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ABSTRACT
The random effects in a gamma process are introduced in terms of its
scale parameter. However, the scale parameter affects both itsmean and
variance. Hence, the variation of the degradation rates and the within
degradation increments are expected to be large. For some products,
the random effects affect just the rate or just the volatility of the pro-
cess. Thus, twomodifications of the parameters’structure of the gamma
process areproposed.One implies that the randomeffects affect just the
volatility and the second just the rate. A Bayesian estimation approach
is provided and implemented in two case studies.

1. Introduction

For some highly reliable products, its reliability assessment based on failure data may be com-
plicated. The scarce obtaining of failure data makes challengeable the characterization of the
failure time distribution and thus the general assessment of the product (Lu et al., 1996).
Instead, it has been presented that the reliability assessment for most of the highly reliable
products is based on the characteristics of the process that caused its failure. This process
describes the accumulated damage over time and it is normally identified as a degradation
process (Singpurwalla, 1995). In such cases, the reliability assessment consists in analyzing
such degradation process until a critical level of degradation in which it is possible to char-
acterize a failure of the product. Generally, these processes may describe the accumulated
amount of wear, crack growth, corrosion, consumption, fatigue, contamination or the degra-
dation of any performance characteristic (PC) of the product under normal use conditions or
under accelerated degradation tests (ADT).

Degradation models based on gamma process have been identified as the main way to
model degradation processes given the characteristic that its increments are independent
and non-negative having a gamma distribution with an identical scale parameter. In the case
of gamma degradation modeling, performance can only decrease over time, which makes
it quite usable. (Park and Padgett, 2005; Bagdonavicius and Nikulin, 2000; Lawless and
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Crowder, 2004). Useful information about gamma process can be found in Noortwijk (2009),
Bagdonavicius and Nikulin (2001), and Sinpurwalla (1995).

However, in real applications, it can be found that the degradation process of a product’s
characteristic is affected by different sources of variation. These are described by the inherent
variation in the degradation for every specific product under study and the different behav-
iors of the degradation paths for every product. This implies that the degradation in a product
population has a large variation due to some unobservable effects. The simple gamma pro-
cess is unable to capture such variations. However, in the literature, these variations have been
wellmodeled by incorporating randomeffects into the gammaprocess. Themost used gamma
process with random effects involves that the scale parameter of the process follows a certain
distribution and it is unit-specific, such that it captures the different variations among prod-
ucts. Lawless and Crowder (2001) presented a gamma process with random effects in which
it is considered that the different products in the populations have different realizations of the
scale parameter while they share the same shape parameter. For this, they let the scale param-
eter of every products’ degradation path follow a gamma distribution. It was found that the
joint distribution of the scale parameter and the gamma process has a closed form in terms
of a Fisher distribution, which makes straightforward the estimation of the parameters. This
model has been widely used and studied in different applications (Tsai et al., 2012; Hao et al.,
2015; Wang, 2008; Wang et al., 2015; Pulcini, 2013).

The random effects gamma process model described above considers that the scale param-
eter follows a gammadistribution. As themean and variance of the gammaprocess are defined
as a/b and a/b2, respectively, where a is the shape parameter and b is the scale parameter. It can
be noted that both the mean and variance are affected by the random effects parameter. This
means that a unit with a high degradation rate, i.e., either a large a or a small b, will also have
a high volatility. This implies that the inherent variation in the degradation for every specific
product under study is expected to be large and that the behavior of the different degradation
paths for every product tend to be quite different. However, for certain products it may be
expected that the random effects affect only, either the degradation rate or the volatility of the
process. Such may be the case for products which are characterized by a high level of degra-
dation rate but a small variation of the within degradation increments of every product, or on
the other case, products which are characterized by a large variation of the within degradation
increments of every product and a low degradation rate. In this paper, different modifications
of the structure of the parameters of the gamma process with random effects are considered
in order tomodel the scenarios described above. As in the case of the classical gamma process
with random effects, it is considered that the scale parameter of the process follows a gamma
distribution. A time scale transformation is used in order to assure that degradation is a linear
function of time (Whitmore and Schenkelberg, 1997). As the joint distributions of the pro-
posed random effects models are complex, the estimation of the parameters is performed via
Gibbs sampling and Markov chain Monte Carlo (MCMC) method by using the OpenBUGS
software. The models are illustrated with the degradation modeling of two case studies based
on the laser GaAs degradation dataset and a dataset of fatigue-crack growth. In addition, the
proposed models are compared with the inverse Gaussian (IG) process models with random
effects.

The rest of the paper is organized as follows. In Section 2, the simple gamma process and
some important characteristics are presented. In Section 3, the classical gamma process with
random effects and the proposed random effects models are presented. In Section 4, the
inference method based on a Bayesian approach is described for the simple gamma process
and the different models with random effects. In Section 5, the IG process is introduced and
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several modifications of the process are presented to introduce random effects. In Section 6,
the illustrative examples are presented in order to illustrate the proposedmodels. In Section 7,
the concluding remarks and discussion are presented.

2. Simple gamma process

Important characteristics of the gammaprocess are that it is a stochastic processwith indepen-
dent andnon-negative increments. Considering a non-negative-valued process {Z(t ), t > 0},
where Z(t ) represents the measured degradation for an individual unit at time t , then the
gamma process has the following properties

- Z(t ) − Z(s) = �Z(s, t ) follows a gamma distribution Ga(α[τ (t ) − τ (s)], u).
- Z(t ) has independent increments, Z(t4) − Z(t3) and Z(t2) − Z(t1) are independent

∀t1 < t2 < t3 < t4.
Now, let ατ (t, γ ) be a non-negative shape parameter with a time scale transformation in

the form of τ (t, γ ) = tγ , thus [τ (t, γ ) − τ (s, γ )] = �τ(s, t, γ ) = tγ − sγ , t ≥ 0, v(0) ≡ 0,
and u > 0 be an inverse scale parameter. Then Z(t ), t > 0 is governed by a gamma process
with the parameters described above.

Suppose that an increasing stochastic process describes the degradation level of some
PC at time t , and it is governed by Ga(α�τ (s, t, γ ), u) with mean α�τ (s, t, γ )/u and
variance α�τ (s, t, γ )/u2. The moment of a failure caused by degradation is the moment
when the degradation path reaches a critical level ω. Thus, the lifetime is defined as
Tω = inf{Z(t ) ≥ ω}. The cumulative distribution function (CDF) of Tω can be obtained as
P(Z(t ) ≥ ω) = 1 − FGa(ω, ατ (tω, γ ), u).

Considering a degradation test (DT) with the next characteristics: N units are tested
and M measurements for all the units are observed up to the termination time T, which
results in degradation measurements Zi(t j) of the ith unit at the corresponding time t j,
i = 1, 2, . . . ,N, j = 1, 2, . . . ,M. According to the independent increment property of the
gamma process, and �Zi(t j−1, t j) = Zi(t j) − Zi(t j−1), t0 = 0, �τ j(γ ) = tγj − tγj−1, for i =
1, 2, . . . ,N, j = 1, 2, . . . ,M. Thus, it is possible to obtain independent random variables
�Zi(t j−1, t j) ∼ Ga(α�τ j(γ ), u), with CDF defined as FGa(�Zi(t j−1, t j)). this process is
considered as a simple gamma process (SGP).

3. Gamma process with random effects

Considering that each product under study may experience different sources of variations
during its operation, for a degradation model to be realistic, it is more appropriate to incor-
porate product-to-product variability in the modeling of the degradation process. In this
paper, it is assumed that γ and v are fixed parameters that are common to all products and u
is a random parameter representing the heterogeneity among different products, this model
is known as a gamma process with random effects (RE). Given that the mean α�τ j(γ )/u and
variance α�τ j(γ )/u2 of the RE model are affected by the random effects parameter u. It is
expected that; the degradation rate of the degradation paths tends to have a large dispersion.
In addition, it is also expected that the variance of the degradation observations within each
unit tends to be large. As the RE modeling is a general approach. It may be case that the set
of products under study present only a large dispersion of the degradation rates, or only a
large variation of the variance of the degradation observations within each unit. For such
cases, different configurations of the parameters of the gamma process are proposed, such
that the random effect parameter affect solely the mean or the variance of the degradation
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process. The reparametrizations consider the pair of parameters (v, u) instead of (α, u),
where α = α(v, u) = v, vu, vu2. So, by considering that u is a random parameter following
a gamma distribution as u ∼ Ga(δ, ϕ) with mean δ/ϕ and variance δ/ϕ2 and α(v, u) = v ,
the classical gamma process with RE is obtained, if α(v, u) = vu it can be noted that only
the variance is affected by u, this model is considered as a random variance model (RV), and
if α(v, u) = vu2 only the mean is affected by u, this model is considered as a random mean
model (RM). So, for all models the PDF of �Zi(t j−1, t j) will be defined as

f (�Zi(t j−1, t j)) =
∫ ∞

0
fGa(�Zi(t j−1, t j)|α(v, u)�τ j(γ ), u) fGa(u|δ, ϕ)du (1)

Then, theCDFof the lifetimewhen the degradation path reaches a critical levelω is defined
as tω = inf{Z(t ) ≥ ω}. The CDF of tω can be obtained as

F(tω) =
∫ ∞

0
FGa(tω|α(v, u)τ (tω, γ ), u) fGa(u|δ, ϕ)du (2)

It should be noted that when α(v, u) = v , the models (1) and (2) of the RE model can be
written in terms of the Fisher distribution (Lawless and Crowder, 2004) as, respectively,

F(�Zi(t j−1, t j)) = F2v�τ j (γ ), 2δ

(
δ�Zi(t j−1, t j)
vϕ�τ j(γ )

)
(3)

and,

F(tω) = 1 − F2vτ (tω,γ ), 2δ

(
δω

ϕvτ (tω, γ )

)
(4)

It is expected that in the RV model the variance of the degradation observations within
each unit is significant, given that it is affected by the random effects parameter u. However,
a low level of variation in the degradation rates may be observed, given that the degradation
mean is not affected by the random effect parameter. Thus, the RV model is suitable for the
degradation modeling of products for which overall degradation rate is low and a large unit-
specific degradation variation exists. On the other hand, themean function of the RM gamma
process model varies to a certain level. It leads to a larger dispersion of the degradation rate,
which is reflected in a larger variation of the first-passage time distribution. Thus, this model
is appropriate for the modeling of the degradation of products in which a significant variation
of the degradation rate within the products’ sample is observed.

4. Parameters estimation

In this section, a general Bayesian approach is considered to estimate the parameters of inter-
est of the models described in previous sections. In all cases, non-informative prior distribu-
tions are considered for the parameters. The Bayesian analysis is presented in the next order,
first for the SGP model, then RE, and finally the RV and the RMmodel.

4.1. Bayesian analysis for SGP

Considering that degradation measurements Zi(t j) have been observed of the ith unit
at the corresponding time t j, i = 1, 2, . . . ,N, j = 1, 2, . . . ,M. Thus, �Zi(t j−1, t j) =
Zi(t j) − Zi(t j−1) is the degradation increment in the interval time (t j−1, t j). Then,
�Zi(t j−1, t j) are independent random variables that follow a gamma distribution with
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Ga(α�τ j(γ ), u). Based on this, the Bayesian analysis is considered as follows. Non-
informative prior distributions are considered for the unknown parameters. For v a non-
informative gamma distribution is considered as Ga(α, β). For u, a non-informative gamma
distribution is considered as Ga(ϑ, ε), and for γ a gamma distribution is also considered
as Ga(aγ , bγ ). Where, Ga(α, β) is a gamma distribution with shape parameter α and scale
parameterβ ,Ga(ϑ, τ ) is a gammadistributionwith shape parameterϑ and scale parameter ε,
andGa(aγ , bγ ) is also a gamma distribution with shape parameter aγ and scale parameter bγ .
The prior distributions for v and uwere defined as that, because in the case of u it represents its
conjugate prior distribution. In addition, the gamma distribution is considered to model u in
order to introduce random effects in the SGPmodel. The prior distribution for v was defined
as a simple approximation to its conjugate prior distribution. In the case of γ , a gamma prior
distribution is defined in order to avoid negative values of the time scale transformation.

The likelihood function for the degradation data under the gamma process model is
defined as

LSGP(�Zi(t j−1, t j)|v, u, γ ) =
N∏
i=1

M∏
j=1

fGa(�Zi(t j−1, t j)|v, γ , u) (5)

Considering the prior distributions in (14) and the likelihood function in (15), the joint
posterior distributions is obtained as follows

fSGP(v, u, γ |�Zi(t j−1, t j)) ∝ π(v |α, β)π(u|ϑ, ε)π(γ |aγ , bγ )

× LSGP(�Zi(t j−1, t j)|v, u, γ ) (6)

As can be seen, the joint posterior distribution results in a complex form. In order to esti-
mate the parameters of interest θSGP = (v, u, γ ) for SGP, the MCMC can be utilized to gen-
erate samples from the joint distribution. For such purpose, OpenBUGS software is used to
implement theMCMCbased on theGibbs sampler. Further information about the implemen-
tation of the Gibbs sampler can be found in Gelfand and Smith (1990), Casella and George
(1992), Smith and Roberts (1993), and Gelman et al. (2009).

4.2. Bayesian analysis for random effectsmodels

Considering that degradation increments �Zi(t j−1, t j) have been observed and that these
increments follow a gamma distribution Ga(α(v, u)�τ j(γ ), u), with random effect parame-
ter u that follows a gamma distribution Ga(u |δ, ϕ). Thus, the prior distributions are defined
as follows. The prior distribution for v is a gamma distribution Ga(α, β). The prior distri-
bution for δ is a gamma distribution Ga(aδ, bδ ). The prior distribution for ϕ is a gamma
distribution ϕ ∼ Ga(aϕ, bϕ ), and the prior distribution for γ is also a gamma distribution
Ga(aγ , bγ ).

Given that the random effects are described by the parameter u, each degradation path pos-
sesses a specific parameterui that follows a gammadistributionGa(δ, ϕ)with i = 1, 2, . . . ,N.
This implies that in all degradation paths i = 1, 2, . . . ,N, ui follows the same random effects
distributions Ga(δ, ϕ), which accounts for the pooling of the random effects information
(Peng et al., 2014).

Considering that, the degradation paths i = 1, 2, . . . ,N have the random effects ui, and
that all ui follow the same gamma distribution Ga(ui|δ, ϕ), thus the likelihood function can
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be described as

Lm(�Zi(t j−1, t j), ui|v, δ, ϕ, γ )

=
N∏
i=1

⎧⎨
⎩ fGa(ui|δ, ϕ)

M∏
j=1

fGa(�Zi(t j−1, t j)|α(v, u)�τ j(γ ), ui)

⎫⎬
⎭ (7)

wherem = RE, RV, RM depending in the form of α(v, u).
The joint posterior distribution for the RE model is defined as follows

fm(v, δ, ϕ, γ , ui|�Zi(t j−1, t j))

∝ π(v |α, β)π(δ|aδ, bδ )π(ϕ|aϕ, bϕ )π(γ |aγ , bγ )Lm(�Zi(t j−1, t j), ui|v, δ, ϕ, γ )

(8)

As in the case of the SGPmodel, the parameters of interest θm = (v, δ, ϕ, γ ) are obtained
via MCMC and the Gibbs sampler implemented in OpenBUGS. This by using the proposed
scheme of prior distributions for every parameter. The code implemented in OpenBUGS for
the three random effects models is slightly modified in the structure of the parameters of the
RE gamma process as described in Section 3.

5. The IG process degradationmodel with random effects

The IG process as a degradation model has been found to be an attractive model to deal with
degradation process with monotone degradation paths (Wang and Xu, 2010). This model
has been thoroughly studied in the literature in various applications (Qin et al., 2013; Chen
et al., 2015; Pan et al., 2016). Extensions of the simple IG process have also been introduced
in the literature in the aims of dealing with degradation processes that are characterized by
unexplained heterogeneous sources of variation. Ye and Chen (2014) introduced different IG
models with random effects, specifically an IG model with random drift (IG-RD), a model
with random volatility (IG-RV) and a third model known as random drift-volatility model
(IG-RDV). Peng et al. (2014) introduced a modification of the IG-RD model and devel-
oped the Bayesian estimation scheme for the IG models with random effects. The IG pro-
cess with drift parameter (μ) and diffusion parameter (λ) has the following characteristics:
1) Z(t ) − Z(s) = �Z(t ), follows an IG distribution IG(μ[τ (t ) − τ (s)], λ[τ (t ) − τ (s)]2), 2)
Z(t ) has independent increments, Z(t4) − Z(t3) and Z(t2) − Z(t1) are independent ∀t1 <

t2 < t3 < t4. Where, τ (t ) is a monotone increasing function. In this case, τ (t ) is also consid-
ered as a monotone time-scale transformation in the form τ = tγ . Considering that,�Z(t ) is
governed by IG(μτ (t, γ ), λ [τ (t, γ )]2) with mean μτ (t, γ ) and variance μ3τ (t, γ )/λ, and
has the following PDF,

fIG (�Z(t )) =
√

τ 2(t, γ )

2π�Z3(t )
exp

{
− (�Z(t ) − μτ (t, γ ))2

2μ2�Z(t )

}
(9)

Model in (9) is considered as a simple IG (SIG)model. Then, random effects are introduced
by letting the parameters (μ, λ) follow certain distributions. For the IG-RD model, it is con-
sidered that μ−1 follows a truncated normal distribution TN(A, κ−2). In this paper, for the
IG-RDmodel the modification of the structure of the parameters of the IG process proposed
by Peng et al. (2014) is considered, which consists in �Z(t ) ∼ IG(μτ (t, γ ), λμ3[τ (t, γ )]2).
For the IG-RV model the random effects are introduced by letting that λ follows a gamma
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distribution Ga(B, ξ ). While, for the IG-RDV model the random effects are introduced
by letting that μ follows a truncated normal distribution TN(A, κ−2) and by consider-
ing the modification of the structure of the parameters of the IG process as �Z(t ) ∼
IG(μτ (t, γ ), λμ2[τ (t, γ )]2).

6. Illustrative examples

In this section, the SGP, RE, RV, and RM models are illustrated and compared with their
implementation in two case studies. In addition, the gamma process models with random
effects are comparedwith the IGmodels (SIG, IG-RD, IG-RV, IG-RDV). In the first case study,
laser GaAs degradation dataset is used. While in the second case study fatigue-crack growth
data is used.

6.1. Laser GaAs degradation case study

In this section, the laser data presented by Meeker and Escobar (1998) is used in order to
illustrate the random effects models presented in previous sections. The degradation dataset
describes the increase of operating current over time for 15 GaAs laser devices. When the
operating current reaches a critical level of degradation, the device is considered to have
failed. The sample size is N = 15, the observation times t j, ȷ = 1, 2, . . . , 16, are the same for
all the samples with t j = (250, 500, 750, . . . , 4000) hours. In Fig. 1, the cumulative degrada-
tion paths are presented.

The performance of the proposed models in Sections 2 and 3 is compared. Considering,
(a) the simple gamma process with �Zi(t j−1, t j) ∼ Ga(α�τ j(γ ), u) and mean α�τ j(γ )/u
and variance α�τ j(γ )/u2, (b) the RE model with �Zi(t j−1, t j) ∼ Ga(v�τ j(γ ), u), u ∼
Ga(δ, ϕ), u > 0 and mean v�τ j(γ )/u and variance v�τ j(γ )/u2, (c) the RV model with
�Zi(t j−1, t j) ∼ Ga(v�τ j(γ )u, u), u ∼ Ga(δ, ϕ), u > 0 and mean v�τ j(γ ) and variance
v�τ j(γ )/u, (d) the RMmodel with�Zi(t j−1, t j) ∼ Ga(v�τ j(γ )u2, u), u ∼ Ga(δ, ϕ), u > 0
with mean v�τ j(γ )u and variance v�τ j(γ ). In addition, the Bayesian approach described

Figure . Cumulative degradation paths for GaAs laser degradation dataset.
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Table . Estimations for the different gamma processes with random effect for the laser GaAs dataset.

SGP model RE model

mean p0.025 p0.975 mean p0.025 p0.975

v . . . v . . .
u . . . γ . . .
γ . . . δ . . .

ϕ . . .

RV model RMmodel

mean p0.025 p0.975 mean p0.025 p0.975

v . . . v 1.04 × 10−4 6.89 × 10−5 1.51 × 10−4

γ . . . γ . . .
ϕ . . . ϕ . . .
δ  .  δ . . .

in Sections 4.1 and 4.2 was implemented in OpenBUGS in order to obtain the estimations
for θSGP = (α, u, γ ), θm = (v, δ, ϕ, γ ). Two sets of initial values are considered in the
algorithm in order to assess the convergence of the parameters of interest with the Brooks-
Gelman-Rubin (BGR) statistic (Gelman and Rubin, 1992). A total of 50,000 iterations were
considered for burn-in, and 50,000 were considered for estimation purposes. As two sets of
initial values were determined for every parameter, the BGR statistic was calculated for the
parameters of interest. In general, it was found that convergence is achieved in every parame-
ter. The obtained estimations and the respective percentiles of 2.5% and 97.5% are presented
in Table 1.

Considering the estimations in Table 1, ten degradation paths of every randomeffectmodel
were simulated in order to compare their behavior with the degradation paths of the laser
GaAs dataset. In Fig. 2, the simulated degradation paths are presented. Information criteria
were used in order to select the best fitting random effect model. The Deviance Information
Criterion (DIC) was used for such purpose, which is an appealing tool for model selection
based on information. Themodel with the lowest value of DIC is considered as the best fitting
model (Spiegelhalter et al., 2002). The obtained DIC values are presented in Table 2.

As can be noted from Table 2 the random effect model with the smallest DIC value is the
RMmodel. This may indicate that the RMmodel is the better fitting model for the laser GaAs
dataset. However, the difference with the other models is slight. For instance, the RE model
may be a good choice to model the GaAs laser degradation dataset. On the other hand, the
model with the greatest DIC value is the SGPmodel. The gamma process degradationmodels
were also compared to the IG models described in Section 5. The GaAs laser degradation
dataset was also fitted to the SIG, IG-RD, IG-RV, and IG-RDV models. The corresponding
DIC values were obtained as follows: for the SIG model a value of −144.8 was obtained, for
the IG-RD a value of−176.7, for the IG-RVmodel a value of−138.6, for the IG-RDVmodel a
value of−186.6. Among the IGmodels it can be noted that the DIC favors the IG-RDVmodel
as in the work of Ye and Chen (2014). However, they suggested to use the IG-RD model for
the GaAs laser degradation dataset, which is equivalent to the gamma RM model. All in all,
it can be noted that the gamma models with RE and RM are favored above all the IG models.
And, still the gamma RMmodel is favored by the DIC among all models.

For the assessment of the goodness-of-fit of the proposed gamma models and SGP
and RE models, the Q-Q plotting may be considered as a qualitative tool to visu-
ally identify the best fitting model. The Q-Q plots are constructed by considering
that when the underlining degradation process is governed by a gamma process, then
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Figure . Simulated degradation paths with random effects based on the laser GaAs dataset: (a) SGPmodel,
(b) RE model, (c) RV model, (d) RMmodel.

3
√
ûi[Zi(t j) − Zi(t j−1)]/[α̂(v̂, û)(t j) − α̂(v̂, û)(t j−1)] is approximately normal with estima-

tors of the mean 1 − 1/[9α̂(v̂, û)(t j) − 9α̂(v̂, û)(t j−1)] and variance 1/[9α̂(v̂, û)(t j)−
9α̂(v̂, û)(t j−1)] (Wang and Xu, 2010; Ye et al., 2014). Where, ûi is an estimate of the
random effects parameter for the ith unit, which per Lawless and Crowder (2004) can be
[α̂(v̂, û)(t j) + δ̂]/[Zi(t j) + ϕ̂]. By considering this, normal Q–Q plots can be constructed. In
Fig. 3, the Q-Q plots for the different models are presented, it can be noted that the RMmodel
has the best fitting to the data. In addition, the Anderson-Darling (AD) coefficient was com-
puted for all the models, for the SGP model the AD was 0.703, for RE was 0.680, for RV was
0.997, for RM was 0.606. By considering the normal critical value of the AD statistic for a 0.1

Table . DIC values for gamma random
effects models for laser GaAs dataset.

Model DIC

SGP − .
RE − 
RV − 
RM − 
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Figure . Comparison of the Q-Q plots for the different gamma process models for the laser GaAs data.

significance level of 0.63, it can be noted that the RMmodel is not rejected. As mentioned in
previous sections, the RM model is suitable for the degradation modeling of products with a
low level of variation of the degradation increments within each degradation path, and a large
variation of the degradation rate, as can be seen in the degradation paths in Fig. 1.

6.2. Fatigue-crack growth case study

This case study consists in the crack propagation of a crack in a terminal of an electronic
device. The function of the terminal is to transfer a signal to a receptor. The propagation of
the crack to a certain critical length can lead to failure of the device given the inability of
transferring the signal to the receptor. A DTwas carried out in order to study the propagation
of the crack in the terminal of ten devices. The crack growth for the terminal was measured
every 0.1 hundred thousand cycles until 0.9 hundred thousand cycles. It is considered that the
device has failed if the length of the crack exceeds the critical limit of 0.4 mm. The obtained

Table . Fatigue-crack growth increments dataset.

Hundred thousands of cycles

Device  . . . . . . . . .

  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
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Figure . Cumulative degradation paths for fatigue-crack growth.

data is presented in Table 3; the units are in millimeters. In Fig. 4, the cumulative degradation
paths are presented.

The proposed models presented in Section 3 are considered to model the fatigue-crack
growth dataset. In addition, the Bayesian approaches described in Section 4 are also con-
sidered to estimate the parameters of interest from every model. An algorithm based on
MCMC via Gibbs sampling was implemented in OpenBUGS in order to obtain the esti-
mations for θSGP = (α, u, γ ), θm = (v, δ, ϕ, γ ). As in the previous case study, two sets
of initial values are considered in the algorithm in order to assess the convergence of the
parameters of interest with the BGR. A total of 50,000 iterations were considered for burn-in,
and 50,000 were considered for estimation purposes. In general, it was found that conver-
gence is achieved in every parameter according to the BGR graph obtained fromOpenBUGS.
The obtained estimations and the respective percentiles of 2.5% and 97.5% are presented in
Table 4.

Considering the estimations in Table 4, ten degradation paths of every randomeffectmodel
were simulated in order to compare their behavior with the degradation paths of the fatigue-
crack growth dataset. In Fig. 5, the simulated degradation paths are compared. The DIC was

Table . Estimations for the different gamma processes with random effect for the fatigue-crack data.

SGP model RE model

mean p0.025 p0.975 mean p0.025 p0.975

v . . . v . . .
u . . . γ . . .
γ . . . δ  . 

ϕ . . .

RV model RMmodel

mean p0.025 p0.975 mean p0.025 p0.975

v . . . v . . .
γ . . . γ . . .
ϕ . . . ϕ . . .
δ    δ  . 
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Figure . Simulated degradation paths with random effects based on the fatigue-crack growth dataset: (a)
SGP model, (b) RE model, (c) RV model, (d) RMmodel.

also used to select the best fitting random effectmodel. The obtainedDIC values are presented
in Table 5.

As can be noted from Table 5 the random effect model with the smallest DIC value is the
RE model. This may indicate that the RE model is the better fitting model for the fatigue-
crack dataset. However, the difference of the DIC values among the different models is quite
small. On the other hand, the model with the greatest DIC value is the SGP model. It can
be noted that the variation of the degradation increments within degradation paths in the
degradation paths of the fatigue-crack data in Fig. 4 is significant, but not as much as in
the degradation paths in Figs. 5(a) and (c). It can also be noted that the level of variation of
the degradation rate in the paths of Fig. 4 is low, but not as low as in the degradation paths in

Table . AIC values for random effects
models for fatigue-crack growth dataset.

Model AIC

SGP − .
RE − 
RV − .
RM − .
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Figure . Comparison of the Q-Q plots for the different gamma process models for the fatigue-crack data.

Fig. 5(d). The behavior of the degradation paths in Figs. 4 and 5(b) are quite similar in terms
of the variation of the degradation rate and the degradation increments within degradation
paths. As in the laser degradation dataset, the fatigue-crack growth data was also fitted to the
IG models, the DIC value was obtained as follows: for the SIG model the obtained value was
−436.3, for the IG-RDmodel the value was−436, for the IG-RVmodel the value was−436.1,
and for the IG-RDVmodel−436. Among the IGmodels, it can be noted that the DIC slightly
favors the SIG model. In general, it can be noted that the IG models are favored above all the
gamma models. So, for the fatigue-crack growth dataset the SIG models are recommended,
but among the gamma models the RE model is considered as the best fitting model.

The Q-Q plots for this case study are constructed by considering the method described in
the GaAs laser data analysis developed in Section 6.1. In Fig. 6, the Q-Q plots for the different
gammamodels are presented, it can be noted that the gammaREmodel has the best fitting for
the data. The obtained AD values were 1.860, 0.620, 1.863, 1.864 for the SGP, RE, RV, and RM
models, respectively. By also considering the normal critical value of the AD statistic for a 0.1
significance level of 0.63, it can be noted that the RE model is not rejected. For this particular
case study, it can be noted that the variation in the degradation rate and the variation of the
degradation increments within each unit in the degradation paths in Fig. 4 are significant.
Since the random effects of the REmodel are involved in the degradation mean and variance,
it is expected that the degradation paths vary significantly. Thus, this model is suitable for
degradation modeling of products where significant product heterogeneity is observed, such
as the case study in this section.

7. Concluding remarks and discussion

It is common that the degradation rate for products that have beenmanufactured by stable and
mature processes tends to have a low level of variation. In addition, a short variation within
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the degradation paths may be expected. However, for processes in a tenure phase of develop-
ment, several unknown factors that cause variation in the degradation paths are expected to
play an important role in the reliability assessment of the products. Identifying the effect of
such unknown factors over the degradation process of the product under study can lead to
determine if both the rate and the volatility of the process are affected. But, it is important to
consider that for some products, just the rate or the volatility of the process are affected by
the random effects. When this is the case, the classical gamma process with random effects
fails to model such scenarios. Considering the scale parameter of the gamma process as ran-
dom, it is possible to note that both the mean and variance of the degradation process are
affected. A simple modification of the structure of the parameters of the gamma process is
proposed in this study in order to obtain random effects models that solely affect the degra-
dation mean or the variance of the degradation process. In such models, it is possible to con-
sider cases when a high degradation rate and a low level of variation within the degradation
paths are observed for the random mean model and cases when a low degradation rate and
a large variation within the degradation paths are observed for the random variance model.
The proposed models were implemented along with the simple gamma process and the clas-
sical gamma process with random effects in two case studies. It was found that in the GaAs
laser degradation dataset, the RM model fits better the data, in such case study it is possi-
ble to note a low level of variation of the within increments of the degradation paths and a
large variation of the degradation rate, which explains the best fitting of the RM model. In
the second case study, the degradation paths are characterized by a large variation in both
the degradation rate and the variance within the degradation paths, in such case study it was
found that the best fitting model is the classical gamma process with random effects. Which
denotes that the proposed models are supposed to fit specific cases of random effects models,
as previously described. The proposed gamma random effects models were compared to the
IG models with random effects by fitting the degradation datasets to the IG models. For the
GaAs laser data, it was found that the gammaRMmodel is superior to all of the IGmodels. On
the other hand, for the fatigue-crack growth data it was found that the IG models are favored
over all the gamma models. In such example, the SIG mode is favored by the information
criterion. Future research can be directed to consider the shape parameter of the gamma pro-
cess as a random effect parameter, in such case the both the mean and variance of the process
are affected. However, a modification of the structure of the parameters can lead to specific
random effects models such as the ones described in this paper.
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