
International Journal of Transportation Science and Technology 7 (2018) 74–88
Contents lists available at ScienceDirect

International Journal of Transportation
Science and Technology

journal homepage: www.elsevier .com/locate / i j ts t
Modeling route choice criteria from home to major streets:
A discrete choice approach
https://doi.org/10.1016/j.ijtst.2017.12.002
2046-0430/� 2017 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Tongji University and Tongji University Press.
Jose Osiris Vidana-Bencomo a, Esmaeil Balal b, Jason C. Anderson c, Salvador Hernandez d

aDept. of Civil Engineering, Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles 1210, 32310 Ciudad Juárez, Chihuahua, Mexico
bDept. of Civil Engineering, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
c School of Civil and Construction Engineering, Oregon State University, 211 Kearney Hall, 1491 Southwest Campus Way, Corvallis, OR 97331, USA
d School of Civil & Construction Engineering, Oregon State University, 309 Kearney Hall, 1491 Southwest Campus Way, Corvallis, OR 97331, USA

a r t i c l e i n f o
Article history:
Received 22 May 2017
Received in revised form 17 November 2017
Accepted 19 December 2017
Available online 27 December 2017

Keywords:
Discrete choice model
Origin-destination matrix
Route choice
Traffic simulation
Transportation planning
a b s t r a c t

A discrete choice model that consists of three sub-models was developed to investigates
the route choice criteria of drivers who travel from their homes in the morning to the
access point along the major streets that bound the Traffic Analysis Zones (TAZs). The first
sub-model is a Nested Logit Model (NLM) that estimates the probability of a driver has or
has no multiple routes, and if the driver has multiple routes, the route selection criteria are
based on the access point’s intersection control type or other factors. The second sub-
model is a Mixed Logit (MXL) model. It estimates the probabilities of the type of intersec-
tion control preferred by a driver. The third sub-model is a NLM that estimates the prob-
abilities of a driver selecting his/her route for its shortest travel time or to avoid
pedestrian, and if the aim is to take the fastest route, the decision criteria is based on
the shortest distance or minimum stops and turns. Data gathered in a questionnaire survey
were used to estimate the sub-models. The attributes of the utility functions of the sub-
models are the driver’s demographic and trip characteristics. The model provides a means
for transportation planners to distribute the total number of home-based trips generated
within a TAZ to the access points along the major streets that bound the TAZ.
� 2017 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Backgound and motivation

This paper describes the development of a discrete choice model to predict the route choice criteria of drivers when they
travel from homes to the access points of major streets, i.e., intersections along the main streets that bound the Traffic Anal-
ysis Zones (TAZs). This research is motivated by the network representation in a Microscopic Traffic Simulation (MTS) model
as well as the need to convert an Origin-Destination (O-D) matrix from a Metropolitan Transportation Planning (MTP) model
into the counterpart in a MTS.

In the past ten years, advances in MTS has enable several relatively new and commercial software to have the capability
to simulate large urban networks faster than real-time. Along with this trend, several vendors have been marketing
both MTP software and MTS software as compatible packages. Examples of such bundles are VISUM-VISSIM and
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TransCAD-TransModeler. However, users of such tools must aware that MTP models are macroscopic while MTS models
are microscopic. They represent objects in the network in different levels of details. Shelton et al. (2015) and Nava
et al. (2012) have also developed tools that facilitate the so-called ‘‘multiresolution simulation”. These tools are to convert
a macroscopic MTP model into a mesoscopic traffic simulation model, and a mesoscopic traffic simulation model into a
MTS model, respectively. The scope of this paper is about converting the O-D matrix of a MTP model directly into a
MTS model.

MTP tools, being macroscopic in nature, model an urban area as multiple interconnected TAZs. Typically, each TAZ has
one traffic generator (or centroid) that loads vehicles into the network and receives vehicles from the network. Users of
MTS simulation usually demand a more detail network representation in order to simulate the traffic more realistically
and to be able to identify local traffic problems. For example, a TAZ may be as small as 1 km � 1 km to 5 km � 5 km in area,
depending on the population density, O-D trips and other factors. A TAZ in a MTP model is typically bounded by several arte-
rials (or highways), has only one centroid and one connector that loads and receives vehicles between the centroid and one
of the arterials. A MTS model usually codes this TAZ into several zones. Each zone its respective traffic generator that loads
vehicles into and receives vehicles from an arterial. In this way, traffic load from this TAZ is split into several smaller zones,
access and egress points along the major streets. This prevents an over-estimation of traffic demand and congestion at a sin-
gle loading point, as often observed in MTP models.

The VISUM-VISSIM and TransCAD-TransModeler packages mentioned above, convert a TAZ in a MTP model into one traf-
fic zone in the corresponding MTS model. To the best of the authors’ knowledge, tool or algorithm has not been developed to
facilitate the coding of a TAZ into multiple MTS zones, and to split the trips generated from and attracted to this TAZ into
these zones. Users of MTS models always have to hard code and traffic zones, connectors and manually ‘‘guestimate” the
traffic volume from/to each zone.

This paper assumes that, given the network topology of a TAZ, the major access points of traffic from the TAZ to the sur-
rounding arterials can easily be identified. The objective of this research was to develop a disaggregated discrete choice
model (DCM) to analyze drivers’ route choice preferences when they select the routes from their homes to the access points
of a city’s transportation network. To make the model transferable, we have designed the choice set to be the route choice
criteria (instead of specific routes in a TAZ). The model’s attributes are based on socioeconomic characteristics and morning
trip habits of the drivers. The data used to develop the DCM was obtained from a stated preference survey described in this
paper.

The outline of this paper is as follows. After explaining the background and motivation, the next section of this paper
reviews the application of DCMs in route choice. The subsequent section covers the model’s framework and the fundamental
concepts of DCM. This is followed by the description of the data used, and the model development process. The developed
model was than applied to a TAZ in a case study, before making the conclusion.
2. Literature review

This section reviews the application of DCM and its variants in route choice analysis. DCMs have traditionally been used
to mimic real life decisions, and in the transportation domain travel demand estimation, especially in mode choice. Wan
et al. (2009) calibrated a Multinomial Logit (MNL) model to represent a commuter’s route choice as a function of land use
and transportation infrastructure. Yang et al. (2013) used cross-NLM and traditional NLM to describe the joint choice of res-
idential location, travel mode, and departure time as functions of housing cost, travel time, travel cost and socio-
demographic characteristics of the traveler. Song et al. (2015) analyzed a traveler’s modes choice among bus, metro, walking,
cycling, taxi and driving automobile by constructing a NLM as functions of value of time, trip distance, among other factors.
Brands et al. (2014) presented a NLM to predict a traveler’s mode choice. The choice set included single modes (including
driving car) and multiple combinations of public transportation modes. The generalized cost functions included travel time,
trip distance, waiting and transfer time and mode specific constants.

DCMs have also been applied in public transportation. Mehta and Lou (2013) tested a MNL model, a NLM and a Mixed
Logit (MXL) model to predict the seat belt use of school bus riders in Alabama. Three alternatives were considered in the
choice set: wearing, not wearing, and improperly wearing seat belts. A student’s choice probabilities of these alternatives
are modeled as functions of the student’s demographic characteristics, trip attributes, seat location and level of bus driver’s
involvement. The NLM and MXL model were recommended. Nassir et al. (2015) used a NLM model to estimate the traveler’s
choice of transit access (boarding) stop as functions of available transit modes (among bus, train and ferry), the available
routes within each modes and the departure times.

In the context of this research, some of the most recent applications of DCM have focused on the route choice behavior
under the influence of traffic information and network topology. Xu et al. (2010) developed a MNL model to estimate a trav-
eler’s route choice behavior under the provision of traveler information. The attributes included the traveler’s socio-
demographic characteristics, content of traffic information and departure time. Mai et al. (2015) proposed a route choice
model in which the choice of path is modeled as a sequence of link choices. This nested recursive logit model used link travel
time; turn penalties, as the attributes of the links.
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3. Modeling framework

DCMs predict human decisions among a set of distinct alternatives. In this application, it is used to predict a driver’s route
choice criteria when selecting a route from his/her home to an access point along a major street at the boundary of the TAZ,
in the morning peak hour. The choice set consists of factors affecting the driver’s decision on his/her routes. The probability
of a driver selecting a route choice criterion is modeled as a function of the availability of routes, his/her demographic char-
acteristics, trip characteristics, and personal route choice preference (street and intersection characteristics).

It is assumed that all residents in the TAZ are well informed of the various routes, street characteristics and traffic con-
ditions. Choices among the different alternative routes are based on his/her own implicit decision criteria.

3.1. Model structure

Three different sub-models were developed to capture the decision process of a driver. The reason three sub-models were
estimated instead of one was the limitation of the sample size in the observed data. Fig. 1 illustrates the structure of the
model. The node at the first level (level I) is a binary decision node where the driver decides (1) if he/she has no multiple
routes to access the main streets (No Multiple) or, (2) he/she has multiple routes to access the main streets (Multiple). If
the driver has multiple routes, he/she then makes a (level II) decision on the route based on (1) the type of intersection con-
trol (Intersection) or, (2) the factor that is not related to intersection control (Not Intersection). If the driver’s choice is Inter-
section, the next (level III) decision is to select one out of three types of intersection control: Traffic Signal, Four-Way Stop or
Two-Way Stop as his/her criterion. If the driver’s choice is Not Intersection, he/she will select between two alternatives: Fastest
Route or Avoid Pedestrians. Under the Fastest Route option (level IV), there are two more branches: Shortest Distance or Min-
imum Stops and Turns.

3.2. Fundamentals of discrete choice models

In the context of route choice, logit-based models have been successfully applied to several recent studies (Raveau et al.,
2014; Mai et al., 2015; Tan et al., 2015; Dalumpines and Scott, 2017). Therefore, the current study adopts this discrete choice
model for a route choice application. For this work, specifically, the attractiveness of an alternative is modeled based on a
linear-in-parameters function (Washington et al., 2011):
Uin ¼ bixin þ ein ð1Þ

where Uin ¼ utility of alternative i to driver n; bi ¼ row vector of estimated coefficients for alternative i; Xin ¼ column vector
of measured attribute values for alternative i for driver n; ein ¼ disturbance term that attempts to capture the unobserved
factors present in the data.

Taking Eq. (1), the probability of driver n choosing alternative i can be represented by the standard multinomial logit form
(Song et al., 2015; Washington et al., 2011):
Pin ¼ eUinP
je

Ujn
ð2Þ
There are different types of DCMs, with different assumptions. The MNL model is one of the most basic forms of DCMs. Its
extensions, the NLM and MXL models were used in this research. The MNL model, NLM and MXL model are explained in the
next three sub-sections.

3.3. Multinomial logit model

The MNL model assumes that each ein is independent and identically distributed and follows a Gumbel distribution. In a
MNL model, the probability of user n choosing outcome i is Washington et al. (2011), McFadden (1981):
PnðiÞ ¼ ebiXinP
IebIXIn

ð3Þ
With a set of observed data Xin, the coefficients bi may be estimated by the method of maximum likelihood. Two-tailed t-
test is used to evaluate the significance of each of the estimated coefficients. The log-likelihood ratio test is employed to eval-
uate the significance of the log-likelihood value obtained during MNL model estimation. This test compares the log-
likelihood value ðLLÞ of the model with all parameters set to zero, excluding the constant, to the model with all estimated
parameters. Often, these two models are called the restricted model (log-likelihood at zero, only the constant) and the unre-
stricted model (log-likelihood with all estimated parameter). The log-likelihood expression follows a v2 distribution and is
represented as Washington et al. (2011):
v2 ¼ �2½LLðbRÞ � LLðbUÞ� ð4Þ



Fig. 1. Structure of discrete choice model.
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Another common metric used to evaluate overall model fit is the McFadden Pseudo R-Squared value (also referred to as
q2):
q2 ¼ 1� LLðbUÞ
LLðbRÞ

ð5Þ
The McFadden Pseudo R-Squared value, q2, is a scalar measure which varies between 0 and 1. However, unlike linear
regression, values between 0.10 to 0.20 are said to have adequate fit, while values between 0.20 and 0.40 are said to have
exceptional fit (McFadden, 1973, 1977).

Marginal effects are used to evaluate the impact of change in an attribute’s value. The marginal effect represents the
change in probability due to a one-unit increase in an attribute value. For a binary attribute, the marginal effect is computed
as the difference in probability when an attribute (explanatory variable) changes from zero to one (Greene, 2012):
MPnðiÞ
Xinj

¼ Pr½PnðiÞ ¼ 1j�XðXinjÞ;Xinj ¼ 1� � Pr½PnðiÞ ¼ 1j�XðXinjÞ;Xinj ¼ 0� ð6Þ
where �XðXinjÞ is the means of all other variables (i.e., all other variables are held constant) while Xinj changes from zero to one.

3.4. Nested logit model

The NLM groups the alternatives that are suspected to have shared error terms and/or unobserved values (ein) in a nested
(sequential) decision tree. The probability expression is structured by unconditional and conditional cases that form the
decision tree of the model. The probability of driver n selecting outcome i after making the decision on alternative j is com-
puted as:
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PnðiÞ ¼ eðbiXinþ/iLinÞP
8IeðbIXInþ/ILSInÞ ð7Þ

PnðjjiÞ ¼ eðbjjiXnÞP
8Je

ðbJjiXJnÞ ð8Þ

LSin ¼ ln
X
8J

eðbJjiXJnÞ
" #

ð9Þ
where PnðiÞ ¼ the unconditional probability of driver n selecting outcome i; X ¼ vector of explanatory variables (i.e., measur-
able characteristics) used to determine the probability of outcome i; b ¼ vector of estimated parameters based on X;
PnðjjiÞ ¼ conditional probability of driver n selecting outcome j conditioned on the outcome being in outcome category i;
LSin ¼ inclusive value (also referred to as the logsum); /I = estimable parameter associated with LSin, in which 0 < /i < 1.

Lastly, to determine if the nested structure is the appropriate modeling framework, the inclusive value must be statisti-
cally different than 1. To assess this, a t-statistic is calculated to determine if the inclusive value, LSin, is statistically different
from 1 (Washington et al., 2011):
t� ¼ bLSin
� 1

SEðbLSin
Þ ð10Þ
where t� is a t-statistic based on the estimate of the inclusive value, bLSin
, and the standard error of the inclusive value,

SEðbLSin
Þ.

3.5. Mixed logit model

The MXL model, unlike the traditional MNL, can account for driver-specific variation due to variation within the data. This
variation is often a result of not all data being available or a result of factors that are unseen to the analyst (commonly
referred to as unobserved heterogeneity). To do this, bi is given a mixing distribution (typically specified to be normal,
but several distributions are tested for statistical significance), in which parameters are now permitted to vary across drivers.
If this variation is not accounted for, model estimates and their corresponding inferences will be incorrect (Cerwick et al.,
2014; Mannering et al., 2016; Anderson and Hernandez, 2017). Therefore, the choice probability based on the expression
of the MNL model (Eq. (2)) can now be represented in terms of a mixing distribution (McFadden and Train, 2000;
Washington et al., 2011; Mehta and Lou, 2013):
PnðijhÞ ¼
Z
x

eðbiXinÞP
8IeðbIXInÞ f ðbijhÞdbi ð11Þ
where PnðijhÞ ¼ the weighted outcome probability of outcome i conditional onf ðbijhÞ; f ðbijhÞ ¼ density function of bi condi-
tional on the distribution parameter h, in which the distribution of bi is specified by the analyst.1

4. Data

A questionnaire survey was conducted to collect data at the individual driver level for the estimation of the attribute coef-
ficients in the utility functions. The survey instrument consisted of 16 questions in four sections to capture a respondent’s
demographic characteristics, morning trip characteristics, stated route choice preference and access point from home to the
main street. Data from the first three sections were used to estimate the model coefficients while the answers in the fourth
section were to check the consistency of earlier answers. The description of the variables and their categories are listed in
Table 1.

The initial survey instruments were tested with 40 participants and revised before conducting the full survey from Jan-
uary to February 2011. The potential participants were approach by surveyors either in their residences, or at public areas
(e.g., shopping malls). They were offered the options of fill out the forms themselves or be interviewed by surveyors.

A total of 1,133 El Paso residents participated in this survey, of which 484 participants (43%) said they decided on their
routes based on the type of intersection control, 429 participants (38%) used criteria other than the type of intersection con-
trol, and finally, 218 participants (19%) answered that they had no alternate routes to travel to the main street. Among the
subjects who choose Intersection, the percentage splits between the four types of intersection control are: 55% for signalized
intersections, 20% for four-way stop control, 24% for two-way stop control and 1% roundabout and others. For those partic-
ipants who selected their routes by criteria other than intersection control, the distribution of the criteria was: 55% based on
shortest route, 20% based on minimum stops and turns, 19% based on avoiding school zone or pedestrians, and 5% depending
density function of bi is what allows the parameters to vary across drivers; therefore, allowing for driver-specific variation. This distribution can be
as any distribution (e.g., uniform, triangular, lognormal, etc.), but only a distribution with statistically significant standard deviations is used.



Table 1
Variables obtained from questionnaire survey.

Variable Description and choices

Demographic
Gender Gender (1–male, 0–female)
Age Age (1 < 25, 2–25 to 34, 3–35 to 49, 4–50 to 64, 5–65 and older)
Income Annual household income (1–<$20 k, 2–$70 k to $89 k, 3–$20 k to $39 k, 4–$40 k to $69 k, 5– $90 k to $150 k,

6–>$150 k)
Education Highest education level (1–high school, 2-community college, 3–undergraduate, 4–graduate)
Zip Zip code (5 digits)
Household size Household size (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more)
No. of vehicles in household Number of vehicles in the household (1–1, 2–2, 3–3, 4–4 or more)

Trip characteristics
Purpose of weekday trip Purpose of trips in a typical weekday morning (1–work, 2-school, 3-shopping/grocery, 4-gym, 5-other), may

select more than 1 option
Stop in the neighborhood Stop in the neighborhood before leaving the TAZ (1-at least a stop, 0-no stop)
Stop location If Stop in the Neighborhood is ‘‘at least one stop”, the type of location (1–gas station, 2-coffee shop, 3-

daycare, 4-grocery store, 5-restaurant, 6-other), may select more than 1 option
Times leaving in the morning Number of home-base trips out of TAZ in a typical weekday morning (1–1, 2–2, 3–3, 4–4 or more)
Times returning in the morning Number of trips from outsize of TAZ to home in a typical weekday morning (1–1, 2–2, 3–3, 4–4 or more)

Route choice preference
Route choice preference Characteristics of route choice preference (1-intersection, 0-not intersection)
Intersection If Preference is ‘‘intersection”, the type of intersection control to access the main street (1-traffic signal, 2-

four-way stop, 3-two-way-stop, 4-other)
Not intersection If Preference is ‘‘not intersection”, the other factors (1-shortest distance, 2-minimize stops, 3-avoid

pedestrian, 4-drive through wider street, 5-other)

Access point
Street names Intersection to access the main street, denoted by the name of the neighborhood street and the name of the

main street (text)
Ideal intersection control Preferred type of intersection control in the neighborhood (1-traffic signal, 2-two-way stop, 3-four-way stop,

4-roundabout)
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on other criteria. The demographic attributes of the participants are cross tabulated with their route choice preferences in
Table 2. Values in parenthesis correspond to the total number of responses. The characteristics of the morning trips are cross
tabulated with route choice preferences in the Table 3.

5. Discrete choice modeling

The data obtained from the survey were used to develop the different sub-models since in some cases of the MXL, the
outcomes do not follow a nested structure; therefore, it would be inaccurate to fit a nested logit model. In some other cases
there is a clear nested structure which requires that a nested logit model be fit which will be explained in next sections. The
method of maximum likelihood was applied to estimate the coefficients of the utility functions, using LIMDEP (Greene,
2012). The criteria of t-statistics of between �1.28 and 1.28 (i.e., at 0.20 level of significance) was applied to select the attri-
butes (Greene, 2012; Mai et al., 2015). The decision of 0.20 level of significance is due to the sample size. The selected attri-
butes in the model and their descriptive statistics are listed in Table 4.

5.1. NLM1 – no multiple or multiple routes sub-model

The first (level I) decision node of the model (Multiple or No Multiple) was estimated as a sub-model. During the survey
some drivers selected No Multiple because they may be using the same route every day without realizing the existence of
alternate routes. Because of this, an Independence of Irrelevant Alternatives (IIA) violation could be present with the two
subsequent options: traffic control and non-traffic control. To avoid this issue, a NLM was proposed as this sub-model to rep-
resent these choices. This NLM is denoted as NLM1. In this sub-model the first node contained the No Multiple and Multiple
binary choices. Below the Multiple option, the choices of traffic control and non-traffic control were available. Table 5 lists all
the independent variables with their estimated coefficients, t-statistics and marginal effects.

In order to justify the initial assumption of utilizing the NLM, Eq. (10) is used to calculate t�. With an estimated value of
1.487 and standard error of 0.204, t� is equal to 2.38; therefore, with over 95% confidence, the inclusive value is statistically
significant from 1. This shows that the nested logit structure used in NLM1 is correct for this group of choices (see
Washington et al., 2011) for further details on nested logit model fit criteria). In terms of significance of log-likelihood values,
Eq. (4) results in a v2 of 61.49 with 18 degrees of freedom. This indicates with well over 99% confidence that the model with
estimated parameters is of more significance than the model with only the constants.

The interpretation of the coefficients indicates that drivers with a household size of four are less likely to consider mul-
tiple routes and are also less likely to select the routes based on the type of intersection control. Marginal effects indicate that



Table 2
Results of questionnaire rvey: demographic data.

Attribute tegory Total
response

Route choice preference Intersection Not Intersection

Intersection Not
intersection

No
multiple

Traffic
lights

4 Way
stop

2 Way
stop

Other Shortest
distance

Minimize
stops &
turns

Avoid
pedestrians

Wider
streets

Other

Gender ale 44.0% (486) 18.6% (205) 16.1% (178) 9.3%
(103)

50% (99) 20.2%
(40)

27.3%
(54)

2.55 (5) 59.9%
(106)

19.8%
(35)

14.1% (25) 0.0%
(0)

6.2%
(11)

male 56.0% (618) 23.8% (263) 22.1% (244) 10.1%
(111)

59.8%
(155)

18.5%
(48)

20.8%
(54)

0.8%
(2)

52.1%
(124)

20.6%
(49)

22.3% (53) 0.8%
(2)

4.2%
(10)

Age 5 yrs 17.2% (193) 7.1% (80) 7.0% (79) 3.0% (34) 53.8%
(42)

20.5%
(16)

24.4%
(19)

1.3%
(1)

61.5%
(48)

17.9%
(14)

17.9% (14) 1.3%
(1)

1.3%
(1)

to 34 yrs 24.0% (270) 10.0% (112) 9.3% (104) 4.8% (54) 47.2%
(51)

20.4%
(22)

31.5%
(34)

0.9%
(1)

52.5%
(53)

18.8%
(19)

24.8% (25) 0.0%
(0)

4% (4)

to 49 yrs 26.0% (292) 10.4% (117) 10.9% (123) 4.5% (51) 54.3%
(63)

19% (22) 25.9%
(30)

0.9 (1) 52.5%
(64)

19.7%
(24)

18.9% (23) 0.0%
(0)

9% (11)

to 64 yrs 22.8% (257) 11.4% (128) 6.9% (77) 4.6% (52) 55.2%
(63)

19.2%
(22)

22.4%
(28)

7% (3) 57.9%
(44)

25.0%
(19)

14.5% (11) 0.0%
(0)

2.6%
(2)

& older 10.0% (113) 4.0% (45) 3.7% (42) 2.3% (26) 79.1%
(34)

14.0%
(6)

7.0% (3) 0% (0) 56.1%
(23)

14.6% (6) 19.5% (8) 2.4%
(1)

7.3%
(3)

Income $20,000 15.3% (167) 6.5% (71) 5.7% (62) 3.1% (34) 55.4%
(36)

20.0%
(13)

23.1%
(15)

1.5%
(1)

59.7%
(37)

21.0%
(13)

17.7% (11) 0.0%
(0)

1.6%
(1)

0,000–$39,999 28.7% (313) 12.0% (131) 10.8% (118) 5.9% (640 56.9%
(74)

21.5%
(28)

20.8%
(27)

0.8%
(1)

46.1%
(53)

21.7%
(25)

29.6% (34) 0.9%
(1)

1.7%
(2)

0,000–$69,999 32.8% (358) 14.1% (154) 12.2% (133) 6.5% (71) 55.0%
(83)

17.9%
(27)

26.5%
(40)

0.7%
(1)

55.0%
(72)

20.6%
(27)

15.3% (20) 0.8%
(1)

8.4%
(11)

0,000–$89,000 13.8% (151) 6.0% (66) 5.4% (59) 2.4% (26) 49.2%
(32)

20.0%
(13)

30.8%
(20)

0.0% (0) 54.2%
(32)

22.0%
(13)

16.9% (10) 0.0%
(0)

6.8%
(4)

0,000–
50,000

8.0% (87) 3.4% (37) 3.1% (34) 1.5% (16) 55.6%
(20)

16.7%
(6)

22.2%
(8)

5.6%
(2)

69.7 (23) 15.2% (5) 12.1% (4) 0.0%
(0)

3.0%
(1)

er $150,000 1.5% (16) 0.5% (6) 0.5% (5) 0.5% (5) 66.7% (4) 0.0% (0) 16.7%
(1)

16.7%
(1)

100.0%
(4)

0.0% (0) 0.0% (0) 0.0%
(0)

0.0% (0)

Education igh school 28.0% (311) 11.4% (126) 11.4% (127) 5.1% (57) 56.6%
(69)

24.6%
(30)

17.2%
(21)

1.6%
(2)

51.6%
(64)

27.4%
(34)

16.9% (21) 0.8%
(1)

3.2%
(4)

mmunity
llegue

26.4% (293) 11.9% (132) 9.4% (104) 5.1% (57) 51.6%
(66)

18.8%
(24)

28.9%
(37)

0.8%
(1)

57.8%
(59)

19.6%
(20)

19.6% (20) 0.0%
(0)

2.9%
(3)

dergraduate 36.8% (409) 15.9% (176) 14.3% (159) 6.7% (74) 57.0%
998)

16.3%
(28)

26.2%
(45)

0.6%
(1)

53.5%
(85)

16.4%
(26)

23.9% (38) 0.6%
(1)

5.7%
(9)

aduate 8.8% (98) 3.9% (43) 2.9% (32) 2.1% (23) 55.8%
(24)

16.3%
(7)

20.9%
(9)

7.0%
(3)

71.0%
(22)

12.9% (4) 3.2% (1) 0.0%
(0)

12.9%
(4)
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Household size 1 5.4% (61) 2.6% (290 1.7% (19) 1.2% (13) 70.4%
(19)

18.5%
(5)

11.1%
(3)

0.0% (0) 55.6%
(10)

22.2% (4) 11.1% (2) 0.0%
(0)

11.1%
(2)

2 18.4% (206) 7.4% (83) 6.8% (76) 4.2% (47) 72.0%
(59)

11.0%
(9)

14.6%
(12)

2.4%
(2)

56.8%
(42)

16.2%
(12)

18.9% (14) 1.4%
(1)

6.8%
(6)

3 19.5% (219) 9.1% (102) 7.1% (80) 3.3% (37) 57.6%
(57)

17.2%
(17)

23.2%
(23)

2.0%
(2)

60.8%
(48)

19.0%
(15)

13.9% (11) 1.3%
(1)

5.15 (4)

4 29.9% (336) 11.7% (131) 13.1% (147) 5.2% (58) 52.8%
(67)

17.3%
(22)

29.9%
(38)

0% (0) 52.1%
(75)

22.2%
(32)

21.5% (31) 0.0%
(0)

4.2%
(6)

5 19.7% (221) 9.2% (103) 7% (78) 3.6% (40) 42.2%
(43)

28.4%
(29)

28.4%
(29)

1% (1) 57.7%
(45)

19.2%
(15)

20.5% (16) 0.0%
(0)

2.6%
(2)

6 4.5% (50) 1.7% (19) 1.5% (17) 1.2% (14) 52.6%
(10)

31.6%
(6)

10.5%
(2)

5.3%
(1)

47.1% (8) 11.8% (2) 29.4% (5) 0.0%
(0)

11.8%
(2)

7 1.3% (15) 0.4% (5) 0.4% (5) 0.4% (5) 40.0% (2) 20.0%
(1)

20.0%
(1)

20.0%
(1)

60.0% (3) 40.0% (1) 0.0% (0) 0.0%
(0)

0.0% (0)

8 0.9% (10) 0.3% (3) 0.3% (3) 0.4% (4) 66.7% (2) 0.0% (0) 33.3%
(1)

0.0% (0 66.7% (2) 0.0% (0) 33.3% (1) 0.0%
(0)

0.0% (0)

9 0.3% (3) 0.2% (1) 0.1% (1) 0% (0) 0.0% (0) 50.0%
(1)

50.0%
(1)

0.0% (0 100.0%
(1)

0.0% (0) 0.0% (0) 0.0%
(0)

0.0% (0)

10 or more 0.1% (1) 0.1% (0) 0.0% (0) 0% (0) 0.0% (0) 0.0% (0) 100% (1) 0.0% (0 0.0% (0) 0.0% (0) 0.0% (0) 0.0%
(0)

0.0% (0)

No. of vehicles in
household

1 16.9% (190) 7.9% (89) 5.3% (60) 3.7% (41) 56.8%
(50)

22.7%
(20)

20.5%
(18)

0.0% (0 58.6%
(34)

24.1%
(14)

13.85 (8) 0.0%
(0)

3.4%
(2)

2 50.0% (561) 22.2% (249) 18.8% (211) 9.0%
(101)

56.0%
(136)

16.9%
(41)

25.5%
(62)

1.6%
(4)

54.5%
(115)

17.5%
(37)

22.3% (47) 0.9%
(2)

4.7%
(10)

3 24.7% (277) 9.7% (109) 10.0% (112) 5.0% (56) 53.8%
(57)

18.9%
(20)

25.5%
(27)

1.9%
(2)

57.4%
(62)

17.6%
(19)

17.6% (19) 0.0%
(0)

7.4%
(8)

4 or more 8.4% (94) 2.9% (32) 3.7% (42) 1.8% (20) 51.6%
(16)

25.8%
(8)

19.4%
(6)

3.2%
(1)

53.7%
(22)

29.3%
(12)

143.6% (6) 0.0%
(0)

2.4%
(%)

Number in brackets are frequencies of responses.
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Table 3
Results of questionnaire survey: trip characteristics.

Attribute Category Response
Total

Route choice preference Intersection Not Intersection

Intersection Not
intersection

No
multiple

Traffic
lights

4 Way
stop

2 Way
stop

Other Shortest
distance

Mini stops
& turns

avoid
pedestrians

Wider
streets

Other

Purpose ot the Weekday Trip
(more THAN one option)

Work 71.9%
(813)

19.1% (365) 15.0% (287) 8.4%
(161)

53.5%
(192)

18.7%
(67)

27.0%
(97)

0.8%
(3)

56.4%
(159)

21.3% (60) 17.7% (50) 0.0% (0) 4.6%
(13)

School 45.5%
(515)

12% (228) 10.0% (191) 5% (96) 48.9%
(108)

18.6%
(41)

32.1%
(71)

0.5%
(1)

51.0% (98) 21.9% (42) 20.3% (390 0.5% (1) 6.3%
(12)

Shopping /
Grocery

31.5%
(356)

8.4% (161) 6.6% (126) 3.6%
(69)

55.3%
(88)

16.4%
(26)

25.8%
(41)

2.5%
(4)

50.4% (61) 21.5% (26) 22.3% (27) 0.8% (1) 5.0%
(6)

Gym 11.9%
(135)

2.3% (44) 2.9% (55) 1.9%
(36)

48.8%
(21)

23.3%
(7)

25.6%
(11)

2.3%
(1)

54.5% (30) 21.8% (12) 20.0% (11) 0.0% (0) 3.6%
(2)

Other 7.8% (88) 2.0% (38) 1.8% (34) 0.8%
(16)

70.3%
(26)

18.9%
(7)

5.4%
(2)

5.4%
(2)

56.3% (18) 25.0% (8) 15.6% (5) 3.1% (1) 0.0%
(0)

Stop in the neighborhood No Stop 29.5%
(334)

10.0% (113) 12.6% (143) 6.9%
(78)

57.9%
(66)

17.5%
(20)

22.8%
(26)

1.85
(2)

58.9% (83) 14.2% (20) 18.4% (26) 0.0% (0) 8.5%
(12)

Stop 70.5%
(797)

32.8% (371) 25.3% (286) 12.4%
(140)

54.5%
(195)

19.6%
(70)

24.6%
(88)

1.4%
(5)

53.7%
(151)

22.8% (64) 19.9% (84) 0.7% 92) 3.2%
(9)

Stop locations (more than one
option)

Gas station 79.5%
(627)

22.8% (301) 16.3% (215) 8.4%
(111)

50.2%
(146)

21.0%
(61)

27.1%
(79)

1.7%
(5)

54.0%
(114)

24.2% (51) 18.0% (38) 0.9% (2) 2.8%
(6)

Coffee shop 18.0%
(142)

5.28% (69) 3.7% (49) 1.8%
(24)

59.1%
(39)

16.7%
(11)

19.7%
(13)

4.5%
(3)

52.1% (25) 16.7% (8) 20.8% (10) 2.1% (1) 8.3%
(4)

Day care 9.5% (75) 2.9% (38) 2.1% (28) 0.7% (9) 56.4%
(22)

20.5%
(8)

20.5%
(8)

2.6%
(1)

53.8% (14) 19.2% (5) 23.1% (6) 0.0% (0) 3.8%
(1)

Grocery
store

45.1%
(356)

13.6% (180) 9.4% (124) 3.9%
(52)

56.3%
(99)

20.5%
(36)

21.6%
(38)

1.75
(3)

44.6% (54) 28.9% (35) 23.1% (28) 0.8% (1) 2.5%
(3)

Restaurant 11.5%
(91)

4.2% (55) 17% (22) 1.1%
(14)

43.4%
(23)

26.4%
(14)

24.5%
(13)

5.7%
(3)

45.5% (10) 18.2% (4) 22.7% (5) 0.0% (0) 13.6%
(3)

Other 3.9% (31) 1.0% (13) 0.9% (12) 0.5% (6) 53.8%
(7)

30.8%
(4)

0.0%
(0)

15.4%
(2)

33.3% (4) 50.0% (6) 8.3% (1) 0.0% (0) 8.3%
(12)

Times leaving in the morning 0 4.8% (54) 2.0% (23) 1.8% (20) 1.0%
(11)

56.6%
(13)

26.1%
(6)

13.0%
(3)

4.3%
(1)

61.1% (11) 11.1% (2) 5.6% (1) 5.6% (1) 16.7%
(3)

1 40.3%
(456)

15.7% (178) 16.9% (191) 7.7%
(87)

53.7%
(94)

20.6%
(36)

24.0%
(42)

1.7%
(3)

55.3%
(104)

19.7% (37) 19.1% (36) 0.5% (1) 5.3%
(10)

2 32.7%
(370)

15.7% (177) 11.2% (127) 5.8%
(66)

49.7%
(86)

19.7%
(34)

30.1%
(52)

0.6%
(1)

58.1% (72) 18.5% (23) 18.5% (23) 0.0% (0) 4.8%
(6)

3 10.2%
(115)

3.4% (39) 4.3% (49) 2.4%
(27)

76.9%
(30)

15.4%
(6)

7.7%
(3)

0.0%
(0)

42.95 (21) 28.6% (14) 28.6% (14) 0.0% (0) 0.0%
(0)

4 or more 12% (136) 5.9% (67) 3.79% (42) 2.4%
(27)

61.3%
(38)

12.9%
(8)

22.6%
(14)

3.2%
(2)

60.5% (26) 18.6% (8) 16.3% (7) 0.0% (0) 4.7%
(2)

Times returning in the morning 0 38.3%
(433)

14.7% (166) 17.0% (192) 6.6%
(75)

56.6%
(90)

19.1%
(31)

24.1%
(39)

1.2%
(2)

57.4%
(108)

19.1% (36) 16.5% (31) 1.1% (2) 5.9%
(11)

1 28.4%
(321)

13.1% (148) 9.5% (108) 5.7%
(65)

51.4%
(76)

24.3%
(36)

22.3%
(33)

2.0%
(3)

55.8% (58) 16.3% (17) 21.2% (22) 0.0% (0) 6.7%
(7)

2 19.5%
(220)

8.8% (100) 6.7% (76) 3.9%
(44)

56.3%
(54)

12.5%
(12)

31.3%
(30)

0.0%
(0)

51.9% (40) 26.0% (20) 13.0% (3) 0.0% (0) 1.3%
(1)

3 4.9% (55) 1.7% (19) 2.1% (24) 1.1%
(12)

73.7%
(14)

15.8%
(3)

10.5%
(2)

0.0%
(0)

56.5% (13) 26.1% (6) 28.6% (14) 0.0% (0) 4.3%
(1)

4 or more 9.0%
(102)

4.5% (51) 2.6% (29) 1.9%
(22)

57.4%
(27)

17.0%
(8)

21.3%
(10)

4.3%
(2)

50.0% (15) 16.7% (5) 30.0% (9) 0.0% (0) 3.3%
(1)

Number in brackets are frequencies of responses.
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Table 4
Descriptive statistics of key variables in the model.

Sub-Models

NLM1 MXL NLM2

Variable Description (1 if yes, 0 otherwise) Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

GENDER Male 0.415 0.493 0.417 0.493
AGE34 Age between 35 and 64 0.481 0.500
AGE5 Age 65 or older 0.924 0.289
HINC2 Annual household income between $70 K to $89 K 0.278 0.448
HINC6 Annual household income >$150 k 0.014 0.116
HIGHSCH High school education level 0.276 0.447 0.258 0.438
GRAD Graduate education level 0.067 0.251
HHSIZE4 Household size of four 0.299 0.458
HHSIZE5 Household size of five 0.217 0.412
HHSIZE6 Household size of six 0.042 0.202
VEHICLE2 Two vehicles in the household 0.497 0.500
VEHICLE3 Three vehicles in the household 0.251 0.433
LEAVE3 Leaves home 3 times in the morning in a weekday 0.329 0.470
LEAVE4 Leaves home 4 or more times in the morning in a weekday 0.104 0.306 0.838 0.277 0.123 0.329
RETURN1 Return home once in a weekday morning 0.282 0.450
RETURN2 Return home twice in a weekday morning 0.311 0.463
SCHOOL Trip destination is school 0.455 0.498 0.447 0.497
DAYCARE Regularly stops at daycare center 0.066 0.249
COFFEE Regularly stops at coffee shop 0.108 0.310 0.108 0.310
REST Regularly stops at restaurant 0.077 0.267 0.107 0.309
GASSTN Regularly stops at gas station 0.615 0.486 0.510 0.500
GROCERY Regularly stops at grocery store 0.317 0.466 0.291 0.454
OTHER Regularly stops at other locations 0.027 0.164
INT1 Prefers traffic signal as the type of intersection control 0.480 0.500
INT4 Prefers roundabouts as the type of intersection control 0.092 0.289 0.100 0.300

Table 5
Estimation results for NLM1 sub-model.

Variable Description (1 if yes, 0 otherwise) Coefficient t-Stat Marginal effects

No Multiple
HINC6 Annual household income >$150 k 0.8481 1.505 0.131
HHSIZE4 Household size of four �0.5033 �2.632 �0.078
LEAVE4 Leaves home 4 or more times in a morning 0.4512 1.372 0.070
REST Regularly stops at restaurant �0.6214 �1.813 �0.096
INT4 Prefers roundabouts 0.4700 1.753 0.073

Multiple
HHSIZE6 Household size of six �0.5974 �1.759 –
RETURN1 Returns home once in the morning 0.4221 2.543 –
GROCERY Regularly stops at grocery store 0.5093 2.791 –
INT1 Prefers traffic signal �0.3274 �1.996 –

Traffic control
AGE34 Age between 35 and 64 0.2183 2.173 0.057
HHSIZE4 Household size of four �0.4602 �3.143 �0.119
LEAVE3 Leaves home 3 times in a morning 0.3275 2.650 0.085
SCHOOL Trip destination is school 0.1794 1.613 0.047
DAYCARE Regularly stops at daycare center 0.3259 1.454 0.085

Non-traffic control
HIGHSCH High school education level 0.1887 1.507 0.046
LEAVE4 Leaves home 4 or more times in a morning 0.4135 1.782 0.101
REST Regularly stops at restaurant �0.9470 �3.389 �0.231

Inclusive Value 1.4870 7.27

Number of observations 1103
Number of parameters 18
log-likelihood at zero �1159.06
log-likelihood at convergence �1128.32
v2 61.49
q2 0.03
q2 adjusted 0.02
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a driver with a household size of four has a 0.078 lower probability of selecting No Multiple. Similarly, a driver with a house-
hold of four has a 0.119 decrease in probability of selecting Intersection.

No Multiple and non-traffic control have the common attribute of leaving home four times or more in a morning. Marginal
effects suggest that leaving home four times or more in a morning increases the probability of a driver selecting No Multiple
by 0.070, while there is a 0.101 higher probability of selecting Not Intersection.

Drivers who regularly stop at a restaurant during his/her route are less likely to use No Multiple (0.096 lower probability,
according to marginal effects) and non-traffic control (0.231 lower probability, based on marginal effects) as the route choice
criteria. This may indicate that these drivers prefer to select their routes based on Intersection.

Drivers with annual household income higher than $150,000 are more likely to select No Multiple as their route choice (ß
= 0.8481). Presumably their houses have limited access as a result of higher privacy. This attribute has one of the largest mar-
ginal effects, as marginal effects show a 0.131 higher probability of selecting No Multiple if the annual household income is
greater than $150,000.

Drivers who prefer roundabouts in their neighborhood are more likely to select No Multiple (ß = 0.4700). This group shows
interest in roundabout as the type of traffic control in the TAZ. For this variable, marginal effects show that preferring round-
abouts results in a 0.073 increase in probability of a driver selecting No Multiple.

Drivers who are heading to schools in the morning are more likely to select access points to the main street based on the
type of traffic control (ß = 0.1794). The model is probably capturing some safety concerns when drivers are dropping children
off at schools. Marginal effects indicate that a trip to school will increase the probability of selecting traffic control choice by
0.047. This situation is similar to Drivers who regularly stop at day care centers (ß = 0.3259). In this case, a trip to a day care
will increase the probability of selecting traffic control choice by 0.085.

Age is a contributing factor to the use of access points with traffic control. Drivers from 35 to 64 years old have preference
by its use (ß = 0.2183). Marginal effects show that drivers from 35 to 64 years old have a 0.057 higher probability of selecting
traffic control.

Drivers who leave home three times in a morning are more likely to select access points by the type of traffic control (ß =
0.3275). In this case, marginal effects suggest that drivers that leave home three times in a morning have a 0.085 higher
probability of selecting traffic control.

Drivers with a high school education level are more likely to select their routes not by the type of traffic control (ß = 0.1887
for non-traffic control). This may suggest that drivers with only high school education are not as concern with safety issue.
5.2. MXL – traffic control type sub-model

The second sub-model is for the drivers who base their route choice decisions on the type of traffic control. The probability
of a driver selecting among the three types of traffic control as the route choice criterion was modeled by a MXL model. The
choice set consisted of traffic signal, two-way stop and four-way stop controls. The MXL model was selected because it
addresses the weaknesses that can result in erroneous parameter estimates if underlying assumptions of MNL are not
met (Washington et al., 2011) since in the case of the MXL, the outcomes do not follow a nested structure; therefore, it would
be inaccurate to fit a nested logit model.

Table 6 shows the estimated attribute coefficients of the utility functions in the MXL sub-model, including the t-statistics
and marginal effects. Applying Eq. (4), when comparing log-likelihood values of the fixed- and random-parameters models,
results in a chi-square statistic of 5.66 with 2 degrees of freedom (the number of estimated random parameters). Based on a
chi-square distribution, this suggests that the log-likelihood of the random parameters model is of more significance with
well over 90% confidence.

Two variables were found to have heterogeneous effects across drivers and have estimated random parameters based on
the statistical significance of the standard deviation: GENDER and GASSTN. The parameters of the probability density func-
tion f ðbijhÞ of these variables are (-0.508, 5.079) for males and, 3.803) for drivers who regularly stops at gas stations before
they leave the TAZ. Specifically, GENDER was found to have a normally distributed random parameter. With a mean of -0.508
and a standard deviation of 5.079, the normal distribution suggests that 46% of drivers have an estimated parameter mean
greater than zero and 54% of drivers have an estimated parameter mean less than zero. In other words, 46% of male drivers
are more likely to select the intersection with a traffic signal while 54% of male drivers are less likely. The randomness of this
variable may be attributed to road network familiarity by males and unobservable factors related to congestion effects.

In the case of GASSTN, drivers who regularly stop at gas stations was found to have a normally distributed random param-
eter. With a mean of �0.485 and a standard deviation of 3.803, 45% of drivers who regularly stop at gas stations are more
likely to select a route with a traffic signal and 55% are less likely. Usually gas stations are located at intersections controlled
by a traffic signal. Again the variability of this variable may be attributed to unobservable factors related to lifestyle charac-
teristics and congestion effect.

The coefficient of LEAVE4 indicates that drivers are more likely to use an intersection with traffic signal (ß = 1.831) if they
leave home a minimum of four times in one morning. Further, drivers that leave home four or more times were also found to
be less likely to select a route with a four-way stop intersection (ß = �1.084). Marginal effects show that the probability of
using a signalized intersection will increase by 0.010 if a driver leaves home four or more times in a morning. Likewise, the



Table 6
Estimation results for MXL sub-model.

Variable Description (1 if yes, 0 otherwise) Coefficient t-Stat Marginal effects

Traffic Signal
SIGNAL Traffic signal control constant 0.934 3.58 –
GENDER Male �0.508* (5.079)** �0.84

(1.55)
�0.017

AGE5 Age 65 or older 2.613 1.63 0.013
HHSIZE5 Household size of five �1.184 �2.41 �0.027
LEAVE4 Leaves home 4 or more times in a morning 1.779 1.56 0.010
COFFEE Driver who regularly stops at coffee shop 0.877 1.31 0.010
GASSTN Regularly stops at gas station �0.485* (3.803)** �1.10

(1.91)
�0.029

Two-Way Stop
TWSTOP Two-way stop intersection control constant �0.852 �3.97 –
REST Regularly stops at restaurant 0.749 1.77 0.012
RETURN2 Returns home two times in the morning 0.679 2.29 0.030

Four-Way Stop
AGE5 Age 65 or older �1.053 �1.41 �0.004
HIGSCH High school education level �0.813 �2.52 �0.024
LEAVE4 Leave home four or more times in the morning �1.092 �1.47 �0.006

Number of observations 465
Number of parameters 15
log-likelihood at zero �458.80
Log-likelihood of fixed parameters �432.23
log-likelihood at convergence �429.40
v2 (random parameters) 58.80 (5.66)
q2 0.06
q2 adjusted 0.05

* Mean of random coefficient.
** Standard deviation of random coefficient.

J.O. Vidana-Bencomo et al. / International Journal of Transportation Science and Technology 7 (2018) 74–88 85
probability of a driver selecting a four-way stop intersection will decrease by 0.006 if he/she leaves home four or more times
in a morning.2

For the AGE5 variable, the statistics show that drivers 65 and older are more likely to go through an intersection with
traffic signal (ß = 2.613). A possible explanation might be attributed to them being older and seeking safer intersections,
which are generally controlled by signals.

Marginal effects suggest that If a driver is older than 65 years old, the probability that he/she uses a signalized intersec-
tion will increase 0.013 and decrease the probability of selecting a four-way stop intersection by 0.004. A possible reason is
that these drivers are seniors who prefer safer intersections and are in no hurry to arrive to their destinations.

The bigger the household size, the less likely the driver will select a route that consists of a signalized intersection. This is
especially true if the house hold size is five (ß = -1.184). This may be because the drivers need to drop off the rest of the
household members, especially children, to different locations, and therefore they are less likely to use the access points that
are controlled by signals in order to save time. For this factor, marginal effects indicate a 0.027 lower probability of selecting
a traffic signal if the driver has a household size of five.

The more drivers buy coffee in the morning, the more likely they are to pass through a signalized intersection (ß = 0.877).
These drivers probably stop at gas stations at corners of signalized intersections. Marginal effects suggest that an additional
stop for coffee will contribute to an increase in the probability of using a signalized intersection by 0.010.

If drivers on his/her route need to stop at a restaurant, two-way stop intersection choice is most frequently used (ß =
0.749). This might be explained by neighborhood restaurants being located closer to this type of intersection. In terms of
effect, marginal effects show that an additional restaurant stop will lead to an increase in the use of a four-way stop inter-
section by 0.012.

Drivers are more likely to go through a two-way stop intersection (ß = 0.679) if they decide to return home twice. This
attribute may be capturing some driver behavior concerning minimize route impedance. A driver who switch from returning
home other than two times to exactly two times in the morning will cause an increase in the probability of the use of a two-
way stop control intersection by 0.030.

5.3. NLM2 – non-traffic control type sub-model

The NLM was used to model the data related to the choice of non-traffic control. The reason of using NLM was because
there was an IIA violation between Shortest Distance and Minimum Stops and Turns. This estimated sub-model is denoted
2 Being that this variable is present in more than one function, marginal effects on a specific outcome can be ambiguous and must be interpreted in such a
manner (Anderson and Hernandez, 2017).



Table 7
Estimation results for NLM2.

Variable Description of variable (1 if yes, 0 otherwise) Coefficient t-Stat Marginal effects

Fastest Route
GENDER Male 0.582 0.27 –
COFFEE Regularly stops at coffee shop �0.273 �0.67 –

Shortest Distance
SDIST Shortest distance constant 1.196 4.20 –
VEHICLE3 Three vehicles in the household 0.687 1.88 0.105
LEAVE4 Leaves home 4 or more times in a morning �0.539 �1.26 �0.082
SCHOOL Trip destination is school �0.348 �1.29 �0.053
OTHER2 Regularly stops at other locations �1.846 �2.65 �0.281

Min Stops & Turns
VEHICLE2 Two vehicles in the household �0.518 �1.66 �0.075
GROCERY Regularly stops at grocery store 0.884 3.01 0.128

Avoid Pedestrians
AVOIDP Avoid pedestrian constant �0.948 �1.63 –
HINC2 Annual household income $70 k to $89 k 0.793 2.89 0.120
GRAD Graduate education level �1.750 �1.69 �0.264
GASSTN Regularly stop at gas station �0.384 �1.43 �0.058
INT4 Prefers roundabouts �1.284 �2.06 �0.194

Inclusive Value 0.11080 0.29
Number of observations 398
Number of parameters 14
log-likelihood at zero �383.31
log-likelihood at convergence �358.44
v2 49.74
q2 0.06
q2 adjusted 0.05
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as NLM2. In the NLM2 sub-model, the first decision was a binary choice between Fastest Route and Avoid Pedestrian. The more
pedestrian crossing, the more stop time any driver has and that is why it is a binary choice between Fastest Route and Avoid
Pedestrian since there is no possibility to get the Fastest Route with Pedestrians. If a driver selects Fastest Route, he/she has
further options of Shortest Distance or Minimum Stops and Turns as the route choice criteria. Table 7 shows the estimated
attribute coefficients of the utility functions in the NLM2 sub-model, including the t-statistics and marginal effects. In order
to validate the initial assumption of the use of NLM, Eq. (10) is used to calculate t�. With an estimated value of 0.1108 and a
standard error of 0.3864, t� is equal to �2.30. Therefore, will over 95% confidence, the nested logit structure is the correct
form for this data. In terms of log-likelihood significance, with a chi-square statistic of 49.74 and 14 degrees of freedom,
the log-likelihood of the model with estimated parameters is of more significance than the model with only constants with
well over 99% confidence.

The interpretations of these attribute coefficients and marginal effects are discussed in the following paragraphs. A driver
stopping at a coffee store is less likely to travel by a route that is the fastest (ß = �0.273). Males are more likely to drive to the
access points that have the shortest travel time or fastest route (ß = 0.582). This behavior is probably due to the male’s
aggressiveness and impatience over female.

Drivers with three vehicles in the household showed to be more likely to choose the shortest distance (ß = 0.687). Mar-
ginal effects indicate that a one-unit increment of a household with three vehicles will increase the probability of drivers
selecting the shortest distance by 0.105.

Drivers leaving home four or more times in the morning are less likely to choose the access points with the shortest dis-
tance (ß = �0.539). This situation could apply to drivers that make multiple trips and tend to have time to run errands. For
this factor, marginal effects show that a one-unit increment in drivers that leave the home four times or more in the morning
will decrease the probability of selecting the shortest distance by 0.082.

Drivers with final destination being school, or drivers that make other stops during his/her trip, are less likely to choose
the access points with the shortest distance. The reason could be that because the detours to school and other destinations
make them impossible to use the shortest distance paths to directly connecting their homes to the nearest major streets.
With regard to impact, marginal effects suggest that drivers who take a detour to school or another location have a 0.053
and 0.281 lower probability of selecting the shortest distance path, respectively.

Drivers living in households with two vehicles are less likely to take the routes with minimum stops and turns (ß =
�0.518). Specifically, a one-unit increase in drivers with two vehicles in the household will decrease the probability of them
using this choice by 0.075.

Driver who regularly stop at grocery stores during morning trips are more likely to take routes which incur minimum
stops and turns (ß = 0.844). A possible explanation is that drivers going grocery shopping usually like to avoid disturbing
the contents in their vehicles’ trunks. In terms of effect, marginal effects show that drivers stopping at a grocery store will
increase the probability of drivers avoiding turns and stops by 0.128.
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Drivers with annual household income from $70,000 to $89,000 are more likely to avoid streets with pedestrians (ß =
0.793). Assuming that these drivers belong to middle class households, their houses are located away from parks and
schools. Then, these drivers can easily avoid pedestrians during his/her home-based trips. Marginal effects indicate that a
one-unit increase in middle class drivers (household) will increase the probability of traffic trying to avoid pedestrians by
0.120.

Drivers with a graduate education were less likely to choose a route that avoids pedestrians (ß = �1.750). A possible rea-
son is that their decisions on the locations of home parcels already take this pedestrian friendly factor into consideration.
This is the most impactful factors, as marginal effects show a 0.264 lower probability of selecting a route that avoids
pedestrians.

Finally, commuters who stop to refuel gasoline are less likely to avoid pedestrians (ß = �0.384). The result is probably due
to the fact that gas stations are located at intersections with the pedestrian presence.

6. Conclusions

This research has explored the use of three sub-models: one MXL model and two NLMs to quantify the contributions of a
driver’s demographic profile, morning trip characteristics on the probabilities of selecting intersection control types (signal,
two-way stop, four-way stop), fastest route (shortest distance or minimum stops and turns), safer streets (avoiding pedes-
trian) as the criterion for route choice between his/her home to the access point along a major street that bound the TAZ.

Based on the three logit sub-models that have been fitted to the data collected in the City of El Paso, the following obser-
vations may be concluded concerning drivers’ route choices from their homes to the major streets:

� Females, drivers older than 64 years old and drivers stopping at gas stations and coffee shops prefer to select their routes
by the type of traffic control.
o Traffic signal control is preferred by drivers older than 64 years old and also by females.
o Two-way stop control is only preferred by drivers who stop at restaurants and those who return home two times in

the morning.
o Four-way stop intersection is attractive to drivers who go to grocery stores in the morning. Drivers leaving home four

times in the morning, with high school education, or older than 65 years old are less likely to use this type of
intersection.

� Route with the shortest distance is preferred by males or drivers with three vehicles in the household.
� Drivers with graduate degrees or drivers stopping at gas stations tend not to avoid pedestrians. Middle income drivers are
more likely take a route to avoid encountering pedestrians.

The estimated discrete choice model may be combined with the socioeconomic data of the TAZ (readily available in the
metropolitan planning models) to predict the route choice preferences of drivers, fromwhich the total trips generated by this
TAZ during the morning commute may be distributed to multiple access point along the major streets at the boundary of this
TAZ.

The research contributes to a better understanding of the route choice behavior between residential homes and the
boundary of the TAZ, for home-based trips in the morning. The model developed is a step towards the conversion of a
TAZ-based transportation planning O-D matrix into a higher resolution O-D matrix for used in microscopic traffic
simulations.
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