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Introduction

Since the Weibull distribution is the best probability density 
function (pdf) used to model the behavior of a quadratic form 
[1,2], as they are any response surface model [3], the stress and 
strain matrix used in mechanical and structural analysis [4], the 
covariance matrix used in principal component analysis [5], and 
the branching process behavior [1]. Then an understanding of 
the Weibull distribution features is needed. Based on the above, 
this paper presents the advances on Weibull analysis to perform 
it from the planning data collection phase to the monitoring 
process phase. Therefore, the papers’ structure is as follows. In 
section 2, the general new background of the Weibull distribution 
and the formulation to determine the sample size  to perform a 
zero failure Weibull demonstration test plan are presented. In 
section 3, the formulation to determine the capability cp and 
cpk indices and the formulation of the control charts which let 
us to monitor the estimated Weibull parameters are given. In 
section 4, the formulation to fit the Weibull shape β and scale  η
parameters directly from the applied stress values is presented. 
In section 5 a numerical example for constant stress is given. In 
section 6 a numerical example for variant stress is given. Finally, 
in section 7 the conclusions are presented. The analysis is as 
follows:

Weibull distribution background and sample size

The two parameter Weibull distribution [6] is given by
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From Eq. (1), the Weibull reliability function is given by

( ) exp tR t
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η

   = −  
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      (2)

And since the Weibull distribution is generated by a non-
homogenous Poisson process (NHPP) [7] sec 4.3, then the 
Weibull risk function depends on the time also. Thus, the mean 
power function of the related NHPP in Weibull analysis is used 
as the cumulative hazard risk function ( ).H t  From Eq. (2), ( ).H t  is 
given by

( ) ln( ( ))tH t R t
β

η
 

= = − 
          (3)
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In Weibull analysis Eq. (3) is of special interest because for 
the desired time t and known β value the effect that the stress 
variable s has on the estimated ( )R t index is given by the linear 
relationship between η and s as

 { }exp t Zη α=      (4)

In Eq. (4), α is a regression coefficient vector { }0 1, ,..., pbα β β=  
and Z is a nxp matrix which contains the k stress variables 
( )1 2, ,..., ks s s  and p represents the k variables effects plus the 
possible effects generated among the k  variables (e.g. interaction 
and quadratic effects). Also note from Eq. (2), that for known t 
and β   values, the  η  value which corresponds to a desired ( )R t   
index is completely addressed and it is given as

1/[ ln( ( ))]
t

R t βη =
−

       (5)

On the other hand, because by setting in Eq. (3) ( ).H t  the 
sample size n  which have to be tested to accurately estimate the
η   value defined in Eq. (5), was derived in [8]. And it is given by

 1
ln( ( ))

n
R t
−

=
       (6)

Thus, from Eq. (5 and 6) η   in terms of  η  is given by 

1/n tβη =    (7)

Eq. (6) is too important in Weibull analysis because by 
using it in Eq. (7), theη  value which corresponds to any feasible 
or desired ( )0 ,t t >   ( )0β β >  and ( )R t  values is completely 
determined without any experimentation or observed lifetime 
data. As an example suppose we desire to determine theη  value 
which corresponds to ( ) 0.9535R t =  for 1500t hrs=  and   3.β = Thus 
from Eq. (6) 21,n =  and by using it with 3.β =  and 1500t hrs=  in Eq. 
(7), 1/321 1500 4138.38 .hrsη = =  Hence, because the  value estimated in Eq. 
(6) completely determine η , then this n  value also represents 
the sample size which has to be tested without failures in order 
to accurately estimate the minimumη  value for which the tested 
element will present at least the desired reliability index. As a 
simple example suppose we have to demonstrate a product 
fulfills with ( ) 0.95R t = for 1500t hrs=  Thus, because from Eq. (6)

19.4957,n =   then 19 parts has to be tested by 1500hrs each and 
one part has to be tested by 0.4957(1500)=743.595hrs. It is to 
say, n in Eq. (6) is not a discrete value, instead it is continuous 
and it represents the times the desired time t has to be tested 
in order to demonstrate the tested product fulfills at least with 
the desired ( )R t  index. Now we know n  in Eq. (6) represents the 
right sample size to design a zero failure Weibull demonstration 
test plan, let present the capability indices and the corresponding 
control charts.

Weibull capability indices and control charts
When the Weibull analysis is being performed for example 

in the quality field or in an improvement process, the related 
capability index cp and ability index cpk are of interest. 
Fortunately by using the log-mean ( )xµ  and the log-standard  
( )xσ deviation parameters of the observed (or expected) failure 
times, as was demonstrated in [9] and [10], the Weibull cp and 
cpk indices can be estimated. In particular, they are formulated 
η based on the direct relationships between the Weibull β  
and  parameters with the log xµ  and ( )xσ  parameters. These 
relationships are 

 
y

x
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β

σ
=     (8)
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    (9)

In Eq. (8), R  is the multiple correlation coefficient between 
a responses 

iY  values and the logarithm of the failure times
( )( )lni iX t=   (here after, by suppose data is Weibull, 1R = ). 

In Eq. (9) 
yµ  and in Eq. (8) yσ are the mean and the standard 

deviation of the response vector given by 

ln( ln(1 ( )))i i iY F t bo BX= − − = +   (10)

In Eq. (10), 0b  and B are parameter to be estimated and the 
cumulated failure probability ( )( )iF t  is given by the median 
rank approach here approximated by the well-known Bennard 
formula as 

0.3( )
0.4

iF t
n
−

=
+

     (11)

Therefore, based on the ( )xµ  and  yσ  parameters given in Eq. 
8 and 9, the corresponding cp and cpk indices are

( )
6pW

x

USL LSLC
σ
−

=
                  (12)
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x x
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σ σ

 − −
= =   

 
(13)

In Eq. (10 and 11), USL and LSL are the upper and lower 
product’s specifications limits measured in time units. And if 
they are unknown, then the minimum and maximum expected 
lifetimes of the Weibull analysis can be used to estimate them. 
These maximum and minimum lifetimes are estimated from 
Eq. (10) by using the nY   maximum element to estimate the 
maximum lifetime and by using the

iY  minimum element to 
estimate the minimum lifetime as

0 ln( )exp expi i
i

Y b Yt β η
β β

   + +
= =   

         (14)

On the other hand, based on the facts that 

1)	 In Weibull analysis the ( )R t  index is completely defined 
by the β  andη  parameters, and 
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2)	 The β  and η  are determined by ( )xµ  and ( )xσ  [Eqs. 8 
and 9].

Then in the Weibull control charts to monitor β andη  
were formulated by setting ( )xσ  as the upper control limit to 
monitoring  β And by setting ( )xµ as the lower control limit 
to monitoring η. Here it is too important to highlight because 
( )xµ and ( )xσ  represent the central parameters in logarithm 
scale, then in the case where we are analyzing several variables
( )xµ  and ( )xσ  can be estimated by using the Taguchi method as 
it is made in [11]. And of course, once they had been already 
estimated, they can be used in Eqs. 8 and 9 to estimate the 
corresponding β  and η parameters, and in Eqs. 12 and 13 to 
determine the corresponding capability indices; for details see 
[12]. Now let present how to estimate β  and η  directly from the 
applied stresses values.

Estimation of β  and η  directly from the stresses 
values

Since in Weibull analysis β  and η  completely determine 
the estimated ( )R t  index, and because β  represents the aging 
of the analyzed system, then their accurate estimation is needed. 
Fortunately, as demonstrated in [4] both β  and η  can be directly 
estimated from the maximum and minimum applied stresses 
values. The estimation is made by using the eigen values of the 
analyzed quadratic form as the maximum and minimum applied 
stress values. As examples of quadratic forms suppose we are 
analyzing a biological phenomenon by using a response surface 
model given by

2 2
0 1 1 2 2 11 1 22 2 12 1 2Y b X X X X X Xβ β β β β= + + + + + (15)

Thus, its quadratic form is 
11 12

21 22

/ 2
.

/ 2
Q

β β
β β
 

=  
    Similarly 

suppose from the stress analysis we know the normal stresses   
( )xσ and yσ  and the shear stress xyτ  values. Hence, the stress

 quadratic form is .x xy

yx y
Q

σ τ
τ σ
 

=  
     As a third example of quadratic 

form suppose in a principal component (pc) analysis we know 
the variance and the covariance among the variables. Thus, the

 pc quadratic form is 
11 1 2

2 1 22

Q
σ σ σ
σ σ σ
 

=  
 

  Therefore based on [4], by

 using the eigen values  
1λ  and 

2λ  of the quadratic form Q, the β 
value is given as

1 2

4
ln( / )

yµβ
λ λ
−

=       (16)

In Eq. (16)  yµ  is the mean of the response vector defined in 
Eq. (10). And because the log-mean ( )xµ  is directly given as the 
square root of the determinant of the Q matrix (for details see 
sec. 2.2 in [4]), then by using yµ  and the estimated β  and ( )xµ   
values in Eq. (9)η  is directly estimated. It is to say from Eq. (16) 
β  is estimated and from Eq. (9) the corresponding η  value is 
estimated. Now let present the numerical examples. 

Numerical example for constant stress behavior
In this section two numerical example with constant stress 

behavior are presented. In the case of single stress variable, the 
temperature (T) is used as the stress variable. And for several 
stress variables the Taguchi method is used. 

Analysis with a single stress variable
Table 1: Data for single constant stress analysis.

Stress 393K 408K 423K

Time

3850 3300 2750

4340 3720 3100

4760 4080 3400

5320 4560 3800

5740 4920 4100

6160 5280 4400

6580 5640 4700

7140 6120 5100

7980 6840 5700

8960 7680 6400

In this section let used data published in [13]. The 10n =
collected lifetimes are given in Table 1. Data corresponds to 
an accelerated life time data (ALT) subjected to a single stress 
variable (temperature in Kelvin degrees). The normal level is 

323N K=  and the accelerated levels are lower 393 ,L K=  
middle 408M K=  and higher 423 .H K=   Thus, because 
data of Table 1 is an ALT data, then first the η   parameter of the 
normal level 323T K=  has to be determined. And because the 
stress variable is a fixed temperature value, then the life/stress 
Arrhenius models is used. (If the stress is a range of temperature, 
then the Coffin Mason model should be used). The Arrhenius 
model ([14] sec.5.5.1) is given as 

( ) i

B
T

i iL T Ceη = =       (17)

In Eq. (17) C and B are parameters to be estimated. Thus, by 
using Eq. (1) and Eq. (17) in the ALTA software, the estimated 
Arrhenius parameters are 4.2916,β =  58.9848C =  and 

1861.6187.B =   As a consequence, by using the estimated C and 
B values with T=323 in Eq. (17), the normal scale parameter 
is 18784.83 .hrsη =  Therefore the Weibull distribution of the 
normal setting is W(4.2916, 18784.83). On the other hand, the   
( )xµ and ( )xσ  values which corresponds to ( ) 0.9535R t =  are 
estimated by using 0.545624yµ = −   and 1.1751169.yσ =   ( )xµ   and

 yσ   were estimated by using ( ) ( )1 0.9535R t F t= − =  Eq.(10).

Therefore, from Eq. (9), 9.7136675xµ =  and from Eq. 
(8)   0.2738179.xσ = And because ( )1 ln 0.9535 21,n = − =  then

( )( )( )( )ln ln 1 21 0.3 21.4 1.22966,nY = − − − =  1 3.403483.Y = −  Thus, from Eq. 
(14) UCL= 10.12733 and LCL=9.04774. And as a consequence 
from Eq. (12). And from Eq. (13) . Finally, 0.2738179xσ =  has 
to be set as the maximum allowed value to monitor β  . Similarly
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9.7136675xµ =  has to be set as the lower allowed value to monitor 
η. Now let present the multivariate analysis.

Analysis with several stress variables
In this section, the analysis is based on [11]. The used data 

given in Table 2 was first published in [15]. The analyzed factors 
were the aluminum-alloy content in manganese (Mn) and 
magnesium (Mg) as well as hot mill pass counts (HMPC) and 

cold mill reduction rate (CMR). Mn, Mg, and CMR were measured 
in percentage units until dome yielded 1mm on a constantly 
applied external pressure of 500psi. From the Taguchi analysis 
([11] sec.3.3.2) the robust level is Mn=1.6, Mg=1.8, HMPC=35, 
and CMR=30. The found robust’s log-parameters  are 3.5442xµ =   
and  0.024141.xµ =  Thus, from Eq.(8) 40.82715β =  and from 
Eq.(9)  35.0307.η =

Table 2: Taguchi data for constant stress analysis.

Control Factors Replicates (Life Data)

Mn Mg HMP C CMR R 1 R1 R3 R4 Rs

0.4 0.6 25 30 17 21 23 18 16

0.4 1.2 30 45 23 24 21 20 18

0.4 1.8 35 60 23 26 27 25 22

1 0.6 30 60 15 13 17 17 14

1 1.2 35 30 20 21 22 22 20

1 1.8 25 45 25 27 26 21 24

1.6 0.6 35 45 24 25 24 22 22

1.6 1.2 25 60 28 26 28 25 23

1.6 1.8 30 30 32 34 31 36 33

On the other hand, because in [11] ( ) 0.90R t =  was used, 
then in this case   µ_y=-0.52311 and  1.115.34.xσ =  Hence, 
from Eq. (6) ( )1 ln 0.90 10,n = − =  and from Eq. (10) 0.992689,nY =  

1 2.66384.Y = −    Similarly, from Eq. (14) UCL= 3.580539 and 
LCL=3.490978. And from Eq. (12) 0.618321WCp =  . And from 
Eq. (13) ( )min 0.501764,    0.734878 0.501764WCpk s= =   Finally in 
a control chart, to monitoring β   0.024141xσ = represents 
the maximum allowed value. Similarly in a control chart to 
monitoring η  3.5442xµ =  represents the lower allowed value 
to be monitored. For details on how a Weibull analysis with 
several variables can be performed see [16]. Now let present the 
analysis for non-constant stress variable.

Numerical example for variable stress behavior
In this section two numerical example with variable stress 

behavior are presented. In the first case data published in [4] 
is used to show how a product can be designed. In the second 
case data published in [17] is use to show how the ALT analysis 
can be used to analyze variable stress behavior. The analysis is 
as follows

Variable stress analysis focused on product’s design
In this section the focus is on product’s design. The 

analysis is performed following [4]. The objective consists on 
determining the ( )R t  index of a mechanical or structural design 
subjected to the normal stresses 100 ,x mpaσ =  70 ,y mpaσ =   
and a shear stress 40 .xy mpaτ =   Thus, as mentioned in section 
4, the stress matrix Q which model the variant stress behavior 
is   100 40

.
40 70

Q  
=  
 

From Qx, the principal stresses or eigen values are 
1 127.72mpaσ =   and 2 42.28 .mpaσ =   And as a consequence, the 

principal stress behavior is in the interval [ ]42.28 –  127.72 .mpa   
And because in [4]  ( ) 0.9535R t =  was used, then from the   iY
elements generated in Eq. (10), their mean is 0.545624yµ = −   and 
their standard deviation is 1.1751169.yσ =   Hence, by using the 

yµ  value and the 
1σ  and 2σ   values in Eq. (16), the estimated 

Weibull shape parameter is  1.984693.β =  And by using the yσ  
and β   values in Eq. (8), 0.592090.yσ =    Finally, because from the 
logarithm of the square root of the determinant of the stress 
matrix Q, 4.29707726,xµ =   then from Eq.(9), the Weibull scale 
parameter is 96.73676 .mpaη =   Therefore the addressed Weibull 
family is W(1.984693, 96.7367). However, because in variable 
stress analysis, the stress variable instead of be a single value 
it is a range of stress values, then the addressed Weibull family 
only represents the stress distribution which models the stress 
range behavior as shown in Table 2 in [4]. As a consequence, in 
order to determine the ( )R t  index of the analyzed product, the 
Weibull distribution which models the strength of the product 
to overcome the applied stress has to be determined. In [4] sec. 
4.4.2, because the used material strength was sy=400mpa, then 
the addressed strength Weibull family is W(1.984693, 455.2318). 
Finally, by using both the stress and the strength distributions in 
the Weibull/Weibull stress/strength methodology ([18] chapter 
4 to 6), the stress/strength ( )R t  index is given as

( ) S

S

R t
β

β β

η
η η

=
+

      (18)

In Eq. (18) 1.984693,β =  96.73676η =  and 455.2318.Sη =   
As a consequence, the addressed stress/strength ( )R t  index is 
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( ) 95.58.R t =  It is to say a product designed with sy=400mpa 
performing in a variant stress range of [42.28, 127.72]mpa will 
present a ( ) 95.58.R t =   [4].

On the other hand, although in variable stress analysis the 
cp and cpk indices defined in Eqs. 12 and 13 are not defined for 
the Weibull/Weibull stress/strength function yet, the related 
control charts can be used to monitoring the stress and the 
strength Weibull parameters. Thus, 0.592090xσ =   should be 
used as the maximum value to monitor the common β   value, 
and 4.29707726xµ =   should be used as the maximum value to 
monitor the stress η   value. Also observe because here ( )xµ   
represents the stress distribution it was set as the maximum 
allowed value. When it represents the strength distribution, 
it is set as the minimal allowed value. Finally, the ( )xµ  value 
to monitoring the strength Sη   value is determined by using 

0.545624,yµ = −  1.984693β =   and 455.2318Sη =   in Eq. (9). The 
estimated value to be monitored as the minimal allowed stress 
value is 5.845891.xµ =   Now let present the stress variable case 
using ALT data.

Variable stress analysis by using ALT data
In this section the focus is to show how the ALT analysis can 

be used to analyze variable stress behavior. The used data was 
published in [17]. Data represents a set of 65 ball bearings tested 
at loads of 3500, 3800 and 4500 pounds. (Observe because the 
stress variable behavior by itself represents the normal stress 
behavior, then no extrapolation is needed). In the analysis the 
lognormal distribution with log parameters 7.6xµ =  and 0.4xσ =   
was used to represent the stress variable behavior. And the 
Weibull distribution was used to represent the corresponding 
life times behavior of the ball bearings. From the collected 65 ALT 
data, the Weibull β   parameter and the K   and n   parameters of 
the used inverse power model (IP)were estimated. The IP model 
[14] is given by

1( ) nL V
KV

=
     (19)

In Eq. (19), V represents the stress variable (pounds in this 
case). From the ALT analysis 1.847127,β =   n=3.624360, and 
K=7.166599E-18. Then 21 stress values in the interval [1000, 
4000] punds were selected, and by using them with the estimated 
IP parameters in Eq. (19) 21 η  value were predicted. Then by 
using 1.847127,β =  and the 21 estimated η   values in Eq. (2), 
the corresponding R(t) indices for t=30000 were estimated and 
used in Eq. (10) to determine the corresponding 21 iY  elements. 
Finally by using the logarithm of the 21 stresses values and the 
estimated 21 iY  elements, in a regression, the Weibull parameters 
of the strength distribution were estimated. The fitted Weibull 
parameters of the strength distribution are 6.694655,β =  
and 3126.926895.η =  Therefore, the addressed Weibull 
strength distribution is W(6.694655, 3126.926895). Here it 
is too important to observe the addressed Weibull family only 
represents the behavior for fixed t=30000, if other t value is 

desired the above process has to be repeated [17]. Finally, by 
using the lognormal stress distribution and the Weibull strength 
distribution in the lognormal/Weibull stress/strength analysis 
[18], the corresponding ( )R t  index was determined. The found  
( )R t  index is ( ) 0.7954;R t =  [17].

On the other hand, although the cp and cpk indices are not 
defined for the lognormal/Weibull stress/strength analysis yet, 
the monitoring process of the addressed stress and strength 
parameters can be performed. This can be done because both 
the lognormal and the Weibull distribution are based on the log 
parameters ( )xµ  and ( )xσ  Therefore the lognormal parameter  

7.6xµ = can be monitored by set 7.6xµ =  as the maximum 
allowed stress level in a control chart. Note it was set as the 
maximum because it represents the stress distribution. It is to 
say, because In the stress/strength analysis the higher the ( )xµ  
stress value the lower the R(t) index then it has to be set as the 
maximum allowed value. Similarly, the log normal ( )xσ  parameter 
can be monitored by using 0.4xσ =  as the maximum allowed 
value also [18].

On the other hand, because in the monitoring process the 
variables which determine the ( )xµ  and ( )xσ  values are the 
process variables which have to be monitored. And because in 
order to correctly monitor ( )xµ   and ( )xσ  the contribution that 
each variable has on the observe ( )xµ  and ( )xσ  values have to 
be determined, then their contribution have to be determined. 
Fortunately because µ_x is directly given from the determinant 
of theQ matrix as it is made in [4], then the decomposition 
method given in [19] can be used to determine the mentioned 
variable contributions. Also it is important to mention that 
the mathematical formulation to determine the ( )xσ  value and 
the variables which determine its value, can be performed by 
partitioning the Q matrix as it is made in [20]. Finally the ( )xσ  value 
to monitor 1.847127β =  is determined by using 1.1751169yσ =  
in Eq. (8). The ( )xσ  value to be set in the corresponding chart 
as the maximum allowed value is  0.636186.xσ =  And because 

3126.926895η =  and 0.545624,yµ = −  then from Eq. (9) the ( )xµ  
value to be set in the corresponding chart as the minimum 
allowed value to monitoring η  is 8.343197.xµ =  

Finally, it is to important to note the estimated stress/strength 
( ) 0.7954R t =  index was not used to estimate 0.545624yµ = −  and   

1.1751169yσ =  instead ( ) 0.9535R t =   used. This is made in this way 
because in the stress/strength analysis, the stress distribution 
is independent of the strength distribution. Therefore, the 
generated stress/strength function only represents the effect 
that all possible stress values have over the all possible strength 
values [18]. 

Conclusion

In this paper the advances on the theoretical interpretation 
of the features of the Weibull distribution which let practitioners 
to perform an integral analysis from the test planning phase to 
the monitor phase are presented. This is made based on the 
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fact the Weibull distribution efficiently model a quadratic form. 
Among the more important features given in this article are 

The Weibull parameters β  and η  are completely determined 
from the maximum and minimum eigen values of the analyzed 
quadratic form (see sec. 4). 

Because the addressed n value in Eq.(6) only depends on 
the desired  ( )R t  index, then the estimated n value is robust 
under any uncertainties of the used t  and  β  values; and in 
particular observe from Eq. (61) in [4] that because this n value 
also represent the base lifetime of any Weibull analysis, then Eq. 
(6) can be used to determine the expected lifetimes after any 
reliability improvement process. 

The mean of the expected logarithm of the lifetimes ( )xµ  is 
completely determined by the logarithm of the square root of the 
determinant of the analyzed quadratic form Q. 

Although the Weibull cp and cpk indices are estimated by 
using the logarithm parameters ( )xµ   and ( )xσ   because they are 
dimensionless they are efficient. 

By monitoring the log-parameters ( )xµ  and ( )xσ  the β and η  
parameters are completely controlled. 
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