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Abstract
The renowned k-nearest neighbor decision rule is widely used for classification tasks, where the label of any new sample is 
estimated based on a similarity criterion defined by an appropriate distance function. It has also been used successfully for 
regression problems where the purpose is to predict a continuous numeric label. However, some alternative neighborhood 
definitions, such as the surrounding neighborhood, have considered that the neighbors should fulfill not only the proximity 
property, but also a spatial location criterion. In this paper, we explore the use of the k-nearest centroid neighbor rule, which 
is based on the concept of surrounding neighborhood, for regression problems. Two support vector regression models were 
executed as reference. Experimentation over a wide collection of real-world data sets and using fifteen odd different values of 
k demonstrates that the regression algorithm based on the surrounding neighborhood significantly outperforms the traditional 
k-nearest neighborhood method and also a support vector regression model with a RBF kernel.

Keywords Nearest neighborhood · Regression analysis · Surrounding neighborhood · Symmetry criterion

1 Introduction

The nearest neighbor (NN) rule constitutes one of the most 
popular nonparametric classification models in pattern rec-
ognition and machine learning [7]. The general idea behind 
this technique is very simple and intuitive: if two examples 
belong to the same class, they should be close enough to 

each other according to a measure of dissimilarity in the 
D-dimensional feature space ℝD . Thus, given a data set of 
size n, T = {(X1, Y1), (X2, Y2),… , (Xn, Yn)} , where Xi ∈ ℝ

D 
denotes the i-th training example and Yi ∈ {�1,�2,… ,�M} 
is its class label, a new sample p is assigned to the class of 
its nearest neighbor in the training set T. An extension to the 
NN decision rule is the k-NN classifier, in which the label to 
be assigned to p corresponds to the one with a majority of 
votes from the k closest examples in T.

Apart from other properties common to most nonpara-
metric classification techniques, the k-NN rule combines its 
conceptual simplicity and good performance with the fact 
that its asymptotic or infinite ( n → ∞ ) error tends to the 
optimal Bayes error under very weak conditions ( k → ∞ 
and k∕n → 0).

In general, the k-NN model has intensively been applied 
to classification problems with the aim of predicting or esti-
mating a discrete class label. However, this technique has 
already been used for regression modeling [3, 6, 17, 22] 
where the labels to be estimated correspond to continuous 
values. For instance, Yao and Ruzo [26] proposed a general 
framework based on the k-NN algorithm for the prediction 
of gene function. Dell’Acqua et al. [8] introduced the time-
aware multivariate NN regression method to predict traffic 
flow. Treiber and Kramer [23] analyzed the k-NN regression 
method in a multivariate times series model for predicting 
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the wind power of turbines. Yang and Zhao [25] developed 
several generalized algorithms of the k-NN regression and 
applied them to a face recognition problem. Hu et al. [14] 
predicted the capacity of lithium-ion batteries by means of 
a data-driven method based on k-NN, which is used to build 
a nonlinear kernel regression model. Xiao et al. [24] com-
bined NN and logistic regression for the early diagnosis of 
late-onset neonatal sepsis. Eronen and Klapuri [10] proposed 
an approach for tempo estimation from musical pieces with 
k-NN regression. Leon and Popescu [16] presented an algo-
rithm based on large margin NN regression for predicting 
students performance using their contributions to several 
social media tools. Yu and Hong [27] developed an ensem-
ble of NN regression in low-rank multi-view feature space 
to infer 3D human poses from monocular videos.

Intuitively, neighborhood should be defined in a way that 
the neighbors of a sample are as close to it as possible and 
they are located as homogeneously around it as possible. The 
second condition is a consequence of the first in the asymp-
totic case, but in some practical cases, the geometrical dis-
tribution may become even more important than the actual 
distances to characterize a sample by means of its neighbor-
hood [19]. As the traditional concept of neighborhood takes 
care of the first property only, the nearest neighbors may not 
be placed symmetrically around the sample.

Some alternative neighborhoods have been proposed as 
a way to overcome the problem just pointed out. These con-
sider both proximity and symmetry so as to define the gen-
eral concept of surrounding neighborhood [19]: they try to 
search for neighbors of a sample close enough (in the basic 
distance sense), but also in terms of their spatial distribu-
tion with respect to it. The nearest centroid neighborhood 
[5] is a well-established representative of the surrounding 
neighborhood, showing a better behavior than the classical 
nearest neighborhood on a variety of preprocessing and clas-
sification tasks [12, 19, 20, 28].

Taking into account the good performance in classifica-
tion, the purpose of this paper is to introduce the k-nearest 
centroid neighbors (k-NCN) model for regression and to 
investigate its efficiency by carrying out a comprehensive 
empirical analysis over 31 real-life data sets when varying 
the neighborhood size (k).

Henceforth, the paper is organized as follows. Section 2 
presents the foundations of the k-NCN algorithm and defines 
the regression algorithm proposed in this paper. Section 3 
provides the main characteristics of the databases and the 
setup of the experiments carried out. Section 4 discusses the 
experimental results. Finally, Sect. 5 remarks the main con-
clusions and outlines possible avenues for future research.

2  Regression models based 
on neighborhood

In this section, we briefly introduce the basis of the regres-
sion models based on k-NN and k-NCN.

Let T = {(�1, a1),… , (�n, an)} ∈ (� × a)n be a data set 
of n independent and identically distributed (i.i.d.) ran-
dom pairs (�i, ai) , where �i = [xi1, xi2,… , xiD] represents an 
example in a D-dimensional feature space and ai denotes 
the continuous target value associated to it. The aim of 
regression is to learn a function f ∶ � → a to predict the 
value a for a query sample � = [y1, y2,… , yD].

2.1  k‑NN regression

The concept of the k-NN rule for regression can be gen-
eralized since the nearest neighbor method assigns a new 
sample � the same target value as the closest example in 
T, according to a certain dissimilarity measure (generally, 
the Euclidean distance). An extension of this procedure is 
the k-NN decision rule, in which the algorithm retrieves 
the k closest examples in T.

When k = 1 , the target value assigned to the input sam-
ple is the target value indicated by its closest neighbor. For 
k > 1 , the k-NN regression model (k-NNR) estimates the 
target value f (�) of a new input sample � by averaging the 
target values of its k-nearest neighbors [2, 13, 15]:

where ai denotes the target value of the i-th nearest neighbor.

2.2  k‑NCN regression

Let p be a query sample whose k-nearest centroid neigh-
bors should be found from a set X = {x1,… , xn} . These k 
neighbors are such that (a) they are as near p as possible, 
and (b) their centroid is also as close to p as possible. Both 
conditions can be satisfied through the iterative procedure 
given in Algorithm 1.

(1)f (�) =
1

k

k
∑

i=1

ai
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Algorithm 1 Nearest centroid neighbors
1: Input:
2: X = {x1, . . . , xn} {Input data set}
3: k {Neighborhood size}
4: p {Query point}
5:
6: Output:
7: Q = {q1, . . . , qk} {Nearest centroid neighbors}
8:
9: Q ← ∅
10: q1 ← findNN(X, p) {q1 is the nearest neighbor}
11: Q ← {q1}
12: Aux ← X − {q1}
13:
14: j ← 1
15: while j < k do
16: j ← j + 1
17: dist ← ∞
18: for all xi ∈ Aux do
19: M ← computeCentroid(Q ∪ {xi})
20: if computeDist(M,p) < dist then
21: qj ← xi

22: end if
23: end for
24: Q ← Q ∪ {qj}
25: Aux ← Aux− {qj}
26: end while

The algorithm is better illustrated through a simple exam-
ple in Fig. 1. The first neighbor of a query point p, which 
is denoted by the letter a, corresponds to its first nearest 
neighbor. The second neighbor is not the second nearest 
neighbor (represented as e); instead, the algorithm picks a 
point located in the opposite direction of the first neighbor 
with respect to p so that the centroid of that point and all 
previously selected neighbors is the closest to p.

This definition leads to a type of neighborhood in which 
both closeness and spatial distribution of neighbors are taken 
into account because of the symmetry (centroid) criterion. 
Besides, the proximity of the nearest centroid neighbors to 

the sample is guaranteed because of the incremental nature 
of the way in which those are obtained from the first nearest 
neighbor. However, note that the iterative procedure outlined 
in Algorithm 1 does not minimize the distance to the cen-
troid because it gives precedence to the individual distances 
instead. On the other hand, the region of influence of the 
NCN results bigger than that of the traditional nearest neigh-
borhood; as can be seen in Fig. 1, the four nearest centroid 
neighbors (a, b, c, d) of a point p enclose a region quite 
bigger than the region defined by the four nearest neighbors 
(a, e, f, g).

For a set of cardinality n, computation of one nearest 
centroid neighbor of any point requires at most n centroid 
and distance computations, and also n comparisons to find 
the minimum of the distances. Therefore, k-nearest centroid 
neighbors of a point can be computed in O(kN) time, which 
is the same as that required for the computation of k-nearest 
neighbors.

From the concept of nearest centroid neighborhood, it 
is possible to introduce an alternative regression model, 
namely k-NCNR, which estimates the output of a query 
sample � as follows:

1. Find the k-nearest centroid neighbors of � by using 
Algorithm 1.

2. Estimate the target value of � as the average of the target 
values of its k neighbors by means of Eq. 1.

3  Experiments

The main purpose of the experiments in this study is two-
fold. First, we want to establish whether or not the proposed 
k-NCNR model outperforms the classical k-NNR algorithm. 
Second, we are also interested in evaluating the performance 
of the best k-NCNR and k-NNR algorithms in comparison 
with two support vector regression methods. Experimenta-
tion was carried out over a collection of 31 data sets with a 
wide variety of characteristics in terms of number of attrib-
utes and samples. All these data sets were taken from the 
KEEL repository [1], and their main characteristics are sum-
marized in Table 1.

The fivefold cross-validation procedure was adopted for 
the experiments because it provides some advantages over 
other resampling strategies, such as bootstrap with a high 
computational cost or re-substitution with a biased behavior 
[18]. The original data set was randomly divided into five 
stratified segments or folds of (approximately) equal size; 
for each fold, four blocks were used to fit the model, and the 
remaining portion was held out for evaluation as an inde-
pendent test set. Then the results reported here correspond 
to the averages across the five trials.Fig. 1  A comparison between NCN and NN
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The main hyper-parameters of the regression models used 
in the experiments are listed in Table 2. Note that two sup-
port vector regression (SVR) algorithms [21], with linear 
and RBF kernels, were also employed as reference solutions 
for comparison purposes.

3.1  Evaluation criteria

In the framework of regression, the purpose of most per-
formance evaluation scores is to estimate how much the 
predictions (p1, p2,… , pn) deviate from the target values 
(a1, a2,… , an) . These metrics are minimized when the pre-
dicted value for each query sample agrees with its true value 
[4]. Probably, the most popular measure that has extensively 
been used to evaluate the performance of a regression model 
is the root mean square error (RMSE),

This metric indicates how far the predicted values pi are 
from the target values ai by averaging the magnitude of indi-
vidual errors without taking care of their sign.

From the RMSE, we defined the error normalized differ-
ence, which is computed for each data set i and each neigh-
borhood size k as follows:

where RMSENNi,k
 and RMSENCNi,k

 represent the RMSE 
achieved on data set i using k-NNR and k-NCNR, 
respectively.

In practice, Differrori,k can be considered as an indicator of 
improvement or deterioration of the k-NCNR method with 
respect to the k-NNR model:

– if Differrori,k > 0 , k-NCNR is better than k-NNR;
– if Differrori,k < 0 , k-NCNR is worse than k-NNR;
– if Differrori,k ≈ 0 , there are no significant differences 

between k-NNR and k-NCNR.

3.2  Nonparametric statistical tests

When comparing the results of two or more models over 
multiple data sets, a nonparametric statistical test is more 
appropriate than a parametric one because the former is not 
based on any assumption such as normality or homogeneity 
of variance [9, 11].

Both pairwise and multiple comparisons were used 
in this paper. First, we applied the Friedman’s test to 
discover any statistically significant differences among 
all the regression models. This starts by ranking the 

(2)RMSE =

√

1

n

∑n

i=1
(pi − ai)

2

(3)Differrori,k =
RMSENNi,k

− RMSENCNi,k

RMSENNi,k

Table 1  Characteristics of the data sets used in the experiments

#Samples #Attributes

(1) Diabetes 43 2
(2) Ele-1 495 2
(3) Plastic 1650 2
(4) Quake 2178 3
(5) Laser 993 4
(6) Ele-2 1056 4
(7) AutoMPG6 392 5
(8) Friedman 1200 5
(9) Delta-Ail 7129 5
(10) MachCPU 209 6
(11) Dee 365 6
(12) AutoMPG8 392 7
(13) Anacalt 4052 7
(14) Concrete 1030 8
(15) Abalone 4177 8
(16) California 20,640 8
(17) Stock 950 9
(18) Wizmir 1461 9
(19) Wankara 1609 9
(20) MV 40,768 10
(21) ForestFire 517 12
(22) Treasury 1049 15
(23) Mortgage 1049 15
(24) Baseball 337 16
(25) House 22,784 16
(26) Elevators 16,599 18
(27) Compact 8192 21
(28) Pole 14,998 26
(29) Puma32h 8192 32
(30) Ailerons 13,750 40
(31) Tic 9822 85

Table 2  Parameters of the regression algorithms

Method Learning parameters

k-NCNR k = 1, 3, … , 29; Euclidean distance
k-NNR k = 1, 3, … , 29; Euclidean distance
SVR(L1) Complexity parameter = 1; linear kernel 

(polynomial of degree 1); sequential minimal 
optimization algorithm; epsilon round-off 
error = 1 × 1012 ; epsilon insensitive loss func-
tion = 0.001; tolerance = 0.001

SVR(RBF) Complexity parameter = 1; RBF kernel; 
sequential minimal optimization algorithm; 
gamma = 0.01; epsilon round-off error = 1 
× 1012 ; epsilon insensitive loss function = 
0.001; tolerance = 0.001
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algorithms for each data set independently according to 
the RMSE results: as there are 30 competing models (15 
k-NNR and 15 k-NCNR), the ranks for each data set are 
from 1 (best) to 30 (worst). Then the average rank of each 
algorithm across all data sets is computed.

As the Friedman’s test only detects significant differ-
ences over the whole pool of comparisons, we then pro-
ceeded with the Holm’s post hoc test in order to compare 
a control algorithm (the best model) against the remaining 
techniques by defining a collection of hypothesis around 
the control method.

Afterward, the Wilcoxon’s paired signed-rank test was 
employed to find out whether or not there exist significant 
differences between each pair of the five top k-NNR and 
k-NCNR algorithms. This statistic ranks the differences in 
performance of two algorithms for each data set, ignoring 
the signs, and compares the ranks for the positive and the 
negative differences.

In summary, the statistical tests were used as follows: 
(i) the Friedman’s test was employed over all the models; 
(ii) the Wilcoxon’s, Friedman’s and Holm’s post hoc tests 
were applied to the five top-ranked k-NNR and k-NCNR 
algorithms with the aim of concentrating the analysis on 
the best results of each approach.

4  Results

This section is divided into two blocks. First, the comparison 
between the k-NCNR and k-NNR models is discussed in 
Sect. 4.1. Second, the results of the best configurations of 
k-NCNR and k-NNR are compared against the results of the 
SVR models in Sect. 4.2. The detailed results obtained over 
each data set and each algorithm are reported in Tables 8 
and 9 in the Appendix.

4.1  k‑NCNR versus k‑NNR

Figure 2 depicts the error normalized difference for each 
database ( i = 1,… , 31 ) with all neighborhood sizes. The 
most important observation is that a vast majority of cases 
achieved positive values ( Differrori,k > 0 ), indicating that the 
performance of the k-NCNR model was superior to that of 
the corresponding k-NNR algorithm for most databases.

Figure 3 shows the Friedman’s average ranks achieved 
from the RMSE results with all the regression methods (k-
NNR and k-NCNR). As can be observed, the lowest (best) 
average ranks were achieved with both strategies using k 
values in the range from 9 to 21. More specifically, the best 
k-NNR configurations were with k = 9, 11, 17, 13, 15 , whose 
ranks were 6.4194, 6.7097, 6.7903, 6.9032 and 6.9032, 
respectively. In the case of k-NCNR, the best k values were 
11, 19, 21, 9 and 13 with ranks 7.0323, 7.1935, 7.2581, 
7.3226 and 7.3871, respectively.

Fig. 2  Error normalized differ-
ence on the 31 data sets
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Table 3 reports the results of the Wilcoxon’s test applied 
to the ten best regression models. The upper diagonal half 
summarizes this statistic at a significance level of � = 0.10 
(10% or less chance), and the lower diagonal half corre-
sponds to a significance level of � = 0.05 . The symbol “ ∙ ” 
indicates that the method in the row significantly outper-
forms the method in the column, whereas the symbol “ ◦ ” 
means that the method in the column performs significantly 
better than the method in the row.

Analysis of the results in Table 3 allows to remark that the 
k-NCNR models were significantly better than the k-NNR 
algorithms. On the other hand, it is also interesting to note 
that different values of k did not yield statistically significant 
differences between pairs of the same strategy; for instance, 
in the case of k-NCNR, there was no neighborhood size per-
forming significantly better than some other value of k.

Because the Wilcoxon’s test for multiple comparisons 
does not allow to conclude which algorithm is the best, 
we applied a Friedman’s test to the five top-ranked k-NNR 
and k-NCNR approaches and afterward, a Holm’s post 

hoc test in order to determine whether or not there exists 
significant differences with the best (control) model. As 
we had 10 algorithms and 31 databases, the Friedman’s 
test using the Iman–Davenport statistic, which is distrib-
uted according to the F-distribution with 10 − 1 = 9 and 
(10 − 3)(31 − 1) = 270 degrees of freedom, was 8.425717. 
The p value calculated by F(9, 270) was 4.3 × 10−11 and 
therefore, the null hypothesis that all algorithms performed 
equally well can be rejected with a high significance level.

Figure 4 depicts the Friedman’s average rankings for the 
five top-ranked k-NNR and k-NCNR algorithms. One can 
see that the approach with the best scores corresponds to 
11-NCNR, which will be the control algorithm for the subse-
quent Holm’s post hoc test. It is also worth pointing out that 
all the k-NCNR models achieved lower rankings than the 
k-NNR methods, proving the superiority of the surrounding 
neighborhood to the conventional neighborhood,Fig. 3  Friedman’s ranks of the k-NNR and k-NCNR models

Table 3  Summary of the 
Wilcoxon’s statistic for the best 
k-NNR and k-NCNR models

Upper and lower diagonal halves are for � = 0.10 and � = 0.05 , respectively

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) 9-NNR – ◦ ◦ ◦

(2) 11-NNR – ◦ ◦ ◦ ◦ ◦

(3) 17-NNR – ◦ ◦ ◦ ◦ ◦

(4) 13-NNR – ◦ ◦ ◦ ◦ ◦

(5) 15-NNR – ◦ ◦ ◦ ◦ ◦

(6) 11-NCNR ∙ ∙ ∙ ∙ ∙ –
(7) 19-NCNR ∙ ∙ ∙ ∙ –
(8) 21-NCNR ∙ ∙ ∙ ∙ –
(9) 9-NCNR ∙ ∙ ∙ ∙ ∙ –
(10) 13-NCNR ∙ ∙ ∙ ∙ ∙ –

Fig. 4  Friedman’s ranks of the five best results for the k-NNR and 
k-NCNR models
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Table  4 reports the results of the Holm’s test using 
11-NCNR as the control algorithm, including the z value, the 
unadjusted p value, and the adjusted � value at significance 
levels of 0.05 and 0.10. It can be viewed that 11-NCNR was 
significantly better than the five top-ranked k-NNR models at 
both significance levels. On the contrary, it is not possible to 
reject the null hypothesis of equivalence between 11-NCNR 
and the rest of k-NCNR algorithms.

4.2  Neighborhood‑based regression models 
versus SVR

This section analyzes the results of the two top k-NCNR and 
k-NNR algorithms with respect to two SVR algorithms. The 
average RMSE results of these models on the 31 data sets 
and the Friedman’s average rankings are reported in Table 5.

Friedman’s average ranks for the four regressions models 
are plotted in Fig. 5. As can be seen, both 11-NCNR and 
SVR(L1) arose as the algorithms with the lowest rankings, 
that is, the lowest RMSE in average.

In order to check whether or not the RMSE results were 
significantly different, the Iman–Davenport’s statistic was 
computed. This is distributed according to an F-distribution 
with 3 and 90 degrees of freedom. The p value computed 
was 0.03275984862, which is less than a significance level 
of � = 0.05. Therefore, the null hypothesis that all regression 
models performed equally well can be rejected.

Table 6 shows the unadjusted p values for a Holm’s 
post hoc test using the 11-NCNR algorithm as the control 
method. For a significance level of � = 0.05, the procedure 
could not reject the null hypothesis of equivalence in any of 
the three algorithms. Conversely, at a significance level of 
� = 0.10, the Holm’s test indicates that 11-NCNR was sig-
nificantly better than 9-NNR and SVR(RBF), and equivalent 
to SVR(L1).

Table 4  Unadjusted p values for � = 0.05 and � = 0.10 with 
11-NCNR as the control algorithm

The models in bold were significantly worse than the control algo-
rithm

z p value � = 0.05∕i � = 0.10∕i

15-NNR 4.026889 0.000057 0.005556 0.011111
17-NNR 3.942996 0.000080 0.006250 0.012500
21-NNR 3.775209 0.000160 0.007143 0.014286
13-NNR 3.775209 0.000160 0.008333 0.016667
9-NNR 3.313794 0.000920 0.010000 0.020000
9-NCNR 0.545308 0.585542 0.012500 0.025000
21-NCNR 0.503361 0.614710 0.016667 0.033333
19-NCNR 0.419468 0.674874 0.025000 0.050000
13-NCNR 0.041947 0.966541 0.050000 0.100000

Table 5  Average RMSE results of two SVR models and the best 
neighborhood-based algorithms

SVR(L1) SVR(RBF) 11-NCNR 9-NNR

Diabetes 5.88 × 10−1 6.62 × 10−1 6.16 × 10−1 6.31 × 10−1

Ele-1 6.40 × 102 7.64 × 102 6.41 × 102 6.41 × 102

Plastic 1.53 × 100 2.19 × 100 1.59 × 100 1.63 × 100

Quake 2.04 × 10−1 2.04 × 10−1 1.94 × 10−1 1.95 × 10−1

Laser 2.34 × 101 2.46 × 101 1.06 × 101 1.14 × 101

Ele-2 1.68 × 102 2.16 × 102 1.19 × 102 1.60 × 102

AutoMPG6 3.55 × 100 3.67 × 100 3.88 × 100 4.14 × 100

Friedman 2.71 × 100 2.69 × 100 1.68 × 100 1.81 × 100

Delta-Ail 1.74 × 10−4 1.76 × 10−4 1.85 × 10−4 1.90 × 10−4

MachCPU 6.98 × 101 9.03 × 101 8.04 × 101 7.53 × 101

Dee 4.08 × 10−1 4.23 × 10−1 4.02 × 10−1 4.22 × 10−1

AutoMPG8 3.45 × 100 3.61 × 100 3.92 × 100 4.20 × 100

Anacalt 5.15 × 10−1 5.14 × 10−1 7.67 × 10−2 7.80 × 10−2

Concrete 1.11 × 101 1.09 × 101 7.91 × 100 9.64 × 100

Abalone 2.27 × 100 2.40 × 100 2.12 × 100 2.20 × 100

California 7.08 × 104 7.33 × 104 9.17 × 104 9.67 × 104

Stock 2.39 × 100 2.48 × 100 9.23 × 10−1 8.46 × 10−1

Wizmir 1.26 × 100 1.27 × 100 1.31 × 100 1.45 × 100

Wankara 1.57 × 100 1.58 × 100 1.36 × 100 1.48 × 100

MV 5.31 × 100 2.35 × 100 6.08 × 100 7.07 × 100

ForestFire 5.71 × 101 5.71 × 101 5.87 × 101 5.97 × 101

Treasury 2.48 × 10−1 2.85 × 10−1 5.44 × 10−1 5.17 × 10−1

Mortgage 5.31 × 100 2.35 × 100 3.72 × 10−1 3.54 × 10−1

Baseball 7.57 × 102 7.76 × 102 9.08 × 102 8.92 × 102

House 4.77 × 104 4.79 × 104 5.02 × 104 5.07 × 104

Elevators 2.97 × 10−3 2.93 × 10−3 6.35 × 10−3 6.56 × 10−3

Compact 1.24 × 101 1.35 × 101 6.23 × 100 6.50 × 100

Pole 3.10 × 101 3.28 × 101 8.20 × 100 8.33 × 100

Puma32H 2.71 × 10−2 2.70 × 10−2 2.79 × 10−2 2.82 × 10−2

Ailerons 1.77 × 10−4 1.70 × 10−4 3.00 × 10−4 3.49 × 10−4

Tic 2.44 × 10−1 2.44 × 10−1 2.39 × 10−1 2.41 × 10−1

Diabetes 5.88 × 10−1 6.62 × 10−1 6.16 × 10−1 6.31 × 10−1

Ele-1 6.40 × 102 7.64 × 102 6.41 × 102 6.41 × 102

Plastic 1.53 × 100 2.19 × 100 1.59 × 100 1.63 × 100

Quake 2.04 × 10−1 2.04 × 10−1 1.94 × 10−1 1.95 × 10−1

Laser 2.34 × 101 2.46 × 101 1.06 × 101 1.14 × 101

Ele-2 1.68 × 102 2.16 × 102 1.19 × 102 1.60 × 102

AutoMPG6 3.55 × 100 3.67 × 100 3.88 × 100 4.14 × 100

Friedman 2.71 × 100 2.69 × 100 1.68 × 100 1.81 × 100

Delta-Ail 1.74 × 10−4 1.76 × 10−4 1.85 × 10−4 1.90 × 10−4

MachCPU 6.98 × 101 9.03 × 101 8.04 × 101 7.53 × 101

Dee 4.08 × 10−1 4.23 × 10−1 4.02 × 10−1 4.22 × 10−1

AutoMPG8 3.45 × 100 3.61 × 100 3.92 × 100 4.20 × 100

Anacalt 5.15 × 10−1 5.14 × 10−1 7.67 × 10−2 7.80 × 10−2

Concrete 1.11 × 101 1.09 × 101 7.91 × 100 9.64 × 100

Abalone 2.27 × 100 2.40 × 100 2.12 × 100 2.20 × 100

California 7.08 × 104 7.33 × 104 9.17 × 104 9.67 × 104
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We run a Wilcoxon’s paired signed-rank test for � = 0.05 
and � = 0.10 between each pair of regression algorithms. 
From Table 7, we can observe that 11-NCNR performed 
significantly better than 9-NNR at both significance levels, 
and it was significantly better than SVR(RBF) at � = 0.10 . 
On the other hand, it also has to be noted that SVR(L1) was 
significantly better than the SVR model with an RBF kernel 
at � = 0.10 and � = 0.05 . This suggests that, for regression 
problems, we can use either k-NCNR or the linear SVR, 
since both these models yielded equivalent performance 
results.

5  Conclusions and future work

In this paper, a new regression technique based on the near-
est centroid neighborhood has been introduced. The general 
idea behind this strategy is that neighbors of a query sam-
ple should fulfill two complementary conditions: proximity 
and symmetry. In order to discover the applicability of this 
regression model, it has been compared to the k-NNR algo-
rithm when varying the neighborhood size k from 1 to 29 
(using only the odd values) and two configurations of SVR 
(with linear and RBF kernels) over a total of 31 databases.

The experimental results in terms of RMSE (and the 
error normalized difference proposed here) have shown that 
the k-NCNR model is statistically better than the k-NNR 
method. In particular, the best results have been achieved 
with values of k in the range from 9 to 21 and more specifi-
cally, the 11-NCNR approach has outperformed the five top-
ranked k-NNR algorithms. When compared against the two 
SVR models, the results have suggested that the k-NCNR 
algorithm performs equally well as the linear SVR and better 
than SVR(RBF).

It is also important to note that the k-NCNR model is a 
lazy algorithm that does not require any training, which can 
constitute an interesting advantage over the SVR methods 
for big data applications.

Several promising directions for further research have 
emerged from this study. First, a natural extension is to 
develop regression models based on other surrounding 

Table 5  (continued)

SVR(L1) SVR(RBF) 11-NCNR 9-NNR

Stock 2.39 × 100 2.48 × 100 9.23 × 10−1 8.46 × 10−1

Wizmir 1.26 × 100 1.27 × 100 1.31 × 100 1.45 × 100

Wankara 1.57 × 100 1.58 × 100 1.36 × 100 1.48 × 100

MV 5.31 × 100 2.35 × 100 6.08 × 100 7.07 × 100

ForestFire 5.71 × 101 5.71 × 101 5.87 × 101 5.97 × 101

Treasury 2.48 × 10−1 2.85 × 10−1 5.44 × 10−1 5.17 × 10−1

Mortgage 5.31 × 100 2.35 × 100 3.72 × 10−1 3.54 × 10−1

Baseball 7.57 × 102 7.76 × 102 9.08 × 102 8.92 × 102

House 4.77 × 104 4.79 × 104 5.02 × 104 5.07 × 104

Elevators 2.97 × 10−3 2.93 × 10−3 6.35 × 10−3 6.56 × 10−3

Compact 1.24 × 101 1.35 × 101 6.23 × 100 6.50 × 100

Pole 3.10 × 101 3.28 × 101 8.20 × 100 8.33 × 100

Puma32H 2.71 × 10−2 2.70 × 10−2 2.79 × 10−2 2.82 × 10−2

Ailerons 1.77 × 10−4 1.70 × 10−4 3.00 × 10−4 3.49 × 10−4

Tic 2.44 × 10−1 2.44 × 10−1 2.39 × 10−1 2.41 × 10−1

Avg. Ran. 2.16 2.87 2.16 2.81

Fig. 5  Friedman’s ranks of two best k-NCNR and k-NNR bench-
marked methods and two SVR models

Table 6  Unadjusted p values for � = 0.05 and � = 0.10 with 
11-NCNR as the control algorithm when compared against 9-NNR, 
SVR(L1), and SVR(RBF)

The model in bold was significantly worse than the control algorithm 
at � = 0.10

z p value � = 0.05∕i � = 0.10∕i

SVR (RBF) 2.164225 0.030447 0.016667 0.033333
9-NNR 1.967478 0.049128 0.025 0.05
SVR (L1) 0 1 0.05 0.10

Table 7  Summary of the Wilcoxon’s statistic for the best k-NNR and 
k-NCNR models, and two SVR algorithms

Upper and lower diagonal halves are for � = 0.10 and � = 0.05 , 
respectively

(1) (2) (3) (4)

(1) 11-NCNR – ∙ ∙

(2) 9-NNR ◦ –
(3) SVR (L1) – ∙

(4) SVR (RBF) ◦ –
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neighborhoods such as those defined from the Gabriel graph 
and the relative neighborhood graph, which are two well-
known proximity graphs. Second, it would be interesting 
to assess the performance of the k-NCNR algorithm and 
compared to other regression models when applied to some 
real-life problem.
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Appendix

Tables 8 and 9 report the average RMSE results for all the 
data sets and for each value of k. In addition, the Friedman’s 
rankings are given in the last row of each table.
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