catalunya

Barcelona, Spain
jarnedo@uoc.edu

Jórdi Sánchez-Navarro
Estudis d'Informàtica,

Multimèdia i Telecomunicació
Universitat Oberta de Catalunya

Barcelona, Spain
jsancheznav@uoc.edu

Abstract—The use of digital games for learning in the higher
education is a current trend that is mainly motivated by their
pedagogical attributes if they are designed with specific learning
objectives in mind. In the specific case of computer graphics, the
intrinsic interactive, visual, and addictive nature of games seems
to be a valuable coincidence for learning a discipline which is also
highly visual and interactive. In this work, it is presented an
overview of the efforts of educators and practitioners to teach
computer graphics at the undergraduate level with a special
emphasis on the application of digital games as a learning
strategy. Authors aim to increase awareness about the detected
necessity of diversifying the current offering of digital games in
this particular area, which in turn can lead to improvements on
how computer graphics is taught in the classroom.

Keywords—computer graphics; games; education

I. INTRODUCTION
By its own definition and purpose, Computer Graphics

(CG) is visual, where the benefits and adoption of graphics
algorithms are driven equally by their visual results and by
their performance in time and memory management. For this
reason, introductory courses in CG need to provide students
with learning material that can be appealing and as much visual
and interactive as possible, in order to clarify the principles and
techniques utilized in the CG discipline. Moreover, CG courses
usually require students to perform conceptual manipulations
of 3D environments in addition to learning the theoretical
knowledge involved in this field. These conceptual
manipulations, which are known as visual-spatial abilities in
psychology, are difficult to some students. This means that
teaching CG should rely on effective methods of presenting
learning materials to students that favor these cognitive
abilities.

Courses in CG are, in general, well supported by visual
representations, dynamic input-output demonstrations,
interactivity, and engaging material, in opposition to other
traditional media such as text, blackboard, printed material
(even visual), and business-style presentations. Games could
provide all these desirable characteristics, and this is why the
incorporation of games in the CG syllabus is worth to consider.
Games could provide a valuable learning environment to
immerse students in the study of CG.

This work is focused on exploring diverse initiatives that
have incorporated interactive and ludic strategies for teaching
computing topics in general, and computer graphics in
particular, either in the classroom or e-learning environments.
In this sense, learning what proposals have been implemented
and tested in the past years provides valuable insight into their
historical trend. For example, knowing that digital games have
not been fully explored in the case of CG education should
raise interest in knowing why. There is evidence that games
have been applied successfully in the higher education in a
wide variety of domains, including computing, and it is
precisely this fact that might lead to think that CG should not
be the exception. By the end of this study, authors will provide
evidence of the detected opportunity for new research needed
on the development of games for learning to teach the common
topics covered in introductory CG courses.

This work is structured as follows: In Section II, it is
presented an overview of the CG discipline, its knowledge
base, and the evolution of the CG syllabus. In Section III, some
approaches that have been proposed to teaching CG are
reviewed. Section IV covers the use of digital games in the
higher education with a particular focus on their application for
teaching computing topics. Section V addresses the specific
case of using games as well as interactive simulators for
teaching CG. Finally, Section VI provides a discussion of the
study findings and Section VII the conclusions.

II. THE COMPUTER GRAPHICS CURRICULUM
Computer graphics is the broad body of knowledge

regarding the computer generation and manipulation of images.
In the following subsections, it will be provided an overview of
its knowledge base, as proposed by the Association for
Computing Machinery (ACM), and of the evolution of its
syllabus, from a historical perspective. The last subsection
describes three studies regarding different visions about the
definition of the CG syllabus.

A. The Computer Graphics Knowledge Base
It is worth considering that, although CG as a field has

existed since some decades, the rapid advances in graphics
technology have made difficult to have a consensus about its
knowledge base, and by this, a consensus in the contents of a
modern CG syllabus. Some efforts to define a comprehensive
knowledge base for the computer graphics discipline have been

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1988

attempted in the recent years. For example, the Curriculum
Knowledge Base Group, created by the ACM SIGGRAPH
Education Committee, aimed “to provide a curricular structure
and supporting materials that will aid instructors and
institutions working to develop or enhance academic programs
in computer graphics” [1].

As a result of the work of this group since 2001, it was
generated a report in 2006 [2, 3] that proposed a knowledge
base composed of sixteen areas. Each area, in turn, defined a
set of more specific topics. This guideline was jointly
developed by educators and practitioners from the United
States, Europe, South America, and Japan. The original areas
have evolved and regrouped into the seventeen areas shown in
the current online version of this report [1]. The proposed
knowledge-base areas are depicted in Fig. 1.

Fig. 1. The seventeen areas proposed by the ACM SIGGRAPH as the
computer graphics knowledge-base.

B. The Modern Computer Graphics Curriculum
Computer Graphics is an undergraduate and graduate

course mostly included in the Computer Science curriculum but
also included in a diversity of academic programs around the
world, such as Computer Engineering, Information
Technology, Software Engineering, and Digital Media/Arts,
just to name the most common. In the United States, over the
last forty years, the ACM and the IEEE, among other
organizations, have developed computing curricula guidelines
for colleges and universities. The ACM has recommended CG
as an undergraduate course for Computer Science majors since
1991.

From a historical perspective, according to [4], early CG
courses from the 1970s through early 1980s were offered in
just a few universities that could afford the expensive graphics
hardware available at the time. CG curriculum in this era
focused on low-level graphics hardware, basic rendering
algorithms, introduction to 3D modeling, and interfacing
graphics processors with mini-computers or mainframes.

In a second era, from the middle 1980s to early 1990s, with
a much more affordable and somehow standardized graphics
hardware, CG became a common course included in Computer
Science degrees. Still, in that era, CG curriculum was focused

on low-level algorithms, math, lighting and color principles,
graphics hardware devices, and the use of primitive (and
mostly unstandardized) APIs for graphics.

In the current era, since the late 1990s to present, CG
syllabi have been designed around diverse APIs and have
increased its presence in a lot more diverse academic programs
than just Computer Science. This situation has happened due to
the continuous development of faster, cheaper, and ubiquitous
3D graphics accelerators as well as the availability of robust
and highly standardized graphics APIs, such as OpenGL [5],
Direct3D [6], WebGL [7], or Java3D. Efforts in this era are
focused on the selection of better software tools that are
expected to ease the learning experience.

The earliest language selections to support a course in CG
were based on using C/C++ to implement the core principles.
Today, the most pervasive API to teach computer graphics is
OpenGL. The utilization of this API includes its deprecated
fixed-mode style [8-10], or the newer shader-based mode [11,
12], and WebGL [12] (the browser-interpreted version of
OpenGL). Also, some non-OpenGL attempts have been applied
in the classroom, such as Processing [13], Java3D [14],
Microsoft XNA [15], or Maple [16].

Former core topics in the CG curriculum are less relevant
today, or at least not relevant to all the academic programs
offering CG. For example, the fact that today most of the low-
level algorithms and the whole rendering process are fully
integrated at the hardware level, including the support to the
standard APIs, makes elective, from the CG curriculum point
of view, the inclusion of certain topics or not. In modern times,
CG syllabus is heavily influenced by the profile of the specific
degrees and students where CG is offered. For example,
Computer Science still can be heavily interested in math
foundations, low-level rendering techniques, algorithms, and
modern graphics accelerators architecture and optimizations.
Software Engineering or Information Technology can be more
interested in using higher-level programming frameworks for
developing graphics application. Finally, Digital Media can be
more interested in teaching CG principles through the use of
state-of-the-art commercial graphics software for modeling,
rendering, and animation.

C. Some studies on the CG syllabus
Some similarities and differences in the vision about the

development of the CG syllabus can be found in the following
three studies:

A first study [17], developed in the late 90’s, was a survey
among twenty-three universities in the United States regarding
the current state of the CG syllabus at the time. It was found
that topics such as viewing/camera transformations, hardware,
lighting models, 3D transformations, user interaction, object
representation, shading models, color models, curves, hidden-
surface removal, and rasterization, were in the top of the most
included. Also, as a result of that study, some insights were
produced regarding the development of CG courses. These
insights included the following, as stated by the authors:
“Courses in CG should be inherently 3D”, “the fundamental
subject in CG is geometry (expressed in computational terms)”,
“CG needs to study light and surfaces”, “algorithms in CG

Computer Graphics

Professional issues

Physical Sciences

Mathematics

Perception and cognition

Human-Computer Interaction

Programming and scripting

Communication

Digital images

Graphics hardware

Modeling

Rendering

Animation

FundamentalsCultural perspectives

Art and design foundationReal-time graphics

Advanced topics

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1989

must be considered not only for time and memory usage but
also for their visual effects”, “CG courses should be built upon
a high-level graphics API”, and finally, “CG courses should
include interactive projects and cover event-driven
programming”.

A second study [18], developed in 2005, proposed a CG
syllabus based on 2D and Image Processing (IP) topics instead
of the traditional 3D-oriented CG course. In this study, there
were analyzed more than seventy academic programs and
courses in CG, IP, and HCI, as well as curricula in Computer
Engineering, Computer Science, Information Technology, and
Software Engineering. Although this proposal is somehow
unconventional due its opposite point of view to the widely
accepted 3D-centric CG syllabus, it intended to design courses
that balanced the CG, IP, and HCI areas through the study of
the many topics that these areas have in common and with an
additional emphasis in 2D contents.

In a third study [19], developed in 2016, it was analyzed the
CG curriculum from a new perspective that took jointly into
account Computer Science (CS), Computer Technology (CT),
and Computer Art (CA). In this study, there were selected,
among nearly 400 registered programs, the most influential CG
curricula in the United States to analyze their current trends. It
was found that topics such as math, algorithms, color,
rendering, lighting, illumination, pipelines, hardware,
rasterization, curves, and programming, were among the
primary themes included in the textbooks utilized in all the
surveyed academic programs. This situation was not much
different from the found one decade earlier. However, this
study delineated a consensus among experts from industry and
academia in the areas of CS, CT, and CA, that brought new
insight into the current trends in the CG syllabus.

It was suggested that from the seventeen areas initially
proposed in [3], they could be probably reduced to nine in a
contemporary CG curriculum. These areas were: Art and
design, animation, digital imaging, physics, visual perception,
visual communication, mathematics, cognitive sciences, and
computer programming. This study suggested that “CG
curricula must emphasize an interdisciplinary approach, and
formulate outcome-based programs that connect scientific,
technocratic, and artistic principles together to meet the
growing needs of industry”.

In addition to these studies, according to the most recent
guidelines of the ACM and the IEEE for the Computer Science
curricula in 2013 [20], the CG syllabus should encompass
several interrelated topics such as fundamental concepts, basic
and advanced rendering, geometry modeling, animation, and
visualization. It is recognized that traditional graphics at the
undergraduate level focuses on rendering, linear algebra, and
phenomenological approaches, while more recent trends
include physics, numerical integration, scalability, and special-
purpose hardware. It is assumed that nearly every
undergraduate course in CG will cover a basic rendering and
that this topic is essential for any further study in this field.
According to the ACM’s analysis, some of the most common
learning outcomes for students in CG are 2D/3D coordinate
transformations and a basic knowledge of the 3D graphics
pipeline.

III. GENERAL APPROACHES TO TEACHING COMPUTER
GRAPHICS

General approaches to teaching CG have been envisioned
through the evolving history of this discipline. These
approaches have been the result of both, experiences in the
classroom and contents structure addressed by textbooks in the
field. Some of these approaches are described in the rest of this
section, and they are summarized in Fig. 2.

One of the earliest classifications of these approaches was
provided by E. Angel in 1997 [8]. Angel defined three
fundamental approaches: The survey, the bottom-up, and the
top-down, which are described next.

The survey approach usually just provides a general
overview of the discipline with little or no programming
involved. This approach was one of the first utilized at the
beginning of the CG field, when graphics hardware and
software were neither affordable nor available for most
universities and topics in the course were covered mostly in a
descriptive or theoretical point of view without the means to
test or implement algorithms and graphics applications.

Fig. 2. Different approaches proposed for teaching CG.

The bottom-up approach focuses in studying in detail a
collection of the most basic algorithms, mathematical methods,
and other foundational elements, and then go gradually up into
higher layers of integration, abstraction, and applications of the
graphics technology. For example, in this approach, students
could start by learning the Bresenham’s algorithm to draw lines
and other basic algorithms to draw simple two-dimensional
curves, as well as algorithms for clipping and rasterization.
This approach is well-aligned with the most classical textbooks
in CG, such as Foley [21], Hearn [22], and Hill [23], and
courses based purely in a bottom-up strategy were more
frequent in the earlier stages of CG as an emerging discipline.

The top-down is another common approach to teach CG,
which starts by analyzing and implementing graphics
applications first and then moves gradually to lower levels of
details [24], [25], and [12]. This approach intends to provide
students with a more holistic understanding of the CG field. An
analogy between automobiles and CG given by Angel [8] to
describe the three mentioned approaches states that: “you don’t
need to know how a car works (the bottom-up approach) to
drive it (the top-down approach), or even you don’t need to

Pr
oj

ec
t-

ba
se

d
le

ar
ni

ng

Computer Graphics

Th
e

su
rv

ey

To
p-

do
w

n

Bo
om

-u
p

Co
ns

tr
uc

vi
st

Br
ea

dt
h-

fir
st

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1990

drive the car and hire a chauffeur to drive you (the survey
approach)”. Probably, the top-down approach is one of the
most utilized in the recent years. When this approach was first
proposed in the earliest CG years, it was mainly a
recommendation of starting the course directly with 3D,
avoiding a lengthy introduction of low-level 2D principles and
algorithms. This recommendation was possible thanks to the
availability of graphics APIs such as OpenGL.

Today, the top-down approach can be extended or
diversified to cover a wider range of academic programs and
student profiles. In fact, traditional CG courses found in
Computer Science could still use the bottom-up approach as
probably those students will be the tomorrow scientists and
professionals that will advance the state-of-the-art in graphics
technology. CG courses offered in Software Engineering or
Information Technology could be more benefited with a top-
down approach because students will learn how to program
graphics applications at a higher abstraction layer and without
knowing the hardware implementation details. Also, a Digital
Media student could be benefited from a top-down approach. If
the CG course starts using a high-end graphics application, this
would allow students to overview, in a very attractive manner,
the current state-of-the-art of graphics technology to model,
animate, and render scenes. Then, gradually, the course could
go into the details and principles of particular components.

The constructivist approach [26] promotes that instead of

providing comprehensive lectures for each topic of the course,
the teacher’s role is to guide the students in constructing a
conceptual image of how a component works given that it
exhibits certain capabilities. This is favored by environments
where students can visualize, test, and experiment with a
diversity of didactic material according to the CG contents.

The breadth-first approach [27] is similar to the top-down
but with a special emphasis in that the initial holistic view of
the discipline be suitable, and the same, for students belonging
to different academic programs, such as Computer Science,
Software Engineering or Digital Media. It means that the
“breadth” part of the course is highly interdisciplinary while the
“depth” part (studying topics at a detailed level) is highly
dependent on the student profile.

The Project-Based Learning (PBL) approach [28] is based
on an educational strategy that promotes solving a problem or
project in a student working group. In [28], this approach was
tested in projects that focused on the development of a
graphical environment based on OpenGL and C++ for
visualization and handling of different scenarios. Students
could start with a basic application skeleton and then
completed the project by adding the missing functionalities
according to a given task. As mentioned in that study, PBL
promotes, in general, autonomy in the learning, teamwork, self-
assessment, argumentation and critical reasoning, and
integration of knowledge.

IV. DIGITAL GAMES AS A LEARNING STRATEGY IN HIGHER
EDUCATION

In the recent years, the application of digital games for
learning has attracted the attention of researchers belonging to
the educational and the computing fields. De Freitas [29]

defined digital learning games as “applications using the
characteristics of video and computer games to create engaging
and immersive learning experiences for delivering specified
learning goals, outcomes, and experiences”. While this learning
strategy has been present for a long time in the elementary and
middle education, it is increasingly becoming more common in
the higher education [30]. Although there is still a debate about
the real effectiveness of games for learning [31], many studies
endorse this practice as pedagogically well-founded [32] and
useful. The digital games for learning, or serious games, have
also been applied for a long time outside the educational field,
for example in the military or public and private organizations.
In these cases, their application is more commonly referred as
“training” instead of “learning”.

From the point of view of games-for-learning design and
development, it is a huge interdisciplinary field, ranging from
software engineering, artificial intelligence, psychology,
pedagogy, physics, and art, just to name the more involved
areas. Also, due to the great variety of game types (e.g.,
adventure, puzzle, strategy, sports, fighting, platform, role-play,
shooter) and purposes, it is recognized that neither a universal
game template nor a universal architecture does exist yet [33].
Architectures are also influenced by platforms (e.g., mobile,
web, desktop, console, virtual reality) or schemes such as local
or distributed, single or multiplayer, interoperability or
integration requirements (e.g., embedded in learning
management systems). According to [33], current research
areas in games for learning involve at least the following:
Efficient development processes, architecture blueprints,
interoperability and data exchange, emerging user interfaces,
arising gaming technologies, domain-specific game engines,
and model-driven development.

Despite the current degree of maturity of the field of digital
games for learning, it can still be seen as “in development”.
There are a variety of examples of successful applications in
general domains as well as in highly-specialized ones. Two
comprehensive surveys [34, 35] analyzed a total of 272 works.
[34] comprised works from 2004 to 2009, and [35] from 2010
to 2016. Every surveyed work reported empirical evidence of
the benefits of using computer games with respect to learning,
among other effects. Diverse disciplines such as business,
computing, engineering, health, history, language,
mathematics, science, social issues, and military, were
addressed by those games. This situation provides a clue about
envisioning a future with an expanded use of games in the
higher education.

The following studies are selected examples of applications
of digital games in computing education, especially those
designed to help students learn programming as well as
software engineering.

In [36], a suite of four programs was developed to help
learn Java for students with no programming experience. This
suite was composed of the following applications: A first game,
which helped the student learn typing Java source code. A
second, multiple-choice game, based on the Xbox360
controller that helped the student to understand the Java
programming structure. A third, two-players competition game
that aimed to complete missing words in a Java source code.

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1991

Finally, a game that incorporated scripted commands to
perform actions over game characters, in a style that reminded
the utilized in visual programming.

In [37], it was developed a framework aimed to improve the
development of computational thinking in students. This ability
is a set of reasoning skills that allow people interact and think
through the language of computation, which in turn is a key
ability to be a programmer.

In [38], it was developed a set of games that consisted of a
set of exercises arranged into categories freely chosen by
students according to their particular preferences. These games
were built on top of a free Java game development
environment. The main use of this tool was to ease the learning
of topics covered in an introductory programming course, such
as basic programming constructs, structured instructions,
subroutines, recursion, arrays, files, and complex data types.

In another study [39], it was implemented an Android-
based game focused on help children, above eight years old, to
learn the principles of object-oriented programming together
with the principles of software engineering. Other work [40]
built a pedagogical game, called Age of Computers, to be used
in the course Computer Fundamentals as a replacement of
weekly paper exercises. A mobile game was developed in [41]
for learning the ActionScript language in a course using PBL as
a learning strategy. In [42], a virtual game simulating a board
game named SCRUMI was implemented for teaching the
SCRUM framework for software projects management.

A comprehensive survey of games for learning in the area
of software engineering was conducted in [43], where a total of
106 studies were found and classified as belonging to Game-
Based Learning (GBL), Game-Development-Based Learning
(GDBL), or Gamification.

With the initiatives described in this section, we are
prompted to believe that serious games can be successfully
applied in many areas of computing education, and probably
we will continue seeing this tendency in the near future.

V. THE USE OF DIGITAL GAMES AND INTERACTIVE
SIMULATORS TO TEACHING COMPUTER GRAPHICS

In the particular case of using interactive simulators and
games for teaching CG, some efforts have taken place in the
recent years as games have been gaining popularity as a
learning strategy in the higher education. In the following, a
survey of these efforts is presented. This includes those works,
classified as GDBL, which involve students in developing their
own games as a way of learning CG topics. Also, those works
that proposed interactive simulators, although not exactly
games. Finally, those works, classified as GBL, which
explicitly utilized digital games (not developed by the students
themselves) for learning CG fundamentals. These three
different learning strategies are represented in Fig. 3.

The methodology consisted of reviewing the literature for a
broad span going from the late 90s to the present. This span
was chosen in order to encompass all the considered modern
era of CG, seen as a discipline and as a curriculum. The
databases searched were the following: IEEE Xplore, ACM
Digital Library, Elsevier’s ScienceDirect, SpringerLink, Web

of Science, and Google Scholar. The keywords searched were a
combination of computer graphics, education, video games,
serious games, digital games, artifacts, and learning.

Although diverse studies arose when searching, only those
belonging to the CG topics domain and under the categories of
“development of games”, “interactive didactic artifacts”, and
“playing video games for learning”, were included. Many
studies that proposed the use of libraries such as OpenGL,
Direct 3D, Java3D, and others, to be used in class as
programming assignments or to teach CG topics with
prototypes or frameworks provided by lecturer were not
included. This decision was made to effectively separate all
works that didn’t propose solutions based on games or
solutions without an important degree of interactivity.

Fig. 3. Three surveyed strategies for teaching CG topics.

A. GDBL approaches
A top-down approach to structure an introductory CG

course and the use of Java3D as the programming API to
develop a game is the strategy described in [14]. Researchers
implemented an interactive tool to learn and practice Java3D
(named Interlab3D) as well as a didactic multiuser game engine
written in Java3D (named enJine) to ease the development of a
3D game as a semester project. While the course contents were
not oriented to games development, authors found attractive
this alternative for teaching introductory CG. In this case, the
whole syllabus was designed to match the theory with the
practice. A video game was incrementally developed at the
same pace as the topics were studied in order to have a game
completion at the end of the course. Three assignments
corresponded to the practice part of the course, starting with the
modeling of the static components of the game, then building
the dynamic components and finally working on the game
completion.

Another research where game design is seen as a useful
strategy for teaching CG is found in [44]. In this study,
researchers implemented a platform in C++, named GameX,
built on top of OpenGL and DirectX. A novel approach, in this
case, was that the platform architecture allowed a varied degree
of program abstraction. For example, students could learn by

CG Syllabus

Programming
video games

Develop full game /
Develop components

Learning
strategy

Student
ac vity

Learn CG fundamentals
by programming

video games
Learning

goal

GDBL

CG Syllabus

Interac ve simulators

Use simulators

Learn CG fundamentals
by interac ng and
experiment with

simulators

Simulators

CG Syllabus

Didac c
video game

Play video game

Learn CG fundamentals
by playing a
video game

GBL

CG Syllabus

Programming
video games

Develop full game /
Develop components

Learn CG fundamentals
by programming

video games

CG Syllabus

Interac ve simulators

Use simulators

Learn CG fundamentals
by interac ng and
experiment with

simulators

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1992

calling low-level functions to draw primitives in the basic level
of abstraction or could apply 3D modeling concepts in the next
level. At the highest level, students could develop a game in a
collaborative and interdisciplinary manner. Moreover,
advanced students were able to learn through the platform
source code itself. The platform architecture supported
introductory CG courses requiring simple projects and
assignments by using its basic interface. Also, it supported
intermediate courses that required team projects by using its
intermediate interface. Finally, it supported advanced courses,
like those oriented to games development that required
collaborative and highly interdisciplinary projects, by using its
high-level interface.

A similar approach is found in [45], where a collaborative
and competitive development of a multiplayer racing game was
implemented in an introductory CG course with the help of a
proprietary framework named eNVyMyCar. Authors organized
all the practice exercises around this framework, which has a
single-server and multiple-client architecture. The world
represented consisted in a static part that included all the fixed
elements of the scene, and a dynamic part that essentially
represented the state of the race, like cars position, orientation,
and speed. The framework was designed in such a way that
students did not have to know networking or the game physics
details. Students just were concentrated on interactively
describing and rendering scenes using simple C++ classes.
When commands from the clients to the server were sent, the
system broadcast them, together with the system state, to all the
clients. Additionally, clients could send snapshots of the
rendering provided by the player in order to other students
could appreciate the visual results and added with this a
competition factor regarding who achieved the more refined
scene or effects.

In [46], some elements of games programming were
incorporated in an introductory CG course (designed with a
top-down approach) to help students to understand the core
learning objectives. In this case, no full-game was developed
by students, but game design principles were incorporated into
regular programming assignments in order to engage and
motivate students to pursue an active learning.

Authors in that study classified courses that involve games
and programming in three categories: Games development
classes, games programming classes, and games development
clients. The first category included those courses designed
specifically to develop new games as an end product, so they
were concerned with all aspects of real games production. The
second category included classes that study technical aspects of
games programming, such as loops, path planning, and terrains,
just to name a few, and usually, it was not required to build an
end product but individual components. Authors positioned
their work in the third category, the games development client,
which are courses that creatively integrated games into their
syllabus, just as programming assignments, or to teach abstract
concepts, or as an example of application areas.

Game elements were incorporated in such a way that they
did not compromise the syllabus schedule, for example not
dedicating lecture time to cover topics specific to games
programming. In order to achieve this, authors first identified

the contents shared by both, the introductory CG and the
Games Programming domains. Also, they identified the
contents that are seen in-depth in CG courses only (e.g.,
transformations, modeling, viewing, projections, illumination,
rendering buffers, textures). Finally, they identified the
essential contents suitable for games programming only (e.g.,
Newtonian physics, scripting, sprites animation, resources
management, artificial intelligence, audio programming, file
formats).

A fundamental strategy followed in that study was the
concept of a CDA (Concept Demonstration Application),
which were custom-built, event-driven interactive programs
that demonstrate specific foundational CG concepts. As a result
of that project, more than one hundred of CDAs were
implemented to support topics included in the CG syllabus as
well as in the programming assignments involving games
programming elements.

B. Interactive simulators
Some of the earliest works proposing the use of interactive

simulators to teach CG were based on Java applets and
emerged in the late 1990s. This is the case of the applets
developed by Patrick Min in 1996 [47], which covered CG
topics such as Bézier curves, 2D transformations, 3D viewing,
clipping, and lighting. According to [48], these applets were
used successfully in the classroom, mainly to complement class
explanations as students could visually review the results after
lecturer interacted with these applets when covering specific
topics related to the textbook content.

A similar study, in 1998, implementing Java applets, is
documented in [49], where a web-based course was supported
by lessons, examples, programming exercises, and
documentation. The role of the Java applets, in this case, was
both, to be an interactive tool to learn CG concepts and to be a
programming framework where students extended the
functionality of existent applets or develop new ones as class
assignments.

Still, another study in 1998 using Java applets and Virtual
Reality Modeling Language (VRML) is presented in [50],
where a framework for the development of educational
applications was proposed as a means to create interactive 3D
models to teach and clarify the working of certain graphics
algorithms.

A similar approach was followed in [51], in 2002, where
more than fifty interactive applications written as Java applets
were developed to help students learn specific topics in an
online CG course. These applications covered CG contents
such as 2D/3D geometrical transformations, digital image
processing, z-buffer algorithm, smooth shading, lighting
models, materials, texture-mapping, rendering, animation, as
well as others. All these contents were grouped in eight areas or
chapters, according to the online course organization,
enumerated as follows: Rendering, image processing, digital
image representations, 2D image generation, 3D coordinate
transformations, 3D modeling, computer animation, and digital
image and modeling. These Java applets were not games in the
sense of having fun with them but had interactive elements to
engage students in learning. Also, a feedback mechanism to

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1993

encourage students to study harder and keep records of their
learning status was also implemented. This feature was
important considering that this proposal was aimed to support a
distance-learning course. Students were going to study and
learn through the course online lessons and materials, as well
as interacting with the Java applets to learn all the CG contents.
An important benefit of the Java applets approach is that
students needed only an Internet browser to use them, no other
software installation was needed.

Another study that aimed to develop an environment that
supported interactive applications to teach CG, as well as
virtual reality concepts, is found in [52]. In this work, it was
developed a didactic framework, named Mental Vision that
could be used as a graphics engine in practice sessions or
student projects. The framework was developed in C++ and
OpenGL. A set of applications featuring real-time and dynamic
demonstrations of the course contents was also developed.
Every application presented a single topic through an intuitive
interface that allowed a dynamic modification of the
parameters of the exposed algorithms. The same framework
could be utilized to rendering and handling the 3D content in
projects that involved advanced virtual reality interfaces, such
as data-gloves, head-mounted displays, motion capture, and
haptic workstations. A later update of this same work [53]
reported an expanded multiplatform support for heterogeneous
devices, such as mobile devices as well as Cave Automatic
Virtual Environments (CAVEs).

C. GBL approaches
In this category, the development of a set of web-based

games was proposed in [54] as an aid for students enrolled in
Engineering Graphics. It is an introductory engineering course,
included in many engineering curricula, that is related to
visualizing 3D environments, constructing auxiliary views, and
dimensioning and tolerancing. In that work, each game was
constructed as an individual web page using JavaScript code to
create the logic of a variety of puzzles. The main concepts that
puzzles helped students learn were: An introduction to
graphics, multi-view drawings and pictorials, constructing
auxiliary views, manipulation of parts and a reference
coordinate system in a 3D space, and dimensioning and
tolerancing. While this approach was not specially intended to
teach CG but Engineering Graphics, the improving on
visualization skills, through the use of the games, might have
benefits in the learning and performance of students in CG as
well.

Work [55], presented in 2016, proposed an environment
named: Gamified Training Environment for Affine
Transformations (GEtiT), that used a 3D space to visualize the
effects of translations, rotations, scaling, reflections, and
shearing. The game required mastering 3D transformations to
modify objects to achieve a given goal position or shape. The
learning tasks were designed according to the level design, the
selection of a type of transformation, and the victory or goal
conditions. Transformations were represented as cards, and
immediate visual feedback was generated by the game engine.
Authors of this work explain the game goal as follows: “GEtiT
players start trapped in a sealed room from which they can only
escape when they open the portal. In order to do so, they need

to transform the object using their transformation types in such
a way that it matches the victory conditions. However, they
have to pay attention to the environment as the object cannot
translate through obstacles that are placed at a particular level.
Once the object matches the victory conditions, the portal gets
activated, and the players can proceed to the next level”. This
game was tested in the classroom and obtained a similar
learning outcome than traditional methods. However, students
reported a higher enjoyment during the learning process.

VI. DISCUSSION
After reviewing different efforts found in the literature that

aimed to improve the teaching of CG through interactive
simulators and games, it is worth summarizing some findings.

There were eleven studies found in the literature in total,
spanning from the late 90’s to 2016. Four studies belonged to
the category of GDBL, five were in the category of interactive
simulators, and two were about GBL, that is, playing video
games as the learning strategy. These proportions are shown in
Fig. 4.

Fig. 4. The proportion of studies belonging to each category.

The oldest efforts were those that implemented interactive
simulators. All of them, except one, were presented in the late
90’s and proposed Java applets as the technology chosen to
create the simulators. It seems that, at the time, the newly
extended capabilities to run stand-alone applications powered
by Java applets and generate 3D graphics directly through the
web browsers, without any installation of libraries or local
applications, greatly favored the emergence of this kind of
proposals. Also, they were well suited to support the first e-
learning courses in CG. Only one of the surveyed studies in this
category was proposed in the first decade of the 2000s, and in
this case, a lot of new tools and technology, including virtual
reality and supporting heterogeneous devices was envisioned.

The four studies in the category of GDBL were proposed in
the first decade of the 2000s. They utilized the prevalent
graphics libraries such as OpenGL, Direct3D, and Java3D
together with programming languages such as C++ or Java to
create frameworks that simplified the student coding for games
development. All the surveyed studies in this category were
chosen to fit the case of proposing the development of games in

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1994

the context of a CG course, not in a Game Development
course.

Considering the broad span of the last twenty-two years,
which is almost the same span that the considered modern CG
field (and curriculum) has, this survey accounted for a non-
homogeneous distribution of the three categories of analyzed
studies. For example, as Fig. 5 depicts, in the first interval,
from 1995 to 2000, there were only proposals of simulators
present. In the second interval, from 2001 to 2006, there was a
presence of the three categories. It was the only interval where
this situation happened. The third interval, from 2007 to 2012,
only had proposals of GDBL. It can be seen that almost the
same number of proposals regarding simulators is found in the
two consecutive intervals from 1995 to 2006. A similar
situation with the GDBL category occurred in the two
consecutive intervals from 2001 to 2012. Finally, in the fourth
interval, only the category of GBL is present, although it
consists of just one study.

Only two studies were found in the category of GBL for
learning CG. One of them proposed in 2001, and the other in
2016. It is worth noting that the study of 2001 is not directly
oriented to CG but to an Engineering Graphics course, that
although having some topics in common, was not entirely
focused on the CG syllabus. Also, the second study, although
directly oriented to CG, it was only designed to cover the
“affine transformations” topic, and nothing else.

From data shown in Fig. 5 is evident that the category
where fewer proposals exist is the GBL. Just two studies in the
last twenty-two years propose that students in introductory
courses of CG play video games to learn the course contents.
This can be seen as strange if it is considered the high
popularity that didactic games have in other domains.

Fig. 5. Distribution of studies in the last twenty-two years.

VII. CONCLUSIONS
While CG teaching has some decades of refinements,

syllabi evolution, and adaptations to the continuous advances in
graphics technology, there is always a need of creative
proposals to present learning materials to students and engage
them in learning.

There is evidence that the use of digital games for learning
in higher education has been attempted in diverse domains such
as science, engineering, and computing courses, as an effort to
motivate students to improve their learning. However, the full
potential benefit of GBL seems unaccomplished in the specific
case of teaching computer graphics, with very few efforts
found in the literature aimed to incorporate this approach.
Studies closer to this vision were those that implemented a
collection of simulators to practice CG concepts. Nevertheless,
simulators have just a didactic part but miss a fun part that only
a game can provide. The GBL category, as classified in this
study, accounted for just two proposals in a huge span of
twenty-two years. With this study, authors aim to increase
awareness about the detected necessity of diversifying the
current offering of digital games in this particular area, which
in turn can lead to improvements on how CG is taught in the
classroom.

REFERENCES
[1] T. Alley.,“Computer Graphics Knowledge Base Report”, 2006. [Online].

Available:https://education.siggraph.org/resources/knowledge-
base/report. [Accessed: 10-Nov-2017]

[2] T. Alley et al., "knowledge base for the emerging discipline of computer
graphics," presented at the ACM SIGGRAPH 2006 Educators program,
Boston, Massachusetts, 2006.

[3] C. Laxer and J. Orr, "A Knowledge Base for the Emerging Discipline of
Computer Graphics”: Report of the SIGGRAPH Education Committee
Curriculum Working Group," in Workshop on Computer Graphics
Education (CGE’06), 2006.

[4] L. E. Hitchner and H. A. Sowizral, "Adapting computer graphics
curricula to changes in graphics," Computers & Graphics, vol. 24, no. 2,
pp. 283-288, 2000.

[5] Khronos Group, “OpenGL”, 2017. [Online]. Available:
https://www.opengl.org/. [Accessed: 10-Nov-2017]

[6] Microsoft, “Direct3D”, 2017. [Online]. Available:
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466.
[Accessed: 10-Nov-2017]

[7] Khronos Group, “WebGL”, 2017. [Online]. Available:
https://www.khronos.org/webgl/. [Accessed: 10-Nov-2017]

[8] E. Angel, "Teaching a three-dimensional computer graphics class using
OpenGL," ACM SIGGRAPH Computer Graphics, vol. 31, no. 3, pp. 54-
55, 1997.

[9] S. Cunningham, "Re-inventing the introductory computer graphics
course: providing tools for a wider audience," Computers & Graphics,
vol. 24, no. 2, pp. 293-296, 2000.

[10] S. Cunningham, "Powers of 10: the case for changing the first course in
computer graphics," ACM SIGCSE Bulletin, vol. 32, no. 1, pp. 46-49,
2000.

[11] J. O. Talton and D. Fitzpatrick, "Teaching graphics with the OpenGL
shading language," ACM SIGCSE Bulletin, vol. 39, no. 1, pp. 259-263,
2007.

[12] E. Angel and D. Shreiner, Interactive computer graphics : a top-down
approach with WebGL, 7th edition. ed. Boston: Pearson, 2015.

[13] J. Linares-Pellicer, P. Micó, J. Esparza-Peidro, and E. Carrasquer-Moya,
"Computer Graphics: From Desktop to Mobile and Web," IEEE
Computer Graphics and Applications, vol. 31, no. 4, pp. 94-96, c3,
2011.

[14] R. Tori, J. L. Bernardes Jr, and R. Nakamura, "Teaching introductory
computer graphics using java 3D, games and customized software: a
Brazilian experience," in ACM SIGGRAPH 2006 Educators program,
2006, p. 12: ACM.

[15] R. P. Mihail, J. Goldsmith, N. Jacobs, and J. W. Jaromczyk, "Teaching
graphics for games using Microsoft XNA," in Computer Games: AI,
Animation, Mobile, Interactive Multimedia, Educational & Serious

0

1

2

3

4

5

6

1995-2000 2001-2006 2007-2012 2013-present

Interactive Simulators GDBL GBL

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1995

Games (CGAMES), 2013 18th International Conference on, 2013, pp.
36-40: IEEE.

[16] K. Sridharan, "Teaching computer graphics and robotics using symbolic
computation software," Computer Applications in Engineering
Education, vol. 8, no. 1, pp. 18-30, 2000.

[17] R. Wolfe, "Bringing the introductory computer graphics course into the
21st century," Computers & Graphics, vol. 24, no. 1, pp. 151-155, 2000.

[18] E. Paquette, "Computer Graphics education in different curricula:
analysis and proposal for courses," Computers & Graphics, vol. 29, no.
2, pp. 245-255, 2005/04/01/ 2005.

[19] M. A. Roller, "A Consensus on the Definition and Knowledge Base for
Computer Graphics," Ph. D. Dissertation, Purdue University, USA,
2016.

[20] ACM/IEEE, ACM, Ed. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science.
New York, NY, USA: ACM, 2013, p. 518.

[21] J. D. Foley, Introduction to computer graphics. Reading, Mass.:
Addison-Wesley, 1994.

[22] D. Hearn and M. P. Baker, Computer graphics, C version, 2nd ed. Upper
Saddle River, N.J.: Prentice Hall, 1997.

[23] F. S. Hill, Computer graphics : using OpenGL, 2nd ed. Upper Saddle
River, N.J.: Prentice Hall, 2001.

[24] E. Angel, Interactive computer graphics : a top-down approach with
OpenGL, 2nd ed. Reading, Mass.: Addison-Wesley, 2000.

[25] K. Sung and P. Shirley, "A top-down approach to teaching introductory
computer graphics," Computers & Graphics, vol. 28, no. 3, pp. 383-391,
6// 2004.

[26] G. Taxén, "Teaching computer graphics constructively," Computers &
Graphics, vol. 28, no. 3, pp. 393-399, 2004.

[27] G. Domik and F. Goetz, "A breadth-first approach for teaching computer
graphics," in EG 2006, 2006.

[28] E. Martí, D. Gil, and C. Julià, "A PBL Experience in the Teaching of
Computer Graphics," Computer Graphics Forum, vol. 25, no. 1, pp. 95-
103, 2006.

[29] S. de Freitas and M. Oliver, "How can exploratory learning with games
and simulations within the curriculum be most effectively evaluated?,"
Computers & Education, vol. 46, no. 3, pp. 249-264, 4// 2006.

[30] N. Whitton, Learning with digital games: a practical guide to engaging
students in higher education, 1 ed. (Open and Flexible Learning Series).
New York: Routledge, 2009.

[31] P. Backlund and M. Hendrix, "Educational games - Are they worth the
effort? A literature survey of the effectiveness of serious games," in
Games and Virtual Worlds for Serious Applications (VS-GAMES), 2013
5th International Conference on, 2013, pp. 1-8.

[32] M. Kebritchi and A. Hirumi, "Examining the pedagogical foundations of
modern educational computer games," Computers & Education, vol. 51,
no. 4, pp. 1729-1743, 2008.

[33] H. Söbke and A. Streicher, "Serious Games Architectures and Engines,"
in Entertainment Computing and Serious Games: Springer, 2016, pp.
148-173.

[34] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, and J. M. Boyle,
"A systematic literature review of empirical evidence on computer
games and serious games," Computers & Education, vol. 59, no. 2, pp.
661-686.

[35] E. A. Boyle et al., "An update to the systematic literature review of
empirical evidence of the impacts and outcomes of computer games and
serious games," Computers & Education, vol. 94, pp. 178-192.

[36] T. Mitamura, Y. Suzuki, and T. Oohori, "Serious games for learning
programming languages," in Systems, Man, and Cybernetics (SMC),
2012 IEEE International Conference on, 2012, pp. 1812-1817: IEEE.

[37] C. Kazimoglu, M. Kiernan, L. Bacon, and L. Mackinnon, "A serious
game for developing computational thinking and learning introductory
computer programming," Procedia-Social and Behavioral Sciences, vol.
47, pp. 1991-1999, 2012.

[38] R. Hijon-Neira, Á. Velázquez-Iturbide, C. Pizarro-Romero, and L.
Carriço, "Serious games for motivating into programming," in Frontiers
in Education Conference (FIE), 2014 IEEE, 2014, pp. 1-8: IEEE.

[39] S. Ramírez-Rosales, S. Vázquez-Reyes, J. L. Villa-Cisneros, and M. D.
León-Sigg, "A Serious Game to Promote Object Oriented Programming
and Software Engineering Basic Concepts Learning," in 2016 4th
International Conference in Software Engineering Research and
Innovation (CONISOFT), 2016, pp. 97-103.

[40] G. Sindre, L. Natvig, and M. Jahre, "Experimental Validation of the
Learning Effect for a Pedagogical Game on Computer Fundamentals,"
IEEE Transactions on Education, vol. 52, no. 1, pp. 10-18, 2009.

[41] N. F. Rozali and N. M. Zaid, "Code puzzle: ActionScript 2.0 learning
application based on problem based learning approach," in 2017 6th ICT
International Student Project Conference (ICT-ISPC), 2017.

[42] A. D. D. Souza, R. D. Seabra, J. M. Ribeiro, and L. E. D. S. Rodrigues,
"SCRUMI: A Board Serious Virtual Game for Teaching the SCRUM
Framework," in 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), 2017, pp. 319-321.

[43] M. R. D. A. Souza, L. F. Veado, R. T. Moreira, E. M. L. Figueiredo, and
H. A. X. Costa, "Games for learning: bridging game-related education
methods to software engineering knowledge areas," in 2017 IEEE/ACM
39th International Conference on Software Engineering: Software
Engineering Education and Training Track (ICSE-SEET), 2017, pp. 170-
179.

[44] R. C. Hoetzlein and D. I. Schwartz, "GameX: a platform for incremental
instruction in computer graphics and game design," presented at the
ACM SIGGRAPH 2005 Educators program, Los Angeles, California,
2005.

[45] F. Ganovelli and M. Corsini, "eNVyMyCar: A Multiplayer Car Racing
Game for Teaching Computer Graphics," Computer Graphics Forum,
vol. 28, no. 8, pp. 2025-2032, 2009.

[46] K. Sung, P. Shirley, and B. R. Rosenberg, "Experiencing aspects of
games programming in an introductory computer graphics class," in
ACM SIGCSE Bulletin, 2007, vol. 39, no. 1, pp. 249-253: ACM.

[47] P. Min, “Computer Graphics Applets”, 1996. [Online]. Available:
http://min.nl/cs426/applets.html. [Accessed: 26-Nov-2017]

[48] K. Karpouzis and S. Kollias, "The rendering pipeline in the classroom: a
diversified approach," presented at the Proceedings of the 6th annual
conference on the teaching of computing, Dublin City Univ., Ireland,
1998.

[49] R. Klein, F. Hanisch, W. Stra, "Web-based teaching of computer
graphics: concepts and realization of an interactive online course",
presented at the ACM SIGGRAPH 98 Conference abstracts and
applications, Orlando, Florida, USA, 1998.

[50] H. Baerten and F. Van Reeth, "Using VRML and JAVA to visualize 3D
algorithms in computer graphics education," Computer Networks and
ISDN Systems, vol. 30, no. 20, pp. 1833-1839, 1998.

[51] T. Nishita et al., "Development of a Web Based Training system and
Courseware for Advanced Computer Graphics Courses Enhanced by
Interactive Java Applets," in Proceedings of International Conference on
Geometry and Graphics, 2002, vol. 2, pp. 123-128.

[52] A. Peternier, D. Thalmann, and F. Vexo, "Mental vision: a computer
graphics teaching platform," in International Conference on
Technologies for E-Learning and Digital Entertainment, 2006, pp. 223-
232: Springer.

[53] A. Peternier, F. Vexo, and D. Thalmann, "The mental vision framework-
a platform for teaching, practicing and researching with computer
graphics and virtual reality," Transactions on edutainment I, pp. 242-
260, 2008.

[54] S. W. Crown, Improving Visualization Skills of Engineering Graphics
Students Using Simple JavaScript Web Based Games. Journal of
Engineering Education, 90: 347–355, 2001.

[55] S. Oberd and M. E. Latoschik, "Interactive gamified 3D-training of
affine transformations," presented at the Proceedings of the 22nd ACM
Conference on Virtual Reality Software and Technology, Munich,
Germany, 2016.

978-1-5386-2957-4/18/$31.00 ©2018 IEEE 17-20 April, 2018, Santa Cruz de Tenerife, Canary Islands, Spain
2018 IEEE Global Engineering Education Conference (EDUCON)

Page 1996

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

