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Abstract—One of the most important bases for designing robust
closed-loop controllers applied to induction motor with high perfor-
mance is establishing its mathematical model and state observers, as
well as the parameter identification with high accuracy. In this paper,
a step-by-step mathematical model of the squirrel-cage induction
motor is described at αβ coordinate frame where the parameters are
defined in detailed form; the rotor flux linkages and load torque are
estimated via an asymptotic observer; the induction motor parameter
identification is performed via a data acquisition board, applying
dynamic and steady-state tests. Inductances of the induction motor
model are calculated using the proposed relationships between the
magnetically coupled circuit and equivalent circuit model. The
mathematical model, state observers, and parameter identification
procedure of squirrel-cage induction motor are validated via com-
parison of simulation signals with their corresponding real-time
signals. This validation is made experimentally by a steady-state
test, where load conditions are changed via a dynamometer which is
belt coupled with the squirrel-cage induction motor.

1. INTRODUCTION

The induction machine is one of the most common electrical
motors used today. This motor has many applications, due
that, it is a rugged, highly reliable, low cost, and almost
maintenance-free electromechanical device. Despite of being
a common device, one drawback of this motor is that its
mathematical model is very complex, due to its non-linearity
and time variant parameters. The procedure to develop an
induction motor model, and the procedure to identify its
parameters is difficult. Several authors have been addressed
modeling and parameter identification, which are very impor-
tant aspects for designing control algorithms, but they do
not present many details. A novel parameter identification
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process where a single-phase AC test is applied to make
the induction motor stand-still is proposed in [1], [2], and
[3], diverse AC signals are feeding in only two terminals
and no electromagnetic torque is generated. They propose a
monophasic equivalent circuit at terminals a − b and apply
an input–output test with the prediction error method to
obtain indirectly the parameter vector with components: Rs,
Ls, σ , and Tr. The work reported in [1] and [2] includes
saturation magnetic in both total-leakage inductance and
magnetizing inductance. They discretize the standstill-test
circuit impedance to apply an input–output test and obtain
the parameter vector. In [3], the input and output signals,
i.e., voltage and current stator, respectively, are analyzed by
the fast Fourier transform algorithm; the analog low-pass
filters are used to cut off the harmonics around the switching
frequency of these signals. The stator voltage, stator current,
and their derivatives, necessary for the recursive least-square
algorithm, are obtained using the vector constructing method.
[1], [2], and [3] do not present the relationships between the
inductances values obtained with the ones used in the dynamic
model. The parameter identification process results a little
complex and the mechanical parameters are not obtained.

The off-line motor parameter identification method apply-
ing the no-load and rated-running tests with measurements in
the sinusoidal steady-state mode is other technique; this pro-
cess applies linear regression and estimates the equivalent cir-
cuit parameters, [4], [5], and [6]. In [4], a recursive simple
least-square algorithm is applied using the real and complex
components of the transfer function between voltages and cur-
rents by simulations with different noise sources. They apply
DC-test for estimating Rs; no-load test for estimating R f and
Xm, and rated-load test for estimating Xl and R. However, the
relationships between the inductances from equivalent circuit
proposed and the ones of the dynamic model are not clear
which makes it difficult to interpret. Moreover, they do not
report the mechanical parameters. In [5], this paper deals with
off-line parameter identification from input–output data (sta-
tor voltages–stator currents and velocity) supplying the motor
with steady-state sinusoidal voltages. The parameter identifi-
cation is made by the standard recursive least-square (RLS)
algorithm for minimizing the model prediction error, but they
do not consider the rotor leakage inductance and determine
only the equivalent circuit parameters. In [6], the authors pro-
pose an off-line motor parameter identification method apply-
ing model reference adaptive system (MRAS) scheme that
uses a global optimization algorithm based on sparse grid
method named the hyperbolic cross point (HCP) algorithm.
The measured and simulated stator currents are compared in
a cost function to define in recursive form the following set of
parameters: Rs, R′

r, LLs, Ls, H , and LL. The authors commit a

mistake defining the mutual inductance for dynamical model
because they forget the coefficient term of 3/2.

Other parameter identification process is applied from
the starting-test results to refer some output variables with
respect to slip changes, [7] and [8]. In [7], based on steady-
state circuit equivalent, the parameter identification is realized
using electric torque and motor current measures, which are
taken at different slip values. The parameter estimation is
performed off-line using a multi-objective genetic algorithm
to minimize the error between the measured data and the data
obtained from equivalent circuit. The genetic algorithm repre-
sents a high computational load, which makes a complicated
implementation. In addition, that research does not present
the relationships between the inductances values obtained
with the ones used in the dynamic model, and the mechanical
parameters are not obtained. In [8] from starting no-load
test at low voltage, the resistance and reactance curves are
depicted in function of the slip rate, then the recursive least-
square (RLS) algorithm combined with a particle swarm
optimization method is applied to optimize the equivalent cir-
cuit parameters. However, the friction coefficient and inertial
moment are calculated via the equation movement from the
electromagnetic torque using the rotor resistance whose value
is sensitive to temperature changes.

On-line parameter estimation consists of identifying the
evolution of the machine parameters without removing the
machine from service, [9]–[10]. In [9], a two-step approach to
identify the parameters of an induction machine from the mea-
sures of the stator currents at starting test is presented. This
proposal uses both simulation and estimation processes; in the
first stage, an input–output response of the forward induction
motor model with low-quality initial guesses is used to gen-
erate a set of predictions of the stator currents îs; then, in the
second stage, the input is the mismatch between the estimated
and measured stator current vector having as output a param-
eter vector; this process is made in recursive form applying
the Levenberg–Marquardt algorithm until the mismatch of
currents is minimized. In [10], a multi-rate real time model-
based parameter estimation algorithms for induction motor
are applied. The proposed multi-rate EFK method combines
multi-rate control and EFK to estimate motor load torque,
introducing both input and output algorithms. The method is
implemented in real time on a PC cluster node that acts as
a controller to an induction motor experimental set-up. This
paper only estimates the rotor time constant and the method
represents a high computational load, which makes a compli-
cated implementation.

After having reviewed some research about parametric
estimation and modeling of the induction motor, we have iden-
tified the importance of establishing, in a detailed and clear
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way, the procedure for obtaining the model of the induction
motor and the identification of all parameters, both electrical
and mechanical. Thus, from this base knowledge, more
accurate innovative identification techniques can be applied.
Therefore, the main contributions of this research are: (1) a
detailed procedure to obtain the mathematical model for the
squirrel-cage induction motor where the rotor inductance,
stator inductance, and mutual inductance are defined formally
when setting the model at αβ coordinate frame; this method-
ology can be applied to obtain the mathematical model of any
other type of AC machine, such as the doubly fed induction
generator, synchronous machine, and permanent-magnet
machine; (2) the electrical parameter identification is made
via a data acquisition board including the electrical variables
of all phases and computing the consumed power in each
one test with accuracy; in addition, the synchronous test was
made to quantify the core loss; (3) for comparison purposes,
a complete equivalent circuit including core-loss is proposed
with goal of validating the common approaches performed
in standstill test and no-load test which define the equivalent
circuit model.

This paper is organized as follows. In Section 2, the induc-
tion motor mathematical model at αβ frame, rotor flux link-
ages observer, and load torque observer, are developed in
detail. The identification procedure for estimating the elec-
trical and mechanical parameters of the induction motor is
presented in Section 3, where each experiment is explained
in detail. In order to validate the mathematical model and
its parameter identification, a comparison between simulated
and real-time experimental results is discussed in Section 4.
Finally, the conclusions are given in Section 5.

2. THE SQUIRREL-CAGE INDUCTION MOTOR
MODEL

The voltage vector equations in machine variables for the sta-
tor winding and rotor winding, respectively, are:

vABC = RsiABC + d

dt
λABC, (1)

v′
abc = Rri

′
abc + d

dt
λ′

abc, (2)

with

Rs =
⎡
⎣ Rs 0 0

0 Rs 0
0 0 Rs

⎤
⎦ , Rr =

⎡
⎣ R′

r 0 0
0 R′

r 0
0 0 R′

r

⎤
⎦ .

In the above equations, capital letter suffixes are used to iden-
tify the stator variables and lowercase letters to rotor variables.
Rs is the stator resistance per phase, and R′

r is the rotor resis-
tance per phase referred to stator winding. When considering

linearity in the flux linkages–current relation (λ − i), the sta-
tor and rotor flux linkages vector equations may be expressed
in abc system as

λABC = LsiABC + Lsriabc , (3)

λ′
abc = Lriabc + L�

sriABC , (4)

with

Ls =

⎡
⎢⎣

Lss Lsm Lsm

Lsm Lss Lsm

Lsm Lsm Lss

⎤
⎥⎦ ,

Lsr = Lsrm

⎡
⎢⎣

cos θr cos
(
θr + 2π

3

)
cos

(
θr − 2π

3

)
cos

(
θr − 2π

3

)
cos θr cos

(
θr + 2π

3

)
cos

(
θr + 2π

3

)
cos

(
θr − 2π

3

)
cos θr

⎤
⎥⎦ ,

Lr =

⎡
⎢⎣

L′
rr L′

rm L′
rm

L′
rm L′

rr L′
rm

L′
rm L′

rm L′
rr

⎤
⎥⎦ ,

where Lss and Lsm are the stator self-inductance per phase and
stator mutual-inductance between two phases, respectively;
and Lsrm is the amplitude of the mutual inductances between
stator and rotor windings; L′

rr and L′
rm are the rotor self-

inductance per phase and rotor mutual-inductance between
two phases, respectively; both are referred to the stator side.
It is important to remark that the mutual-inductances between
two windings vary periodically due to the relative movement
between the stator winding and rotor winding.

In order to remove the time dependency of the mutual-
inductances between the stator and rotor windings, the Clarke
similitude transformation is applied to change the electrical
variables from abc system to αβ0 coordinate frame, whose
axes are fixed on the stator winding and the α-axis is aligned
with the phase-a axis [11], see Figure 1. The Clarke transfor-
mation matrix and its inverse matrix applied to stator variables
are defined as

Ts = 2

3

⎡
⎢⎢⎣

1 − 1
2 − 1

2

0
√

3
2 −

√
3

2√
2

2

√
2

2

√
2

2

⎤
⎥⎥⎦ , (5)

T−1
s =

⎡
⎢⎢⎣

1 0
√

2
2

− 1
2

√
3

2

√
2

2

− 1
2 −

√
3

2

√
2

2

⎤
⎥⎥⎦ . (6)

Conducive to transform the rotor variables into a new coor-
dinate system, the displacement angle θr must be considered,
as it is depicted in Figure 1. Then, the similitude transforma-
tion and its inverse representation applied to rotor variables
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FIGURE 1. Clarke transformation applied to stator and rotor
variables.

are defined as

Tr = 2

3

⎡
⎢⎣

cos θr cos
(
θr + 2π

3

)
cos

(
θr − 2π

3

)
sin θr sin

(
θr + 2π

3

)
sin

(
θr − 2π

3

)
√

2
2

√
2

2

√
2

2

⎤
⎥⎦ , (7)

T−1
r =

⎡
⎢⎢⎣

cos θr sin θr

√
2

2

cos
(
θr + 2π

3

)
sin

(
θr + 2π

3

) √
2

2

cos
(
θr − 2π

3

)
sin

(
θr − 2π

3

) √
2

2

⎤
⎥⎥⎦ . (8)

By applying the Clarke transformation (5)–(6) to stator
voltage equation (1) gives the next result:

vαβ0s = Rsiαβ0s + d

dt
λαβ0s, (9)

with

Rs =
⎡
⎣ Rs 0 0

0 Rs 0
0 0 Rs

⎤
⎦ .

Meanwhile, the stator flux linkages vector in αβ0 takes the
following form, when the similitude transformations (5)–(6)
and (7)–(8) are applied into (3):

λαβ0s = Lsiαβ0s + Lsriαβ0r , (10)

with

Ls =
⎡
⎣ Ls 0 0

0 Ls 0
0 0 Lss + 2Lsm

⎤
⎦ , Lsr =

⎡
⎣ Lm 0 0

0 Lm 0
0 0 0

⎤
⎦

where the stator-inductance and mutual-inductance are
defined, respectively, as

Ls = Lss − Lsm , (11)

and

Lm = 3

2
Lsrm. (12)

By applying the similitude transformation (7)–(8) into (2),
the rotor voltage vector in αβ0 frame becomes:

vαβ0r = Rriαβ0r + �rλαβ0r + d

dt
λαβ0r, (13)

where

Rr =
⎡
⎣ R′

r 0 0
0 R′

r 0
0 0 R′

r

⎤
⎦ , �r =

⎡
⎣ 0 ωr 0

−ωr 0 0
0 0 0

⎤
⎦

with ωr = P

2
ωm be the rotor frequency, P is the number of

poles, and ωm is the rotor angular velocity.
Using the similitude transformations (5)–(6) and (7)–(8)

into the rotor flux linkages vector (4), results:

λαβ0r = Lriαβ0r + Lsriαβ0s , (14)

with

Lr =
⎡
⎣ Lr 0 0

0 Lr 0
0 0 Lrr + 2Lrm

⎤
⎦ , Lsr =

⎡
⎣ Lm 0 0

0 Lm 0
0 0 0

⎤
⎦ ,

where the rotor-inductance is defined as

Lr = Lrr − Lrm. (15)

The simplest representation of the induction motor model
uses the stator current vector is is and rotor flux linkages vec-
tor λr as state variables, and its order is reduced using only
components in α and β axes, since the variables at 0 axis are
not present due to the neutral connection at stator winding is
not grounded. By solving for ir into rotor flux linkages vector
(14), we obtain:

ir = L−1
r (λr − Lsris). (16)

Substituting Eq. (16) in the rotor voltage equation (13),
defining vr = 0 due to the conducting bars are shorted at both

ends via rings in the rotor’s squirrel-cage, and solving
d

dt
λr

in Eq. (13), we obtain the state equation of rotor flux linkages
vector in αβ frame as follows:

d

dt

[
λαr

λβr

]
=

[
− 1

Tr
−P

2 ωm
P
2 ωm − 1

Tr

] [
λαr

λβr

]

+
[

Lm

Tr
0

0 Lm

Tr

] [
iαs

iβs

]
. (17)
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Now, substituting the stator flux linkage equation (10) into the
stator voltage equation (9), results in

vs = Rsis + Ls
d

dt
is + Lsr

d

dt
ir. (18)

Substituting the differentiation of the rotor current vector

(16) into Eq. (18), and solving for the term
d

dt
is, we obtain

the state equations of stator current vector in αβ frame as
follows:

d

dt

[
iαs

iβs

]
=

[
δ
Tr

P
2 δωm

−P
2 δωm

δ
Tr

][
λαr

λβr

]

+
[−γ 0

0 −γ

] [
iαs

iβs

]
+

[
1

σLs
0

0 1
σLs

] [
vαs

vβs

]
. (19)

On the other hand, the electromagnetic torque developed by
induction motor, as a torsional force, is defined by the vari-
ation of stored magnetic field energy with respect to electric
angular position as

Te =
(

P

2

)
dWf

dθr
, (20)

where P is the poles number of machine, and the stored field
energy is defined by [11], [12]:

Wf = 1

2
(iABC )� LssiABC + (iABC )� Lsriabcr

+ 1

2
(iabc)� Lrriabc. (21)

Because Lss and Lrr are not functions of θr, substituting the
stored field energy (21) into (20) yields the electromagnetic
torque in abc system:

Te =
(

P

2

)
∂

∂θr
[(iABC )�Lsriabc] . (22)

Applying the similitude transformations (5)–(6) and (7)–(8) to
stator current and rotor currents, respectively, in (22); and sub-
stituting the mutual-inductance Lm defined in (12), the elec-
tromagnetic torque in terms of αβ coordinate frame takes the
form:

Te =
(

3

2

) (
P

2

)
Lmi�s

[
0 1

−1 0

]
ir. (23)

Now, substituting the rotor current equation (16) into (23), the
electromagnetic torque, expressed with the rotor flux linkages
and stator current vectors as state variables, is defined as

Te = 3P

4

Lm

Lr
(iβsλαr − iαsλβr) . (24)

Once defined the electromagnetic torque, the angular move-
ment equation of the induction motor is defined by

Jm
d

dt
ωm = 3P

4

Lm

Lr
(iβsλαr − iαsλβr) − Bmωm − TL, (25)

where the term of the left side is defined as the accelera-
tion torque, the second term of the right side is the frictional
torque, and the last term is the torque established for the
mechanical load driven by the motor. After the whole pro-
cess, the induction motor model is defined combining the state
equations of the rotor flux linkages vector (17), stator current
vector (19), and rotor angular velocity (25). Then, the math-
ematical model of squirrel-cage induction motor on the αβ

coordinated frame is

d

dt
ωm = KT (iβsλαr − iαsλβr) − Bm

Jm
ωm − 1

Jm
TL

d

dt

[
λαr

λβr

]
=

[
− 1

Tr
−P

2 ωm
P
2 ωm − 1

Tr

] [
λαr

λβr

]

+
[

Lm

Tr
0

0 Lm

Tr

] [
iαs

iβs

]
(26)

d

dt

[
iαs

iβs

]
=

[
δ
Tr

P
2 δωm

−P
2 δωm

δ
Tr

] [
λαr

λβr

]

+
[−γ 0

0 −γ

] [
iαs

iβs

]
+

[
1

σLs
0

0 1
σLs

] [
vαs

vβs

]

with the following parameter constants defined as: KT =
3P

4

Lm

JmLr
, Tr = Lr

Rr
, δ = 1 − σ

σLm
, γ = 1

σTs
+ 1 − σ

σTr
, σ = 1 −

L2
m

LsLr
, and Ts = Ls

Rs
. The machine parameters are defined as:

Rs is the stator resistance per phase, R′
r is the rotor resistance

per phase referred to stator winding, Ls is the stator induc-
tance, which is defined in (11), Lm is the mutual-inductance
defined in (12), and Lr is the rotor inductance defined in (15).
P is the number of poles, Bm is the friction coefficient of the
shaft, and Jm is the inertial moment. TL is the load torque as
mechanical input, vαs and vβs are the input voltages that feed
the stator winding.

It is important to mention that the procedure to obtain the
mathematical model of the induction motor is not new, but
the proposed methodology for establishing the mathematical
model of the squirrel-cage induction motor is highly detailed,
where the rotor inductance, stator inductance, and mutual
inductance are defined formally when setting the model at
αβ coordinate frame. The proposed methodology can be eas-
ily applied for obtaining the mathematical model of any other
type of AC machine, such as the doubly fed induction genera-
tor, synchronous machine, and permanent-magnet machine.
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2.1. Rotor Flux Linkages Observer

From induction motor model (26) and considering the angular
velocity ωm as a known input, electrical model becomes linear
and it is represented by

d

dt

[
λr

is

]
=

[
A11 A12

A21 A22

] [
λr

is

]
+

[
0

B

]
vs

y = [
0 1

] [
λr

is

]
, (27)

where the output variable is defined by the stator current vec-
tor is, which is the measurement variable. The system (27) can
be transformed to new system of reducer order as

d

dt
λr = A11λr + A12is

d

dt
is − A22is − Bvs = A21λr , (28)

where the known inputs define the system output. The
reduced-order observer model for rotor flux linkages, from
model defined in (28), is

˙̂
λr = A11λ̂r + A12is + L

(
d

dt
is − A22is − Bvs − A21λ̂r

)
,

(29)
where the last term in (29) is a mismatch between the known
and observed outputs, and it corrects the system continuously
with this error signal.

If the rotor flux observation error variable is defined as

ε̃λ = λr − λ̂r, (30)

then the observation error dynamics is given by subtracting
(29) from (28) to obtain:

˙̃ελ = (A11 + LA21)ε̃, (31)

where its characteristic equation is defined by

det [sI − (A11 + LA21)] = 0, (32)

the matrix L defines the reasonably fast eigenvalues of (31) so
that observation error variable decays asymptotically to zero
in finite time. These eigenvalues must be at least four or five
times faster than the natural eigenvalues of system (28) [13].

By ordering terms in (29), the observer model of the rotor
linkages flux takes the form:

˙̂
λr = (A11 − LA21)λ̂r + (A12 − LA22)is − LBvs + L

d

dt
is.

(33)
If we define

λ̂
∗
r = λ̂r − Lis , (34)

FIGURE 2. Scheme of the rotor flux linkages observer.

then the rotor flux linkage observer is defined by

˙̂
λ∗

r = (A11 − LA21)λ̂r + (A12 − LA22)is − LBvs, (35)

and
d

dt
is no longer appears directly. A block diagram of the

reduced-order rotor flux observer is pictured in Figure 2.

2.2. Load Torque Observer

Based to induction motor model (26) and by taking the stator
current and rotor flux as known inputs, the mechanical model
results in

ω̇m = KT λ�
r Mis − Bm

Jm
ωm − 1

Jm
TL

ṪL = 0. (36)

A load torque observer can be set as

˙̂ωm = KT λ�
r Mis − Bm

Jm
ω̂m − 1

Jm
T̂L + l1(ωm − ω̂m)

˙̂TL = l2 (ωm − ω̂m) . (37)

If we define the observation error variable to be

ε̃ =
[

ωm − ω̂m

TL − T̂L

]
. (38)

Then the dynamic of this observation error variable is given
by subtracting (37) from (36) to get

[ ˙̃εω

˙̃εT

]
=

[
−

(
Bm

Jm
+ l1

)
− 1

Jm

−l2 0

] [
ε̃ω

ε̃T

]
, (39)

where the values of l1 and l2 define the reasonably fast eigen-
values of (39), so that the observation error variable is asymp-
totically steered toward zero in finite time. These eigenvalues
must be at least four or five times faster than the natural eigen-
values of system (36) [13].
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3. INDUCTION MOTOR PARAMETER
IDENTIFICATION

For the purposes of this research, parameter identification of
the squirrel-cage induction motor model is made with off-
line dynamics and steady-state tests via an acquisition board
to determine both electrical and mechanical parameters. The
measurement of the DC resistance of the stator winding, no-
load test, and blocked-rotor test is applied to induction motor
to identify the equivalent circuit model. In addition, we have
made the synchronous velocity test to obtain a good approx-
imation of the core loss and calculate the friction loss from
the rotational loss. In each one of the tests mentioned, voltage
and current measurements of all phases are taken for includ-
ing any electric unbalance in the stator winding; while, the
average power is calculated with very good accuracy by fil-
tering the instantaneous three-phase power. A dynamic test is
made when the motor is turned-off and a vector of the velocity
fall is captured to obtain an approximate value of the inertial
moment Jm using the friction coefficient Bm which is obtained
from the consumed power before de-energizing the motor.

3.1. Stator Resistance

In this test, ordered pairs consisting of voltage–current mea-
surements are obtained by tuning a DC-voltage source from
small to rated current values [12]. The stator winding resis-
tance is calculated applying Ohm’s law and assuming star con-
nection of the winding, i.e., we must calculate the resistance
as two windings connected in series at a − b terminals, later
divide this value by two. The average resistance is obtained
from the next set of replications between terminals: b − c and
c − a, being the result Rs = 12 .

3.2. No-Load Test

The no-load test gives information about the magnetizing
branch impedance and rotational loss: friction, windage, and
core losses, as it is explained in [12]. This test is performed by
applying balanced three-phase nominal voltage to the stator
winding at the rated frequency. The rotor is kept uncoupled
from any shaft of driven equipment. The equivalent circuit
model of the no-load test is depicted in Figure 3(a), where
the branch of the rotor circuit is not considered due to the
rotor current is significantly smaller than magnetizing current,
due to that in no-load condition the slip is very small and the
rotor resistance value is high. The non-load test was carried
out at angular velocity of 1798 r.p.m. with a consumed power
of 29.04 W. This value was obtained computing and filter-
ing the instant three-phase power to define the average power
with very good accuracy. Voltage and current measurements

FIGURE 3. Equivalent circuit of standard tests: (a) no-load,
(b) blocked rotor, and (c) synchronous velocity.

are made in each of the phases to involve any electric imbal-
ance of the stator winding. These measurements are reported
in Table 1.

The rotational losses Prot are calculated from the no-load
power Pnl as follows [12]:

Prot = Pnl − Rs

(
I2
a + I2

b + I2
c

)
. (40)

By substituting the no-load test measurements in
(40), the rotational losses are Prot = 13.5 W.

From the no-load test measurements, an equivalent reac-
tance is calculated which is composed of two reactances con-
nected in series: the stator leakage reactance Xls, and magne-
tizing reactance Xmag, see Figure 3(a). For both no-load and
blocked rotor tests, the following relationships (41)–(43) are
used:

|Ztest| = 1

3

(
Va

Ia
+ Vb

Ib
+ Vc

Ic

)
, (41)

Rtest = Ptest(
I2
a + I2

b + I2
c

) , (42)

Xtest =
√

|Z2
test| − R2

test . (43)

Substituting the measurements of no-load test in (41)–(43),
results in Znl = 182.6 , Rnl = 22.4 , and Xnl = 181.2 .

Stator phase Voltage (V) Current (A)

A 119.8 0.67
B 119.8 0.65
C 119.8 0.65

TABLE 1. Measurements of no-load test.
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Stator phase Voltage (V) Current (A)

a 43.6 1.5
b 43.8 1.5
c 44.7 1.55

TABLE 2. Measurements of block-rotor test.

3.3. Blocked-Rotor Test

The blocked-rotor test gives information about the leakage
impedances and rotor resistance referred to stator side, as it
is explained in [12]. In this test, the rotor is blocked by a
wooden bar so that the motor cannot rotate, and a low volt-
age is adjusted with a variable supply voltage via a three-phase
autotransformer, so that the rated-current flows in stator wind-
ing. The power consumption during the test was calculated as
132.4 W. The voltage and current measurements in all phases
of this test are reported in Table 2.

As this test is made at low voltage and the slip s = 1 due to
the rotor is standstill, then the rotor resistance is small and the
current that flows by the magnetizing branch can be neglected.
From the equivalent circuit of this test, see Figure 3(b), the
stator leakage reactance Xls and rotor leakage reactance X ′

lr

are estimated. Additionally, a first approximation of the rotor
resistance R∗

r referred to stator side is obtained.
By substituting the blocked-rotor measurements in (41)–

(43), we obtain Zbl = 29.0 , Rbl = 19.2 , Xbl = 21.7 . If
one applies the following common approximation to define
the stator and rotor leakage reactances, then Xls = X ′

lr = Xbl
2 =

10.8 , where X ′
lr is referred to stator side by assuming that the

turns ratio is a = 1. Once we know the stator leakage reac-
tance, the magnetizing reactance is calculated from no-load
test as Xmag = 170.4 .

From Figure 3(b), a first approximated value of the rotor
resistance referred to stator side can be calculated by

R∗′
r = Rbl − Rs = 19.2 − 12 = 7.2  .

The rotor resistance value is very important in the induc-
tion motor performance because it models largely the power
converted from electrical to mechanical energy. Therefore,
this value is now improved involving the magnetizing branch
in the equivalent circuit [12]. The new value for rotor resis-
tance is calculated considering the real part of the Thevenin
impedance that is pointed by the arrows in Figure 4(a), which
is

R∗′
r = X 2

mag

R′2
r + (X ′

2 + Xmag)2
R′

r . (44)

Because (X ′
lr + Xmag)2 � R

′2
r in (44), the enhanced value

of the rotor resistance is

R′
r =

(
X ′

lr + Xmag

Xmag

)2

R∗′
r , (45)

and substituting the values of rotor and magnetizing reactance
in (45) yields R′

r = 8.1 .

3.4. Synchronous Velocity Test

The synchronous velocity test gives information about the
core loss and magnetizing branch impedance with better accu-
racy than the no-load test. In this test, a DC-motor drives
the induction machine at synchronous velocity and then the
induction machine is feeding at rate voltage. The DC-motor
feeds the friction and windage loss for both machines; while,
the power supply feeds the Joule loss and core loss in the
induction machine because there are no induced currents

FIGURE 4. (a) Equivalent circuit model and (b) complete
equivalent circuit model.
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Stator phase Voltage (V) Current (A)

A 119.9 0.67
B 120.0 0.65
C 120.6 0.66

TABLE 3. Measurements of synchronous test.

in rotor winding. The equivalent circuit model of the syn-
chronous velocity test is depicted in Figure 3(c). The con-
sumed power in this test was calculated as 18.1 W. The voltage
and current measurements in each of the phases are reported
in Table 3.

The core loss Pc is calculated by similar form as rotational
loss Prot (40) in no-load test, by

Pc = 18.1 − 12(0.672 + 0.652 + 0.662) = 2.4 W.

3.5. Mechanical Parameters

The inertial moment Jm and frictional coefficient Bm are the
mechanical parameters which model the shaft masses and
friction in the support points, respectively; these parame-
ters are involved in the movement equation (25). Due to the
squirrel-cage induction motor is mechanically coupled with a
dynamometer with which it is possible to vary the load condi-
tions, then the masses and support points of both machines
should be considered in the definition of the mechanical
parameters. In order to determine the frictional coefficient Bm,
the squirrel-cage induction motor is fed at rated voltage with-
out applying load torque. In this test, the consumed power was
87.3 W at 1778 r.p.m. The voltage and rotor measurements in
all phases of this test are reported in Table 4.

The rotational loss in both machines applying equation
(40) is Prot = 69.5 W, while the friction loss is the rotational
loss (69.5 W) minus core loss (2.4 W), calculated in the syn-
chronous test; then, the friction loss is Pfric = 67.1 W. Conse-
quently, from the mechanical power consumed in this test, the
friction coefficient Bm can be approximated as

Bm ≈ Pfric

ω2
m

= 67.1

186.22
= 0.00194 N m s. (46)

From this same test, the inertial moment Jm can be obtained
when the induction motor is turned off and a falling velocity
vector (see Figure 5) is captured with an acquisition board.

Stator phase Voltage (V) Current (A)

a 119.8 0.70
b 119.9 0.69
c 120.6 0.72

TABLE 4. Measurements of coupling no-load test.

FIGURE 5. Supply disconnection of the induction motor.

Once the motor is de-energized and it does not drive any
mechanical load, the movement equation (25) takes the fol-
lowing form:

Jm
d

dt
ωm = −Bmωm. (47)

Based on Figure 5, it can be seen that the non-filtered and
filtered signals of the angular velocity fall when the motor
is turned off and the motor shaft stops in 5 sec, approxi-
mately. In this figure, note that two points (2.78 sec, 110.7
rad/sec) and (3.12 sec, 90.33 rad/sec) can be used for lin-
earizing the motor’s deceleration around the base velocity
ωm0 = 100 rad/sec; by approximating the derivative at this
point, and solving for Jm into (47), the inertial moment can
be approximated by

Jm ≈ �t

�ωm
Bmωm0 ≈ (3.12 − 2.78)

(110.7 − 90.33)
(0.00194)(100)

= 0.00324 N m s2. (48)

It is important to remark, that the electrical and mechanical
parameter identification is made via a data acquisition board,
and the voltages and currents are measured in all phases, in
contrast to the traditional method where the voltage and cur-
rent measurements are made in only one phase. Moreover, the
consumed power in each one test is computed with accuracy
by filtering the instantaneous power, in contrast with tradi-
tional method where a wattmeter is used to measure the con-
sumed power in only one phase. In addition, the synchronous
test was made to quantify the core loss which is subtracted
from the rotational loss, obtained in no-load test, for estimat-
ing the friction coefficient with acceptable accuracy. From the
no-load test, the motor is turn-off and a falling velocity vector
is captured with an acquisition board for approximating the
velocity derivative for estimating the inertial moment value.
The proposed procedure to obtain the mechanical parameters



Morfín et al.: Modeling and parameter identification of the squirrel-cage induction motor 311

contrasts with the work reported in [8], where the two param-
eters are calculated via the equation movement from the elec-
tromagnetic torque which is estimated through rotor resistance
whose value is sensitive to temperature changes.

3.6. Relationships Between Magnetically Coupled
Circuit and Equivalent Circuit

It is important to note that the inductance parameters used
in the induction motor model (26) correspond to the mag-
netically coupled circuit model with the stator-inductance
Ls, mutual-inductance Lm, and rotor-inductance Lr which
are defined in (11), (12), and (15), respectively; while the
inductance parameters obtained from the standard tests which
define the equivalent circuit model are the stator leakage
inductance Xls, magnetizing inductance Xmag, and rotor leak-
age inductance X ′

lr. Therefore, it is necessary to define the
equivalence relationships between the magnetically coupled
circuit and equivalent circuit. At the first step, the voltage
equations for two magnetically coupled circuits are defined
as

v1 = L11
d

dt
i1 + L12

d

dt
i2

v2 = L12
d

dt
i1 + L22

d

dt
i2 , (49)

where L11 and L22 are the self-inductances of the pri-
mary and secondary windings, respectively; and L12 is the
mutual-inductance between primary and secondary windings.
Thereafter, including the turns ratio a = N1/N2 in diverse
terms of system (49), keeping the original system, yields

v1 = L11
d

dt
i1 + aL12

d

dt

i2
a

av2 = aL12
d

dt
is + a2L22

d

dt

i2
a

. (50)

Later, adding and subtracting a different term in each equa-
tion of (50) yields

v1 = L11
d

dt
i1 + aL12

d

dt

i2
a

+
(

aL12
d

dt
i1 − aL12

d

dt
i1

)

av2 = aL12
d

dt
is + a2L22

d

dt

i2
a

+
(

aL12
d

dt

i2
a

− aL12
d

dt

i2
a

)
.

(51)

Finally, rearranging terms in (51), we obtain a model that
correspond to the equivalent circuit model, which is shown in
Figure 6, and this model takes the form:

v1 = (L11 − aL12)
d

dt
i1 + aL12

(
d

dt
i1 + d

dt

i2
a

)

av2 = aL12

(
d

dt
i1 + d

dt

i2
a

)
+ (

a2L22 − aL12
) d

dt

i2
a

.(52)

FIGURE 6. Equivalence between magnetically coupled and
equivalent circuits.

Now, comparing Figures 4(a) and 6, without considering
the resistances, we can set the relationships that define the
inductance equivalence between the magnetically coupled cir-
cuit and the equivalent circuit of the following form:

Lls = L11 − aL12, (53)

Lmag = aL12, (54)

L′
lr = a2L22 − aL12 . (55)

It is common practice to consider the turns ratio a = 1 for
the squirrel-cage induction motor. From (12) and (54), the
relationship between the mutual-inductance Lm, which is used
in the induction motor model (26), and magnetizing induc-
tance Lmag results in

Lm = 3

2
Lmag . (56)

From (53) and (11), and considering that the mutual-

inductance between two stator phases is Lsm = −1

2
Lmag [11],

we obtain the stator inductance which is used in the model
(26) as

Ls = Lls + 3

2
Lmag . (57)

With a same procedure, the rotor inductance used in model
(26) is defined as

Lr = L′
lr + 3

2
Lmag . (58)

By applying (56), (57), and (58), the equivalence between
magnetically coupled model and equivalent circuit model is
defined. In Table 5, values obtained from parameter identifi-
cation process for induction motor model (26) have been sum-
marized. In Table 6, squirrel-cage induction motor nameplate
data (rated values) are reported.
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Parameter Value

Rs 12 

Rr 8.1 

Ls 0.7066 H
Lr 0.7066 H
Lm 0.678 H
Bm 0.00194 N m s
Jm 0.00324 N m s2

TABLE 5. Induction motor model parameters.

So far we have obtained the electric parameters of the
equivalent circuit (Figure 4(a)). Now, we propose a com-
plete equivalent circuit just in order to obtain a compara-
tive analysis between both models. The complete equivalent
circuit involves the core loss represented with a resistor Rc

(Figure 4(b)) and the values of the magnetizing reactance
Xmag, rotor leakage reactance X ′

lr, and rotor resistance R′
r are

more accurate due to the fact that now the analysis is made
from synchronous velocity test and blocked-rotor tests. This
is achieved by considering the Thevenin impedance pointed
in Figure 4(b). By applying Eqs. (41), (42), and (43) to data
obtained from synchronous test in Table 3, we obtain Rsyn =
13.85  and Xsyn = 181.57 , and solving the following non-
linear system set from Figure 3(c):

Rsyn = Rs + RcX 2
mag

R2
c + X 2

mag

Xsyn = Xls + RcX 2
mag

R2
c + X 2

mag

, (59)

where Rs = 12 , Xls = 10.8  and the parameters Rc and
Xmag are unknown. The results obtained from (59) are: the
core loss Rc = 15, 765 , and magnetizing reactance Xmag =
170.8 . In a similar form, by considering the results from
blocked-rotor test Rbl = 19.2  and Xbl = 21.7 , defining

K1 = RcXmag

R2
c + X 2

mag

, and solving the following non-linear system

from Figure 4(b) for unknown parameters R′
r and X ′

lr:

Unit Value

Volts 127/220
Amperes 1.5
r.p.m. 1750
Hz 60
HP 0.25

TABLE 6. Induction motor nameplate data.

Parameter Equivalent circuit (�)

Complete equivalent

circuit (�)

Rc ∞ 15,765
Xmag 170.4 170.8
R′

r 8.1 8.2
X ′

lr 10.8 11.3

TABLE 7. Magnetizing and rotor branches parameters.

Rbl = Rs + K1
AB + CD

E

Xbl = Xls + K1
CB − AD

E
, (60)

where A = R′
rXmag − RcX ′

lr, B = K1Xmag + R′
r, C = RcR′

r +
X ′

lrXmag, D = K1Rc + X ′
lr, and E = (K1Xmag + R′

r)2 + (K1Rc +
X ′

lr )
2.
The results obtained from (60) are: rotor resistance

R′
r = 8.2  and rotor leakage reactance X ′

lr = 11.3 . It is
important to remark that the electric parameters of the com-
plete equivalent circuit model are very close to parameters
obtained from the no-load and blocked-rotor tests; conse-
quently, the approximations made in these tests are justified.
In Table 7, the minimum differences between the parameter
values of the magnetizing and rotor branches can be seen.

4. INDUCTION MOTOR MODEL, OBSERVERS,
AND PARAMETER IDENTIFICATION
VALIDATION

Experimental validation was made using the following
devices:

� A squirrel-cage induction motor (Lab-Volt 8221-02)
coupled via belt with a dynamometer (Lab-Volt 8960-
12) with velocity sensor, see Figure 7.

FIGURE 7. Induction motor-dynamometer group.
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� dSPACE DS1103 data acquisition board with real-time
interface (RTI) to display signals.

� A measurement interface for currents in each phase and
two line-to-line voltages in stator terminals.

In order to validate the mathematical model (26), rotor
flux linkages observer (35), load torque observer (37), and the
parameter identification, the squirrel-cage induction motor is
operated under variable load conditions, where the load torque
is applied by a dynamometer. An array with 10 sec length
and 100 µsec sampling time was captured for electrical and
mechanical signals. Then, the similitude transformation was
applied in real time to stator voltages vab, vcb, and stator cur-
rents ia, ib, and ic to refer them at α − β coordinated frame.
The angular velocity ωm and stator currents iαs (phase-a) are
compared graphically between their measured values and cor-
responding results obtained via simulation. It is important to
remark that the mathematical model (26) and rotor flux link-
ages observer (35) are validated by means of the compari-
son between the measured load torque with the observed load
torque (37). With this, the mechanical oscillation equation
(25) is fulfilled where the electromagnetic torque (24), as non-
linear term, stands out, which involves a sum of two electrical
state space variables products of system (26).

The induction motor as electromechanical device has two
inputs: the stator voltages and the load torque. In the first
test, the motor is subjected to step response by applying the
nominal voltage at stator winding and the motor is turned-on.
In the second test, the load torque is changed from no-load
condition to nominal operation condition in five successive
steps establishing different points of operation of the motor.
In Figure 8, the induction motor starts on under no-load con-
dition is shown, the rotor velocity simulated and measured are
very close when the velocity arises, without the use of a filter
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FIGURE 8. Starting of induction motor.

FIGURE 9. Mechanical variables. (a) Rotor angular velocity,
and (b) Load torque.

to avoid a delay in velocity measurement. By turning a poten-
tiometer in DC-machine module, five load torque levels were
set up, from no-load to rated condition, where the rated torque
is TL = 1 N m. In Figure 9(a), rotor angular velocity ωm mea-
sured by encoder and rotor velocity obtained via simulation
of proposed model (26) are displayed. Note that in this figure,
there are two indicated values at 5.0 sec time, which are 1746
and 1740 r.p.m., measured and simulated velocities, respec-
tively; and the difference between both velocities is mini-
mal of 6 r.p.m. with a relative error of 0.3%. In Figure 9(b),
the variations of load torque measured and load torque esti-
mated via an asymptotic observer are depicted, where there
is not difference. In Figure 10(a), the stator current at α-axis,
which corresponds with the phase-a of three-phase system is
shown. When the load torque is changed, then the stator cur-
rents change, too. The stator current iαs does not present good
approximation between the measured (1.25 A rms) and simu-
lated signal (0.95 A rms), as shown in Figure 10(b). The dif-
ference between the stator current simulated and measured is
notorious due to core loss is not involved in parameter identi-
fication process.

It is an important remark that all state variables are
involved into movement equation; therefore, as the observed
load torque is very close to the measured load torque, then
the mathematical model and its parameter identification is
validated.
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FIGURE 10. (a) Stator current iαs (phase-a), (b) detail of
stator current at α-axis.

5. CONCLUSIONS

In this paper, a step-by-step procedure is presented to obtain
the mathematical model of the squirrel-cage induction motor
at αβ coordinate frame. In order to carry out the electric
parameter identification procedure, no-load test and blocked-
rotor test were applied in steady state to obtain the equivalent
circuit model of the induction motor. In addition, the syn-
chronous velocity test was made to approximate the core loss
which is included in the results obtained at no-load test where
the induction motor is coupled to a dynamometer via a belt.
From this test, the friction coefficient Bm is approximated
from the mechanical power developed at the shaft which is
calculated separating the core loss from rotational loss; later,
the inertial moment Jm is estimated from movement equation
when the motor is de-energized by capturing velocity as it
falls and approximating its derivative. In addition, we propose
the equivalence relationships for changing the inductance
parameters from equivalent circuit model to magnetically
coupled circuit model. The equivalent circuit model is used
to predict the steady-state performance of the induction
motor, meanwhile the mathematical model in αβ frame has
parameters of the magnetically coupled circuit model. Finally,
in order to validate the mathematical model and its parameter
identification a steady-state test was made where the load
conditions are varied by a dynamometer. We can clearly see
in the obtained signal plots, a very close similarity between
simulation and measured signals of the induction motor. It
is important to remark that the mathematical model of the

induction motor, the state observer models, and the parameter
identification constitutes an important aspect in the designing
of robust closed-loop controllers with high performance.
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