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Abstract. Ultrasound medical images are important for medical diagnose. The
method allows the real-time visualization of organs of the body and it is not
invasive. In this study, a comparison of reconstruction greedy search methods,
used in compressive sensing, is performed. The methods and the algorithms are
explained and experiments are carried out in synthetic and measured data. Result
show that the orthogonal matching pursuit outperforms the other methods in the
greedy search classification.
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1 Introduction

Medical images are important for the diagnose of human beings. An important area of
study is the ultrasound (US) images, which have the special feature of being captured in
real time. The ultrasound signals are acquired through a transducer that sends ultrasonic
waves at a frequency higher than 20 kHz [1], spreading across of the body, until
colliding with the soft tissues which causes the wave to be reflected.

The compressive sensing (CS) area integrates different stages such as sampling,
reduction of the dimensionality, compression and optimization, and it has been used to
introduce improvements in the reconstruction of these images. The CS [2–4] aims at
reconstructing signals by a number of measures significantly lower than the necessary
when using the Shannon/Nyquist sampling theory [5, 6]. To apply the CS to signals, a
fundamental property called sparseness [7, 8] must be fulfilled.

The reconstruction of the US image is usually computationally expensive, hence,
the reconstruction algorithms are an important step in CS. These algorithms are divided
into five groups: Bayesian methods, convex relaxation, greedy search, non-convex
relaxation and brute force [9]. In this paper, a comparison of greedy algorithms for
reconstructing US images is performed. The metrics used are the structural similarity
index (SSIM), which is a quality metric for measuring the similarity between the
original and the recovered images and peak signal to noise ratio (PSNR).
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The paper is organized as follows: Sect. 2 presents the conditions that must be met
both the measurement vector and the sampling matrix to be able to apply the CS. In
Sect. 3, the greedy algorithms (OMP, CoSaMP, HTP and IHT [10–13]) are explained.
Section 4 provides the results of the algorithms when retrieving the US images in
simulated data. Section 5 provides the results of measured data. The paper concludes in
Sect. 6.

2 Compressive Sensing

The goal of CS is to reconstruct a vector x 2 R
N that satisfies the linear equation

y ¼ Ux, where U 2 R
MxN is the sensing matrix and the vector y 2 R

M has a reduction
of dimensionality with respect to the input sparse vector x 2 R

N , that is M � N.
Sparsity property allows to obtain compressed samples, which can be reconstructed

with precision [7, 8]. A signal is sparse if it has only a few non-zero coefficients,
compared to the signal length, for a vector x 2 R

N the sparsity can be expressed as
follows:

xk k0 � k: ð1Þ

A sparse vector x 2 R
N can be represented through with a linear combination of

few coefficients of a known base or dictionary W. If this representation is exact then the
signal is sparse.

xi ¼
Xn

i¼1

ziwi ) x ¼ Wz with zk k0 � k: ð2Þ

W is an array of N � N with w1;w2; . . .wN½ � column vectors and zi the sequence of
coefficients of x [14]. The sparse signals can be recovered using CS if they have been
contaminated with noise y ¼ Uxþ g, where g is the noise component. In order to
reconstruct the signal the Restricted Isometry Property (RIP) [8, 14] must fulfilled.

Theorem 1 [8]. If for any positive number L there exists a Constant Restricted
Isometry (RIC) dL 2 0; 1ð Þ; it is said that the matrix U satisfies the L-order RIP, in
other words,

1� dLð Þ xk k22 � Uxk k22 � 1þ dLð Þ xk k22 for all x such that xk k0 � L: ð3Þ

If U 2 R
MxN satisfies RIP of order 2k implies that the distances between all vectors

k-sparse are preserved. Then, the sampling matrix assign a single vector k-sparse at the
same point. To recover any sparse signal x 2 R

N , that satisfies y ¼ Ux withU 2 R
MxN ,

y 2 R
M and M � N it is required to solve the following optimization problem,
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min xk k0 s:t Ux ¼ y: ð4Þ

When the signal is contaminated with noise, the model of the signal becomes
y ¼ Uxþ g and the optimization problem changes to solve,

min xk k0 s:t y�Uxk k2 � r2n: ð5Þ

where r2n is a measure of the power of the noise. For the two cases of optimization
problems to solve previously mentioned with the l0, they are algorithms of the type NP-
HARD [15]. That is, solving this type of algorithms for any measurement matrix U is
computationally intractable.

3 Greedy Search Algorithms

Greedy algorithms present a simple analysis and low complexity [16]. In these algo-
rithms for each iteration the residue vector is calculated from the projection of the
sparse vector on the sampling matrix ðUÞ, until the stopping condition is satisfied,
throwing an approximation to the original vector as output. Within this group are the
Orthogonal Matching Pursuit (OMP) [10] and the Compressive Sampling Matching
Pursuit (CoSaMP) [11]. Algorithms based on threshold methods are another variety
that give us an approximation to the original vector, among them give the Iterative
Hard Thresholding (IHT) [13] and Hard Thresholding Pursuit (HTP) [12]. The fol-
lowing algorithms are used to find the solution of (6).

x� ¼ argmin xk k0 s:t y�Uxk k2 � r2n: ð6Þ

3.1 Orthogonal Matching Pursuit (OMP)

The OMP is characterized by its simplicity and high speed [10]. The algorithm ini-
tializes a residual vector r equal to the vector y and in each iteration the function is
orthogonally projected on all the vectors that have been selected from the sampling
matrix, until the stop condition is met, resulting in an approximation to the original
vector. The Algorithm 1 implements the OMP.

3.2 Compressive Sampling Matching Pursuit (CoSaMP)

In each iteration, the indices of the 2k-sparse vectors for which the correlation between
the sampling matrix and the residual is maximum. Subsequently, the minimum square
is searched using the selected vectors of the sampling matrix. Leaving only the k largest
components of this solution and updating the residual vector. When the stopping
conditions are met, an approximation to the original vector is obtained. The Algorithm
2 implements the CoSaMP.

The non-linear operator Hk(*) is a hard thresholding of order k which retains the
k highest absolute values of x and makes zero the remaining.
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3.3 Iterative Hard Thresholding (IHT)

Thresholding algorithms use the operator Hk(*) to maintain the k highest absolute
values of x 2 R

N . In each iteration, a better approximation to the vector k-sparse is
sought through the Eq. (7). Where the residue vector is projected onto the sampling
matrix and added to the approximation of the previous iteration and then only the
k higher absolute values of the solution thrown are maintained [17]. The Algorithm 3
implements the IHT.

xnþ 1 ¼ Hk xn þUT y�Uxnð Þ� �
: ð7Þ

3.4 Hard Thresholding Pursuit (HTP)

In each iteration the residue vector is projected on the sampling matrix, the result added
to the approximation of the previous iteration and the supreme of the k highest absolute
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values obtained is sought. Solving a minimum square taking only the selected vectors
columns of the sampling matrix [18]. The Algorithm 4 implements the HTP.

Table 1 shows the RIC conditions a be fulfilled [19] for the strategy tested.

4 Results of Synthetic Data

In this investigation, the image of US of a phantom of cysts [20] was used. The image
was divided into blocks of 8 � 8 samples and the orthonormal basis of the discrete
cosine transform (DCT) was used to obtain the sparse vector. The results show that as
we take fewer samples it becomes more difficult to obtain a reconstructed image similar
to the original one.

Table 2 shows the quantitative results of the cyst phantom. The performance of the
algorithms was measured using the Structural Similarity Index Metric (SSIM) and the
Peak Signal to Noise Ratio (PSNR).

Table 1. RIC conditions for the different algorithms [19].

OMP CoSaMP HTP IHT

d13K < 0.1666 d4K < 0.4782 d3K < 0.5773 d3K < 0.5773
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Figure 1 shows the original and recovered cyst phantom image. Notice that visu-
ally, the recovered images with CoSaMP (Fig. 1(b) and (g)) have dark point that are
not part of the original image.

5 Results of Measured Data

Tests on measured data were performed under the same test conditions as used in the
cyst phantom [20]. Table 3 shows the quantitative results using measured data.

Table 2. Results of the simulation using the cyst phantom [20].

Transformed Algorithm (%) Coefficients SSIM PSNR

DCT-II OMP 15.63 0.92063 31.1298
DCT-II CoSaMP 15.63 0.53382 20.2263
DCT-II HTP 15.63 0.62673 23.8842
DCT-II IHT 15.63 0.62660 23.8387
DCT-II OMP 31.5 0.98245 36.3830
DCT-II CoSaMP 31.5 0.74486 24.9654
DCT-II HTP 31.5 0.87370 28.9667
DCT-II IHT 31.5 0.87362 28.9565
DCT-II OMP 50 0.99847 46.1240
DCT-II CoSaMP 50 0.84211 27.5830
DCT-II HTP 50 0.84633 27.9177
DCT-II IHT 50 0.84606 27.9021

Fig. 1. Synthetic US images (a) original cyst phantom [20] and reconstructed phantoms with
k = 4 and 15.6% of coefficients using (b) OMP, (c) CoSaMP, (d) HTP, (e) IHT, k = 15 and 50%
of coefficients using (f) OMP, (g) CoSaMP, (h) HTP and (i) IHT.
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In Fig. 2, recovered images keeping the 15.6% of the transform coefficients exhibit
blocks artifacts at the edges. The recovered image using the CoSaMP presents the dark
points as in the case of the Fig. 1(b). In the recovered images keeping 50% of the
transform coefficients OMP does not exhibit block artifacts in the edges as the rest of
the methods. However, CoSaMP, HTP and IHT methods show less speckle noise in
smooth regions.

Table 3. Results with real US image

Transformed Algorithm (%) Coefficients SSIM PSNR

DCT-II OMP 15.63 0.77571 25.5944
DCT-II CoSaMP 15.63 0.57632 19.6994
DCT-II HTP 15.63 0.66668 23.2074
DCT-II IHT 15.63 0.66651 23.1992
DCT-II OMP 31.5 0.88170 28.6785
DCT-II CoSaMP 31.5 0.70914 23.2360
DCT-II HTP 31.5 0.71074 24.4908
DCT-II IHT 31.5 0.71047 24.4806
DCT-II OMP 50 0.95891 32.5981
DCT-II CoSaMP 50 0.80196 25.1387
DCT-II HTP 50 0.81063 25.9815
DCT-II IHT 50 0.81009 25.9670

Fig. 2. Measured US data (a) original image and reconstructed images with k = 4 and 15.6% of
coefficients using (b) OMP, (c) CoSaMP, (d) HTP, (e) IHT, and k = 15 and 50% of coefficients
using (f) OMP, (g) CoSaMP, (h) HTP and (i) IHT.
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6 Conclusions

In this study, we compared four algorithms for the reconstruction of signals with CS
applied to US images. The comparisons were made on a cyst phantom and using the
SSIM and PSNR metrics. The discrete cosine transform was used to find the sparse
representation of the image. The results showed that the OMP algorithm has a better
performance in terms of PSNR and SSIM compared to the other algorithms in the
greedy search classification. Therefore, to maintain a good image quality with fewer
samples than the required using the Shannon/Nyquist theorem, the OMP results the
best option algorithm.
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