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Abstract—In gene-expression microarray data sets each sample
is defined by hundreds or thousands of measurements. High-
dimensionality data spaces have been reported as a significant
obstacle to apply machine learning algorithms, owing to the
associated phenomenon called ‘curse of dimensionality’. The
analysis and interpretation of these data sets have been defined
as a very challenging problem. The hypothesis proposed in
this paper is that there may exist some correlation between
dimensionality and the types of samples (safe, borderline, rare
and outlier). To examine our hypothesis, we have carried out
a series of experiments over four gene-expression microarray
databases because these data correspond to a typical example of
the so-called ‘curse of dimensionality’ phenomenon. The results
show that there indeed exist meaningful relationships between
dimensionality and the proportion of each type of samples,
demonstrating that the amount of safe samples increases and the
total number of borderline samples decreases as dimensionality
of the feature space decreases.

Index Terms—Gene-expression microarray, feature dimension-
ality, sample types, feature ranking, classification

I. INTRODUCTION

The ‘curse of dimensionality’ phenomenon (also known as

the Hughes phenomenon) constitutes a challenging problem in

many real-life applications. It refers to a situation in which the

number of samples needed to estimate an arbitrary function

with a given level of accuracy grows exponentially with

respect to the number of input variables (dimensionality) of

the function [1]. An illustrative example of this problem corre-

sponds to gene-expression microarray data [2], [3] where the

number of genes (G) massively exceeds the sample size (n):

there are typically over tens of thousands of gene-expression

levels and often less than 100 samples in the data set. This

is a problem in itself because it may increase the complexity

of classification/prediction, degrade the generalization ability

of classifiers and hinder the understanding of the underlying

relationships between the genes and the samples [4], [5].

Besides, overfitting is also a major issue in a high-dimensional,

low-sample scenario [6].

Feature selection is the standard way to tackle this problem

by choosing a subset of informative variables from the whole

set of features for further analysis. In the specific context

of microarray data, there exists an apparent need for dimen-

sionality reduction not only because of the huge number of

input variables, but also because many of them can be highly

correlated with other variables. Throughout the last decades,

many different feature (gene) selection algorithms have been

proposed using filter, wrapper, embedded, ensembles and

hybrid methods [7]–[11].

A particularly popular strategy for feature selection over

microarray data refers to the use of gene ranking algorithms,

which are filters that comprise some univariate scoring metric

to quantify how much more statistically significant each gene

is than the others [12]. These methods rank genes in decreasing

order of the estimated scores under the assumption that the

top-ranked genes correspond to the most informative (or

differentially expressed) ones across different classes without

redundancy.

The central question the present study intends to answer

is how dimensionality of the feature space and some intrinsic

data characteristics are related to each other. More specifically,

this paper examines whether or not dimensionality reduction

may alter the distribution of the different types of samples

defined by several authors [13], [14]. To gain some insight

into this question, we analyze the tendency of the amount of

each type of samples when varying the dimensionality of the

feature space. For the experiments, we consider four public

data sets of gene-expression microarrays.

Over the past years, the potential links between feature

dimensionality and several data complexities in microarrays

have been a matter of concern for researchers. For instance,

Baumgartner and Somorjai [15] used five real-life biomedical

databases of increasing difficulty to show how the data com-

plexity of a given classification problem can be related to the

performance of regularized linear classifiers. Okun and Pri-

isalu [16] explored the connections between data complexity

and classification performance defined by low-variance and

low-biased bolstered resubstitution error made by k-nearest

neighbor classifiers. Souto et al. [17] computed different
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measures characterizing the complexity of gene expression

data sets for cancer diagnosis, and then investigated how those

measures were related to the classification performances of

support vector machines. Bolón-Canedo et al. [18] presented

a review of a set of feature selection methods applied to DNA

microarray data and analyzed the impact of class imbalance,

class overlapping or data set shift on the classification results.

Similarly, Sánchez and Garcı́a [19] demonstrated that there

exist meaningful relationships between dimensionality and

class separability in gene-expression microarray data sets.

Lorena et al. [20] studied the complexity of several microarray

data sets with and without dimensionality reduction using

a support vector machine. Seijo-Pardo et al. [21] proposed

the use of three data complexity measures to automatically

set a threshold value, which is then employed to obtain a

subset of genes from the ordered ranking given by a ranker

algorithm. Morán-Fernández et al. [22] demonstrated that there

is some correlation between microarray data complexity and

the classification error rates of a set of classifiers. Sun et al [23]

proposed an ECOC algorithm to address the small sample size

and class imbalance problems in multi-class microarray data

sets by exploring data distributions based on data complexity

theory.

Henceforth, the rest of the paper is organized as follows.

Section II presents the types of samples according to the

taxonomy proposed by Napierala and Stefanowski [14]. Sec-

tion III provides the experimental set-up and the description

of the databases used in our experiments. Next, the results are

reported and discussed in Section IV. Finally, Section V sum-

marizes the main conclusions and points out some directions

for future research.

II. TYPES OF SAMPLES

Following the categorization proposed by several au-

thors [13], [14], [24], two main types of samples should be

distinguished: safe and unsafe. Safe samples refer to those

located in homogeneous regions with data of a single class

and are sufficiently separated from examples of other classes,

whereas the rest of samples have to be considered as unsafe.

The safe samples will be classified correctly by most models,

but the classification of unsafe samples will usually be a very

tricky task with a high error rate.

The general feature of unsafe samples is that they are placed

close to examples from some other classes. However, this type

of data can be further divided into three subgroups depending

on their particular characteristics [14], [25]: borderline, rare

and outlier. Borderline samples are located near the decision

boundaries between classes. Rare samples are small groups

of examples located far from the core of their class, creating

small data chunks or subclusters. Finally, the outliers are single

samples being surrounded by examples that belong to some

other class.

A simple method to identify each type of samples is based

on analyzing the local neighborhood of the examples. This

can be performed either by searching for the k neighbors of a

sample or by using some kernel function. Thus, one can guess

that a safe sample x will be characterized by having a neigh-

borhood with a majority of examples that belong to its same

class; rare examples and outliers will be mainly surrounded by

examples from different classes, whereas borderline samples

will be surrounded by examples both from their same class

and also from different classes.

Many authors often choose k = 5 because smaller values

may poorly distinguish the nature of samples, while higher

values would violate the assumption of the local neighbor-

hood [14], [24]–[26]. Following this procedure, we can define

the following cases:

• A sample x will be classified in the safe category if at

least 4 out of the 5 nearest neighbors belong to the class

of x.

• A sample x will be classified in the borderline category

if 2–3 out of its 5 nearest neighbors belong to the class

of x.

• A sample x will be classified in the rare category if only

one nearest neighbor belongs to the class of x, and this

has no more than one neighbor from its same class.

• A sample x will be classified in the outlier category if

all its nearest neighbors are from the opposite class.

III. DATABASES AND EXPERIMENTAL PROTOCOL

We conducted a pool of experiments on a collection of

publicly available gene-expression microarray data sets, which

were taken from the Kent Ridge Biomedical Data Set Repos-

itory (http://datam.i2r.a-star.edu.sg/datasets/krbd). Table I re-

ports the main characteristics of these databases, including the

number of genes (features), the number of samples, and the

size of each class (here designated as positive and negative).

TABLE I
CHARACTERISTICS OF THE GENE-EXPRESSION MICROARRAY DATA SETS

#Genes #Samples #Positive #Negative

Breast 24481 97 46 51
CNS 7129 60 21 39
Colon 2000 62 22 40
Prostate 12600 136 59 77

For the present study, we varied the percentage of genes

from 5% to 100% with a step size of 5% by using the ReliefF

algorithm, thus yielding 20 different subsets (each one with a

percentage of the top-ranked features) for each database. The

experiments have been circumscribed to the ReliefF algorithm

because this paper aims to analyze how dimensionality of

the feature space might affect the proportion of the different

types of samples, not to find the best feature selection/ranking

method.

A. The ReliefF Algorithm

The basic idea of the ReliefF algorithm [27] lies on adjust-

ing the weights of a vector W = [w(1), w(2), . . . , w(G)] with

the objective of giving more relevance to features that better

discriminate the samples from neighbors of some different

class.

http://datam.i2r.a-star.edu.sg/datasets/krbd
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It randomly picks out a sample x and searches for k nearest

neighbors of the same class (hits, hi) and k nearest neighbors

from each of the different classes (misses, mi). If x and hi

have different values on feature f , then the weight w(f) is

decreased because it is interpreted as a bad property of this

feature. In contrast, if x and mi have different values on the

feature f , then w(f) is increased. This process is repeated t

times, and the values of the weight vector W are updated as

follows:

w(f) = w(f)−

∑
k

i=1 dist(f, x, hi)

t · k
(1)

+
∑

c 6=class(x)

P (c)

1− P (class(x))
·

∑
k

i=1 dist(f, x,mi)

t · k

where P (c) is the prior probability of class c, P (class(x))
denotes the probability for the class of x, and dist(f, x,mi)
represents the absolute distance between samples x and mi in

the feature f .

The algorithm assigns negative values to features that are

completely irrelevant and the highest scores for the most

informative features. In general, one will then select the g

top-ranked features in order to build the classifier with a

presumably much smaller subset of features (g ≪ G). In

addition, unlike other well-known ranking methods such as

those based on information theory (e.g., mutual information

or information gain), the ReliefF algorithm takes care of the

dependencies between genes [28].

IV. RESULTS AND DISCUSSION

This section is devoted to explore how the number of

genes may have an effect on the amount of samples that

belong to each type. As far as we know, there has been no

systematic analysis on this problem; in fact, previous studies

have focused on identifying the types of samples from the

minority class in class imbalanced data sets and analyzing how

the resampling techniques may alter the distribution/proportion

of safe, borderline, rare and outlier samples [14], [24]–[26],

[29], [30]

Bearing our purpose in mind, the experiments were as

follows. First, we calculated the percentages of positive and

negative samples from each type when varying the percentage

of genes. Afterwards, we also run six classifiers of different

nature over each subset of features: the 1-nearest neighbor (1-

NN) rule with the Euclidean distance, a pruned C4.5 decision

tree, a support vector machine (SVM) with a linear kernel

using the sequential minimal optimization algorithm and a

soft-margin C = 1.0, a normalized Gaussian radial basis

function (RBF) neural network with the K-means clustering

algorithm to provide the basis functions, the naive Bayes

classifier (NBayes), and a multi-layer perceptron (MLP) with

one hidden layer, a learning rate of 0.3 and 500 training

epochs.

Fig. 1 shows the percentages of each positive sample type

when varying the dimensionality of the feature space for each

database. As can be seen, the percentage of safe samples in the

positive class increases and the percentage of borderline posi-

tive samples decreases as dimensionality decreases. Although

the percentages of rare and outlier samples are generally low, it

was observed a very similar behavior to that of the borderline

samples. This result could allow to gain some insight into

the reasons why classification in lower dimensions is usually

easier than in higher dimensions.

Analogously, Fig. 2 displays the percentages of the negative

sample types when varying the dimensionality of the feature

space for each database. In general, lines in these plots closely

match the trend patterns recognized in the plots of Fig. 1,

that is, the percentage of safe samples increases and the

percentages of the different types of unsafe samples decrease

as dimensionality decreases. Notwithstanding, for the safe and

borderline samples, we observed an essential difference of

behavior between the positive class and the negative class:

while the percentages of safe positive samples were usually

lower than those of the borderline positive samples, the

percentages of safe negative samples always resulted much

higher than those of the borderline negative samples. This

behavior agrees with the expected one because the negative

class corresponds to the majority class and therefore, the

probability for a negative sample to be identified as safe is

higher than the probability of being classified in some group

of the unsafe samples.

Regarding the rare and outlier samples that belong to the

negative class, we found that there was no substantial rela-

tionship between dimensionality of the feature space and the

number of samples in both these types. Nevertheless, this fact

should not become especially critical for a given classification

problem because the amount of samples that belong to the rare

and outlier types is minimal as compared to the total number

of safe and borderline samples.

Plots in Fig. 3 correspond to the accuracy achieved by each

classification model when applied to each of the 20 subsets.

It is possible to observe that the accuracy of all classifiers

tends to decrease as the amount of genes increases. A visual

comparison between this figure and those of the sample types

allows to demonstrate that there exists some significant link

(positive correlation) between the dimensionality of the feature

space and the distribution of sample types since the highest

accuracies were achieved for the subsets with the largest

number of safe samples and the smallest number of unsafe

samples.

V. CONCLUDING REMARKS

As one of the earliest works on investigating the potential

connections between feature dimensionality and sample types,

this paper has to be viewed as a preliminary study of the effects

of dimensionality reduction on the distribution of the different

types of samples in a data set.

From the experiments carried out, we have observed that

the proportions of safe, borderline, rare and outlier samples

vary as the dimensionality of the feature space changes. More

specifically, reduction in dimensionality generally leads to a
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Fig. 1. Plots of the percentage of each type of positive samples when varying the percentage of genes

significant decrease in the amount of borderline samples and

an increase in the number of safe samples. As showed in the

experiments, this has a direct impact on the performance of

classifiers because the classification of safe samples results

much easier than the classification of any type of unsafe

samples.

Through the characterization of databases by the distribution

of their sample types, our hypothesis for further research is

that it would be possible to define a meta-learning framework

to choose the feature subset with the highest classification

performance. Another direction for extending the present

paper consists in the combined use of sample types and

data complexity measures for the implementation of accurate

preprocessing methods.
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Fig. 3. Classification accuracies when varying the percentage of genes
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