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ABSTRACT
In gene-expression microarray data sets each sample is defined by
hundreds or thousands of measurements. High-dimensionality data
spaces have been reported as a significant obstacle to apply machine
learning algorithms, owing to the associated phenomenon called
‘curse of dimensionality’. Therefore the analysis (and interpretation)
of these data sets has become a challenging problem. The hypothe-
sis set out in this paper is that the curse of dimensionality is directly
linked to other intrinsic data characteristics, such as class overlap-
ping and class separability. To examine our hypothesis, here we
have carried out a series of experiments over four gene-expression
microarray databases because these data correspond to a typical
example of the so-called ‘curse of dimensionality’ phenomenon.
The results show that there exist meaningful relationships between
dimensionality and some specific complexities that are inherent
to data (especially, class separability and geometry of manifolds).
Moreover, it is also discussed the behavior of three classifiers as a
function of dimensionality and data complexities.
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1 INTRODUCTION
A major problem in many real-life applications refers to the ‘curse
of dimensionality’ phenomenon, which indicates that the number
of samples needed to estimate an arbitrary function with a given
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level of accuracy grows exponentially regarding the number of
input variables (dimensionality) of the function [7]. A challenging
example of this problem corresponds to gene-expression microar-
ray data [5] where the number of genes (G) heavily exceeds the
sample size (n): there are typically over tens of thousands of gene-
expression levels and often less than 100 samples in the data set.
This is a problem in itself because it may increase the complexity of
classification, degrade the generalization ability of classifiers and
hinder the understanding of the underlying relationships between
the genes and the samples [9, 25]. Besides, overfitting is also a major
issue in a high-dimensional, low-sample scenario [24].

Feature selection is the standard way to tackle this problem
by choosing a small portion of informative variables for further
analysis. In the specific context of microarray data, there exists a
glaring need for dimensionality reduction not only because of the
vast number of input variables, but also because many of them can
be highly correlated with other variables. Many different algorithms
have been proposed over the last years for feature (gene) selection
using filter, wrapper, embedded and hybrid methods [2, 11, 15, 22].

A particularly popular strategy for feature selection overmicroar-
ray data is the use of gene ranking algorithms, which are filters that
comprise some univariate scoring metric to quantify how much
more statistically significant each gene is than the others [10]. These
methods rank genes in decreasing order of the estimated scores
under the assumption that the top-ranked genes correspond to the
most informative (or differentially expressed) ones across different
classes without redundancy.

Bolón-Canedo et al. [6] presented a review of a set of feature
selection methods applied to DNA microarray data and analyzed
the impact of class imbalance, class overlapping or data set shift on
the classification results. Several authors have investigated the pos-
sible connections between classifier performance and complexity of
microarrays [3, 4, 19]. Lorena et al. [16] studied the complexity of
several microarray data sets with and without dimensionality reduc-
tion using a support vector machine. Morán-Fernández et al. [17]
demonstrated that there is a correlation between microarray data
complexity and the classification error rates.

The critical question the present study intends to answer is how
dimensionality and some intrinsic data characteristics are related.
More specifically, this paper examines whether or not some data
difficulty factors can be alleviated by dimensionality reduction and
to what extent this affects the classification performance. Addi-
tionally, we propose a new index that allows to characterize the
relationship between data set size requirements and dimensionality.
To gain some insight into these questions, we analyze the tendency
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of several data complexity measures when varying the dimension-
ality of the feature space. For the experiments, we consider four
public data sets of gene-expression microarrays.

2 QUANTIFICATION OF INTRINSIC DATA
CHARACTERISTICS

The prediction performance of classifiers strongly depends on the
particular characteristics of each data set. To analyze the theoretical
complexity of each problem, several measures have been proposed
in the literature [12, 13, 23] with the ultimate purpose of explain-
ing the behavior of learning algorithms. The complexity measures
that will be used in the experiments are often grouped into three
categories according to the property of the data they focus on: (i)
measures of overlap in feature values from different classes, (ii) mea-
sures of class separability, and (iii) measures of geometry, topology,
and density of manifolds.

2.1 Measures of overlap in feature values from
different classes

These measures focus on the effectiveness of an individual feature
in separating the samples from different classes. To this end, they
examine the range and spread of values in the data set within
each class regarding to each feature, and check for overlaps among
different classes.

• F1 (maximum Fisher’s discriminant ratio): It computes how
separated are two classes according to each individual fea-
ture.

F1 =
(µ1 − µ2)

2

σ 2
1 + σ

2
2

(1)

where µ1, µ2 are the means and σ 2
1 , and σ

2
1 are the variances

of the two classes in the feature.
• F2 (volume of overlap region): It computes, for each feature
дi , the length of the overlap range normalized by the length
of the total range in which all values of both classes are
distributed. Then, this measure can be defined as

F2 =
∏
i

min(max(дi , c1),max(дi , c2)) −max(min(дi , c1),min(дi , c2))
(max(max(дi , c1),max(дi , c2)) −min(min(дi , c1),min(дi , c2))

(2)
where i = 1, . . . ,G for a G-dimensional problem.

2.2 Measures of class separability
Linear separability refers to the maximum probability of correct
classification when discriminating the pattern distribution with
hyperplanes. In two-class problems, these measures evaluate to
what extent the classes are separable by examining the existence
and shape of the class boundaries.

• L1 (minimized sum of error distance by linear programming):
This corresponds to the value of the objective function that
tries to minimize a linear classifier obtained by a linear pro-
gramming formulation. The method minimizes the sum of
distances of error points to the separating hyperplane.

• L2 (error rate of linear classifier by linear programming): This
measure is the error rate of the linear classifier defined for
L1 on the training set.

• N2 (ratio of average intra/inter-class nearest neighbor dis-
tance): It compares the intra-class dispersion with the inter-
class separability. Given a sample xi , let distintra (xi ) and
distinter (xi ) be the distance to its nearest neighbor from the
same class and the distance to its nearest neighbor from the
other class, respectively. Then, this measure can be computed
as follows:

N2 =
∑n
i=1 distintra (xi )∑n
i=1 distinter (xi )

(3)

• N3 (error rate of the nearest neighbor classifier): This is the
error rate of the nearest neighbor classifier estimated by the
leaving-one-out method. It indicates how close the samples
of different classes are.

2.3 Measures of geometry, topology and
density of manifolds

These measures are intended to describe the geometry or the shapes
of the manifolds spanned by each class.

• T1 (ϵ-neighborhoods): This measure counts the number of
balls needed to cover each class, being each ball centered at a
sample and grown to the maximal size (in units of ϵ) before it
reached a sample from the other class. Redundant balls lying
completely in the interior of other balls are removed. This
count is then normalized by the total number of samples.

• T2 (average number of points per dimension): It describes the
density of spatial distributions of samples by computing the
number of samples in the data set over the number of feature
dimensions.

• L3 (non-linearity of linear classifier by linear programming):
Given a data set, this method first generates a test by linear
interpolation between randomly drawn pairs of points be-
longing to the same class. Then, the error rate of a linear
classifier on such a test set is measured.

• N4 (non-linearity of the nearest neighbor classifier): Unlike
the L3, here the error is calculated for the nearest neighbor
classifier.

2.4 Relationship between data set size
requirements and dimensionality

Although there is no strict guideline about what a sufficient data size
is, the common wisdom is that the minimum number of samples
needed to achieve good generalization should be around n∗ =
10 × G × c , where c is the number of classes in a problem [18].
Taking this into account, the difference between the theoretical
minimum sample size (n∗) and the current data set size (n) as a
proportion of the theoretical minimum size is here proposed as a
new index to characterize the relationship between data set size
requirements and dimensionality:

Ir eq =
n∗ − n

n∗
(4)
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This index indicates that the number of samples required grows
exponentially with the dimensionality. For a perfectly modeled
problem where n∗ = n, Ir eq = 0. If n∗ > n, 0 < Ir eq < 1 and
therefore, the data set is downsized with regard to dimensionality.
On the other hand, if n∗ < n, Ir eq < 0 suggesting that the data set
is oversized.

3 DATABASES AND EXPERIMENTAL SET-UP
We conducted a pool of experiments on a collection of publicly
available gene-expression microarray data sets taken from the
Kent Ridge Biomedical Data Set Repository (http://datam.i2r.a-
star.edu.sg/datasets/krbd). Table 1 summarizes the main charac-
teristics of these data sets, reporting the number of genes (features),
the number of samples, and the size of the positive and negative
classes.

Table 1: Characteristics of the gene-expression microarray
data sets

#Genes #Samples Positive — Negative

Breast 24481 97 Relapse (46) — (51) Non-relapse
Colon 2000 62 Tumor (22) — (40) Normal
CNS 7129 60 Failure (39) — (21) Survivor
Prostate 12600 136 Tumor (77) — (59) Normal

For the present study, we varied the percentage of genes selected
by the ReliefF algorithm from 5% to 100% with a step size of 5%.
Bearing in mind that this paper aims to analyze how dimensionality
might affect other data characteristics, not to find the best feature
selection method, the experiments have been confined to the ReliefF
algorithm.

3.1 The ReliefF algorithm
The basic idea of the ReliefF algorithm [21] lies on adjusting the
weights of a vectorW = [w(1),w(2), . . . ,w(G)] to give more rele-
vance to features that better discriminate the samples from neigh-
bors of a different class.

It randomly picks out a sample x and searches for k nearest
neighbors of the same class (hits, hi ) and k nearest neighbors from
each of the different classes (misses,mi ). If x and hi have different
values on feature f , then the weightw(f ) is decreased because it
is interpreted as a bad property of this feature. In contrast, if x and
mi have different values on the feature f , thenw(f ) is increased.
This process is repeated t times, updating the values of the weight
vectorW as follows

w(f ) = w(f ) −

∑k
i=1 dist(f ,x ,hi )

t · k
(5)

+
∑

c,class(x )

P(c)

1 − P(class(x))
·

∑k
i=1 dist(f ,x ,mi )

t · k

where P(c) is the prior probability of class c , P(class(x)) denotes
the probability for the class of x , and dist(f ,x ,mi ) represents the
absolute distance between samples x andmi in the feature f .

The algorithm assigns negative values to features that are com-
pletely irrelevant and the highest scores for the most informative
features. In general, one will then select the д top-ranked features
to build the classifier with a presumably much smaller subset of
features (д ≪ G). Moreover, unlike other ranking methods such
as those based on information theory (e.g., mutual information or
information gain), the ReliefF algorithm considers the dependencies
between genes [20].

4 RESULTS AND DISCUSSION
This section is divided into two blocks. Firstly, we will discuss
the possible relationships between dimensionality and the data
complexity measures introduced in Sections 2.1–2.3. The second
part will be devoted to show the behavior of three classification
models when varying the number of genes and how such a behavior
was also related to the other intrinsic characteristics of data.

Before discussing the results related to each block, Figure 1 il-
lustrates the plots of the index introduced in Section 2.4. As can be
observed, the size of the experimental data sets with the original
dimensionality is very far from the theoretical requirements to
achieve high classification performance. However, by reducing the
number of genes, the index Ir eq drops down and the probability of
an accurate generalization increases.
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Figure 1: Plots of Ir eq when varying the percentage of genes

4.1 Dimensionality versus intrinsic data
complexities

Figure 2 depicts the behavior of the data complexity measures as a
function of the percentage of genes for each database. The plots of
F1, F2 and T1 have not been included because the values of these
measures kept constant across all dimensions; on the other hand,
the values of L2 and L3 have not been plotted because they exhibit
trends opposite to that of L1 in all cases.

The fact that F1 and F2 were constant across all dimensions
indicates that there is no meaningful relation between the level of
overlapping and dimensionality. F2 was very close to 0 for all cases,
which suggests that the volume of overlap region was minimal.

3

http://datam.i2r.a-star.edu.sg/datasets/krbd
http://datam.i2r.a-star.edu.sg/datasets/krbd


Breast Colon CNS Prostate

L1
 0

 0.05

 0.1

 0.15

 0.2

 20  40  60  80  100
 0.2

 0.4

 0.6

 0.8

 20  40  60  80  100
 0

 0.25

 0.5

 20  40  60  80  100

 0.9

 1.2

 20  40  60  80  100

N
2

 0

 0.5

 1

 20  40  60  80  100
 0.6

 0.8

 1

 20  40  60  80  100
 0.8

 0.9

 1

 1.1

 20  40  60  80  100
 0.5

 0.75

 1

 20  40  60  80  100

N
3

 0

 0.2

 0.4

 0.6

 20  40  60  80  100
 0

 0.2

 0.4

 20  40  60  80  100
 0.2

 0.3

 0.4

 0.5

 20  40  60  80  100
 0

 0.1

 0.2

 0.3

 20  40  60  80  100

N
4

 0

 0.2

 0.4

 0.6

 20  40  60  80  100
-0.2

 0

 0.2

 20  40  60  80  100
 0

 0.05

 0.1

 20  40  60  80  100
 0

 0.1

 0.2

 20  40  60  80  100

T2

 0

 0.05

 0.1

 20  40  60  80  100
 0

 0.4

 0.8

 20  40  60  80  100
 0

 0.1

 0.2

 20  40  60  80  100
 0

 0.1

 0.2

 0.3

 20  40  60  80  100

Figure 2: Plots of the data complexity measures when varying the percentage of genes

On the other hand, T1 was equal to 1 for all dimensions in all
databases, which means that the class boundaries were not well
defined irrespective of the dimensionality and therefore, it suggests
that the ϵ-neighborhood is not related to dimensionality.

From the plots in Figure 2, it seems that N2, N3 and T2 corre-
spond to the data complexity measures most directly related to
dimensionality. However, it is also important to note that the Breast
database with an extremely high dimensionality behaves differ-
ently from the rest of databases, probably because a 5% reduction
of genes is not sufficient in this case to be compared with the oth-
ers. Some comments should be drawn for a better understanding
of the relationships between dimensionality and the other data
complexities:

• L1 and N4 show that dimensionality reduction allows to
increase the linear separability between classes.

• N2 indicates that dimensionality reduction alleviates the
intra-class dispersion and increases the inter-class separabil-
ity.

• N3 reflects that dimensionality reduction leads to classes
more separated.

• As expected from the definition of this measure, T2 shows
that the average number of samples per dimension decreases
as dimensionality increases.

4.2 Classifier behavior as a function of
dimensionality and other complexities

The classifiers included in this block of experiments were the near-
est neighbor rule (1-NN), a support vector machine (SVM) using a
linear kernel function with the sequential minimal optimization al-
gorithm, the soft-margin constant C = 1.0 and a tolerance of 0.001,
and the multi-layer perceptron (MLP) with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization method, two neurons in the
hidden layer, a learning rate of 0.3 and 500 training epochs.

The five-fold cross-validation method was adopted for the design
of this experiment because it appears to be one of the best estimators
of performance compared to other strategies, such as bootstrap and
re-substitution [1].
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Figure 3: Plots of generalization accuracy vs. L1 andN3when
varying the percentage of genes

Figure 3 compares the accuracy rates of 1-NN, SVM and MLP
with the values of L1 and N3 (two representative measures of class
separability) as a function of the percentage of genes for each data-
base. Analogously, Figure 4 depicts a comparison of the classifica-
tion performance against the values of L3 and N4 (two measures of
topology and geometry) when varying the percentage of genes.

It was found that all classifiers achieved the highest accuracy
using a very low percentage of the top-ranked genes: 5% on Breast,
and 10% on Colon and CNS. In the case of Prostate, the genes
varied between 10% and 40% depending on the classifier. It is also
interesting to remark that the SVMhas shown superior performance
in most cancer classification problems, probably because of its
ability to deal with high-dimensional data and its robustness to
noise [8, 14], and also because these data sets are linearly separable
in the lowest dimensionalities [4].

Finally, Figure 5 shows the classification performance of 1-NN,
SVM and MLP versus the values of the proposed index Ir eq when
varying the percentage of genes. Examination of these figures con-
firms our initial hypothesis that there exist close relationships be-
tween dimensionality and data difficulty factors, which affect the

Br
ea
st

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100
 0

 0.025

 0.05

 0.075

 0.1

A
cc

ur
ac

y

T
2

Percentage of Genes

1-NN
SVM
MLP

T2

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100
-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

A
cc

ur
ac

y

N
4

Percentage of Genes

1-NN
SVM
MLP

N4

Co
lo
n

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100
 0

 0.2

 0.4

 0.6

 0.8

A
cc

ur
ac

y

T
2

Percentage of Genes

1-NN
SVM
MLP

T2
 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100
-0.2

-0.1

 0

 0.1

 0.2

A
cc

ur
ac

y

N
4

Percentage of Genes

1-NN
SVM
MLP

N4

CN
S

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100
 0

 0.05

 0.1

 0.15

 0.2

A
cc

ur
ac

y

T
2

Percentage of Genes

1-NN
SVM
MLP

T2

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100
 0

 0.025

 0.05

 0.075

 0.1

A
cc

ur
ac

y

N
4

Percentage of Genes

1-NN
SVM
MLP

N4

Pr
os
ta
te

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

A
cc

ur
ac

y

T
2

Percentage of Genes

1-NN
SVM
MLP

T2
 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100
 0

 0.025

 0.05

 0.075

 0.1

 0.125

 0.15

 0.175

 0.2

A
cc

ur
ac

y

N
4

Percentage of Genes

1-NN
SVM
MLP

N4

Figure 4: Plots of generalization accuracy vs. T2 and N4
when varying the percentage of genes

performance of classifiers. In this sense, it appears that classification
accuracy is related to both dimensionality and some data complexi-
ties or in other words, it seems that dimensionality reduction allows
to alleviate those data difficulties and consequently, the classifiers
can make better decisions.

5 CONCLUDING REMARKS
As one of the earliest works focusing on the relationships between
dimensionality and several intrinsic data characteristics, this paper
has analyzed the effect of dimensionality reduction on both some
data complexities. As a result, two major contributions have been
made.

First, we have shown that the curse of dimensionality phenom-
enon is related to other data difficulty factors, especially those
concerning class separability. As a consequence of this, we have
found that dimensionality reduction allows to reduce the effects of
some other complexities on classification performance.

Second, we have introduced a new index, the Ir eq , which charac-
terizes the link between data set size requirements and dimensional-
ity. When applied to the experimental data sets of gene-expression
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Figure 5: Plots of accuracy vs. Ir eq when varying the percentage of genes. From left to right, and from top to bottom: Breast,
Colon, CNS, and Prostate

microarrays, we have observed that the number of samples required
grows exponentially with the dimensionality.
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