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A B S T R A C T

The control of the central nervous system (CNS) over the cardiovascular system (CS) has been modeled using
different techniques, such as fuzzy inductive reasoning, genetic fuzzy systems, neural networks, and nonlinear
autoregressive techniques; the results obtained so far have been significant, but not solid enough to describe the
control response of the CNS over the CS. In this research, support vector machines (SVMs) are used to predict the
response of a branch of the CNS, specifically, the one that controls an important part of the cardiovascular system.
To do this, five models are developed to emulate the output response of five controllers for the same input signal,
the carotid sinus blood pressure (CSBP). These controllers regulate parameters such as heart rate, myocardial
contractility, peripheral and coronary resistance, and venous tone. The models are trained using a known set of
input-output response in each controller; also, there is a set of six input-output signals for testing each proposed
model. The input signals are processed using an all-pass filter, and the accuracy performance of the control models
is evaluated using the percentage value of the normalized mean square error (MSE). Experimental results reveal
that SVM models achieve a better estimation of the dynamical behavior of the CNS control compared to others
modeling systems. The main results obtained show that the best case is for the peripheral resistance controller,
with a MSE of 1.20e-4%, while the worst case is for the heart rate controller, with a MSE of 1.80e-3%. These novel
models show a great reliability in fitting the output response of the CNS which can be used as an input to the
hemodynamic system models in order to predict the behavior of the heart and blood vessels in response to blood
pressure variations.
1. Introduction

One of the most important systems of the body is the cardiovascular
system (CS), which is almost fully controlled by the central nervous
system (CNS). The CNS generates regulatory signals which are trans-
mitted by bundles of nerves through the autonomic nervous system
(sympathetic and parasympathetic) to the heart, blood vessels, kidneys,
and other body parts; this allows to maintain an appropriate blood flow
that follows the hemodynamic changes, which are mainly due to varia-
tions of the arterial blood pressure. Also, the CNS controls other global
functions in the CS, such as the cardiac output, blood flow redistribution,
and arterial pressure to name a few [1].

Most of the control systems in the CS are carried out in the vasomotor
center, the bulbar respiratory center, and other suprasegmental struc-
tures of the brain [2]. The vasomotor center processes integral
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information from visceral sensors, such as baroreceptors of cardiac cav-
ities and large vessels, and chemoreceptors. The reflex function of
baroreceptors is very important in the rapid control of blood pressure
since it modulates efferent signals directed to the heart and blood vessels;
moreover, baroreflex actions produce rapid changes in renal sympathetic
nervous activity, which plays a very important role in the short term
control of the blood pressure performing a variety of functions like
mediating renin secretion, tubular reabsorption of water and sodium, and
renal intravascular resistance [3,4].

The hemodynamic behavior of the CS has been widely studied, and
there are many mathematical and computational models that fairly and
accurately simulate the performance of hemodynamic variables of this
system [5–7]. However, modeling the control response of the heart and
blood vessels in the hemodynamic system represents an important
challenge due to the high complexity of the CNS.
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A simplified diagram of the cardiovascular system proposed by
Vallverdú [7] is shown in Fig. 1. In this diagram, the hemodynamic
system (HS), controlled by a branch of the CNS, both make up the car-
diovascular system. The branch of the CNS that controls the HS is
composed of five controllers that produce efferent signals leading
changes in the peripheral resistance, the cardiac output and the coronary
circulation. The HS controllers are: heart rate (HR), myocardial
contractility (MC), peripheral resistance (PR), venous tone (VT), and
coronary resistance (CR). The afferent signal that regulates these con-
trollers is represented by the carotid sinus blood pressure; this signal is
originated from the arterial carotid sinus baroreceptors [7].

In the last few decades, important contributions related to support
vector machine (SVM) approaches have been produced, in both theory
and practice. These approaches have led to the development of meth-
odologies that are useful in the design of efficient algorithms with ap-
plications focused to practical problems in classification and regression
tasks [8–10]. For instance, linear and non-linear SVM regression for time
series prediction have been widely used in many real world applications,
such as financial market, weather and electric utility, network traffic,
among others [11]; however, at the best of our knowledge, there are few
works that describe approaches to predict biomedical signals. In one of
these studies, Shen et al. [12] developed a predictor model based on a
wavelet kernel function using a SVM to predict multichannel electroen-
cephalogram signals. Many studies have shown that SVMs capture
effectively the behavior of dynamic systems which are typically
nonlinear, non-stationary and not defined a-priori.

The purpose of this study is to predict the response of five CNS con-
trollers in the cardiovascular system model proposed by Vallverdú [7]
employing regression models of SVMs. Previous investigations have
employed a variety of schemes for the same target, like nonlinear
autoregressive moving average with external inputs (NARMAX) models
[13], neural network techniques [14], fuzzy inductive reasoning (FIR)
algorithms [13,15], genetic fuzzy systems (GFS) or hybrid techniques
such as genetic-FIR algorithms (GA-FIR) [16], and automatic construc-
tions of linguistic rules methodologies based on FIR (CARFIR) [17].
Although some of these models have reported good results, in the present
study the authors intend to explore the potentialities of SVMs in the
prediction of five CNS controllers in the CS model; due to its complexity,
this task represents a big challenge for any nonlinear regression model. In
this way, the authors propose a new predictive model derived from SVMs
Fig. 1. A simplified diagram of the cardiovascular system model composed of the CNS
control and the hemodynamic system [7].
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which uses digital signal processing and offers an alternative to build a
model that can be as robust and efficient as others already mentioned.
Thus, to evaluate the prediction performance of the proposed SVM
model, it is compared with those studies.

2. The support vector machines methodology

The target of traditional techniques for pattern recognition consists of
minimizing an empirical risk to optimize the performance of a training
data set; however, according to the theory of SVMs, this last technique
minimizes an upper bound of an expected risk (i.e., the structural risk)
that provides a great ability to generalize any model, the main goal in the
statistical learning.

There are three important characteristics of SVMs [18]:

1) The learning technique can generalize a model with few training data
points; and from this training data set, the generalization error limit
can be estimated.

2) There is only one variable acting as a regularizing parameter (asso-
ciated to the penalty for misclassification) [19], which determines a
balance between generalization performance and resolution [20].

3) The algorithm finds a decision surface that maximizes the margin
between the classes of a training set to obtain the best performance
with new data that must be classified.

Support vector machines determinate the output as a linear combi-
nation of samples in the training data, in which the data points with
nonzero coefficients are called “support vectors”. In the next lines, it is
described the mathematical formulation of the support vector machines.

Given a set of data training of l attribute-label pairs ðxi; yiÞ,
i ¼ 1; …; l; where xi 2 Rn and yi 2 f1;�1g, the SVM for classification
purposes needs to solve the optimization problem presented in Eq. (1)
[21]:

min Φðw;ξÞ ¼ 1
2
wTwþ C

Xl

i¼1

ξi

subject to
yiðwTϕðxiÞ þ b Þ � 1� ξi

ξi � 0

(1)

The vector w determines the optimal generalized separating hyper-
plane, ξi represents a measure of the misclassification errors, and C > 0 (a
settable parameter) is the cost parameter of the error term. The training
vectors xi are mapped by the function ϕ into a higher dimensional space.
Kðxi; xjÞ � ϕðxiÞTϕðxjÞ, represents a kernel function which makes a
nonlinear mapping of the input space into a feature space. In this higher
dimensional space (the feature space), SVM finds a linear separating
hyperplane with the maximal margin.

Popular kernel functions commonly used for pattern recognition are
the followings:

Kðx; yÞ ¼ ð1þ x⋅yÞp (2)

Kðx; yÞ ¼ exp
�
� jj x� y jj 2

2σ2

�
(3)

Kðx; yÞ ¼ tanhðkx⋅y� δÞ for some and δ (4)

Equation (2) represents a polynomial kernel and provides a classifier
using a pth-degree polynomial function over the data. Eq. (3) gives a
classifier based on Gaussian radial basis functions, and Eq. (4) represents a
kind of special neural network kernel of a hide layer with sigmoid acti-
vation functions. Most of kernel functions are detailed in Refs. [18,22,23].

The solution to the optimization problem of Eq. (1) is equivalent to
determine the point at which the gradient of the Lagrangian (ΦÞ, shown
in Eq. (5), is zero:



J. Díaz et al. Computers in Biology and Medicine 93 (2018) 75–83
Φðw;b;α;ξ;βÞ ¼ 1 jj wjj2 þ C
Xl

ξi �
Xl

αi½yiðwTϕðxiÞ þ b Þ � 1þ ξi �
Xl

βiξi
2 i¼1 i¼1 i¼1

(5)

where the parameters α, β are the Lagrange multipliers. Solving Eq. (5)
requires huge computational capabilities; however, this primal problem
can be transformed in a dual problem to optimize time processing and
computational operations. This is done by minimizing the Lagrangian
with respect to w, b, ξ, and maximizing it with respect to α, β as described
below in Eq. (6).

max
α

Wðα; βÞ ¼ max
α;β

�
min
w;b;ξ

Φðw; b; α; β; ξÞ
�

(6)

Equation (7) shows how to obtain the minimum value of the
Lagrangian Φ with respect to w, b and ξ:

∂Φ
∂b ¼ 0 ⇒

Xl

i¼1

αiyi ¼ 0

∂Φ
∂w ¼ 0 ⇒ w ¼

Xl

i¼1

αiyiϕðxiÞ ¼ 0

∂Φ
∂ξ ¼ 0 ⇒ αi þ βi ¼ C

(7)

Then, the solution of the optimization problem of Eq. (7) becomes:
α* ¼ argmin
α

1
2

Xl

i¼1

Xl

j¼1

αiαjyiyiK
�
xi; xj

��Xl

k¼1

αk subject to

0 � αi � C; i ¼ 1; … ; lXl

j¼1

αjyj ¼ 0 (8)
Solving Eq. (8) allows to find the Lagrange multipliers, α and β.
Finally, Eq. (9) establishes the classifier for the optimal separating hy-
perplane in the feature space.

f ðxÞ ¼ sgn

 Xl

i¼1

αiyiKðxi; xÞ þ b

!
(9)

For regression problems, SVMs include an alternative loss function
[24] that must be modified to introduce ameasure of distance. Four kinds
of loss functions commonly implemented for SVM regression models are
presented in Refs. [23,24]. Below, it is described the mathematical
formulation of the support vector regression (SVR).

In regression tasks, given a training set of l data points,
ðxi; ziÞ; i ¼ 1; …; l; where xi 2 Rn is an input, and zi 2 R1 is its corre-
sponding output, the optimization problem to be solved becomes [18]:

min
w;b;ξ;ξ*

1
2
wTwþ C

Xl

i¼1

ξi þ C
Xl

i¼1

ξ*i

subject to

ðwTϕðxiÞ þ b� zi Þ � ε� ξi

ðzi � wTϕðxiÞ � b Þ � ε� ξ*i

ξi; ξ
*
i � 0; i ¼ 1; …; l

(10)

where C is a pre-specified value (cost parameter of the error term, similar
to the classifier in SVMs), and the parameters ξi, ξ*i are looseness vari-
ables that set the upper and the lower limits in the output system.

When using a ε-insensitive loss function [23], the dual problem of Eq.
(10) can be expressed as:
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min
*

1�
α� α*�TQ�α� α*�þ C

Xl �
αi � α*

i

�þXl

zi
�
αi � α*

i

�

α;α 2 i¼1 i¼1

subject to

Xl

i¼1

�
αi � α*

i

� ¼ 0

0 � αi

α*
i � C; i ¼ 1; …; l

(11)

where Qij ¼ Kðxi; xjÞ � ϕðxiÞTϕðxjÞ; α and α* are the Lagrange multi-
pliers, which are obtained by solving Eq. (11). Thus, the regression
function can be expressed as:

f ðxÞ ¼
Xl

i¼1

�
αi � α*

i

�
Kðxi; xÞ þ b (12)

where

wTϕðxiÞ ¼
Xl

i¼1

�
αi; α*

i

�
Kðxi; xÞ

b ¼ �1
2

Xl

i¼1

�
αi; α*

i

�ðKðxi; xrÞ þ Kðxi; xsÞ Þ
(13)

The optimization criteria for other loss functions are similar to those
ones obtained in Ref. [24]. The ε-insensitive loss function has the quality
of working with few support vectors. This provides a computational
advantage over other loss functions as the Huber, quadratic and Gaussian
approaches.

In this research, SVR models are implemented in Matlab® (R2012a)
using the LIBSVM tool developed by the Taiwan University [25]. All
Matlab simulations are made with a Core 2 Duo computer with a 2.1 GHz
processor.

3. Cardiovascular control of the central nervous system

The specific data used in the present study correspond to the same
signal sets used by Vallverdú in Ref. [7], where a generic model of the CS
is identified and validated. In order to validate that model, cardiac
catheterization of patients is employed to obtain physiological data; this
led to the simplified cardiovascular system model shown in Fig. 1. In this
model, the branch of the CNS that controls the hemodynamic system is
composed of five controllers that produce efferent signals that bring
about changes in the peripheral resistance, cardiac output and coronary
circulation; these controllers are: heart rate, myocardial contractility,
peripheral resistance, venous tone, and coronary resistance. The afferent
signal that regulates these controllers is represented by the carotid sinus
blood pressure, originated from the arterial carotid sinus baroreceptors
[7]. Sensibility analysis shows that the baroreceptor parameters that
have the most influence on the output variables in the CS model come
from the carotid sinus baroreceptors; therefore, the influence of the
baroreceptors of the aortic arch is neglected [7]. It is important to notice
that, in this CS model, the regulatory mechanisms of the renal function
that response to changes of the renal sympathetic nerve activity (RSNA),
mediated by baroreflex action, are not assessed due to the fact that RSNA
data is not available.
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Fig. 2. Carotid sinus blood pressure (upper trace), and the output signals of the controllers of venous tone (middle trace) and peripheral resistance (lower trace), used for training the
SVR models.
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The input and output signals of the Vallverdú's model are obtained
simulating a model with differential equations of the central nervous
system [7]. The model of differential equations is tuned in order to
represent patients with different percentages of coronary arterial
obstruction (between 30% and 70%). It is done by matching the four
physiologic variables of the model (i.e., heart rate, aortic pressure, right
auricular pressure, and coronary blood flow) with measurements taken
from the patients. Simulations of the differential equations for each
model employed a sampling rate of Fs¼ 8.33 Hz (sampling period
Ts¼ 0.12 s) [7]. Each model is identified based on the output response of
the systems to the same input signal (7279 data samples as shown in the
upper trace of Fig. 2). Thus, the same quantity of data samples in the
output of each model is obtained; these input-output signals constitute
the training dataset. Figs. 2 and 3 show the training signals of the input
variable (CSBP) and the output variables of the controllers.

To evaluate the models of each controller, a test dataset with six
signal segments (not employed in training) is used, where each test data
segment has a size of about 600 samples. Each dataset contains signals
with specific morphologies, derived from executing six different exhibi-
tions of the Valsalva maneuver with different duration and relative in-
tensity. A detailed explanation of the test datasets can be found in Refs.
[7,13,15]. For instance, Fig. 4 shows the output signals (test dataset) of
the heart rate controller.
3.1. Training process

Before to start with the training process, the kernel function of the
SVM needs to be established. Many tests made to different kernel
schemes as the RBF, polynomial and sigmoid were evaluated employing a
whole training dataset. The former one, exhibited the best prediction
performance and also was faster than the others during the training
processes. For the initial models, there was used C¼ 10 and σ ¼ 10.
78
Preliminary attempts using the input signal CSBP (and different
processed version of this signal) for training the SVR models presented a
very poor performance. For this reason, a second input signal for each
model had to be added to improve the prediction output in every model
as depicted in Fig. 5.

An all-pass filter (two pole/cero pairs) with flat magnitude response
and pole magnitude of 1=

ffiffiffi
2

p
is used to create the second signal with a

time delay (phase compensation) where the CSBP signal is used as the
input. To adjust the pole/cero pair spacing of the filter, the start and the
end frequencies are primarily determined. It is used a coarse-grained
searching of 0.1π step in the frequency plane [0 – π] to find the pair of
frequencies that provides the minimal error between expected and pre-
dicted output signals. Once this pair of frequencies are found, a fine-
grained searching of 0.01π step is carried out around them to improve
estimation accuracy.

The performance of each model at each iteration is analyzed by
computing the percentage value of the normalized mean square error
(MSE). The metric used to compare the predicted output (by ðnÞ) and the
expected output (yðnÞ) is shown in Eq. (14):

MSE ¼
E
��

yðnÞ � byðnÞ	2

yvar

⋅100% (14)

where yvar is the variance of yðnÞ, given by Eq. (15):

yvar ¼ E
h
y2ðnÞ
i
� fE½yn�g2 (15)

A cross validation process is accomplished in order to adjust the pa-
rameters of the SVR models. To do this, the training dataset of each
controller composed of 7279 samples is segmented in subsets of 4279
data samples, where 3679 samples (about 50.5% of the total training
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Fig. 3. The output signals of the controllers of myocardial contractility (upper trace), heart rate (middle trace), and coronary resistance (lower trace), used for training the SVR models.
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Fig. 4. Output signals for the heart rate controller of the test dataset.
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dataset) are used for training the model, and the other 600 samples for
testing purposes. In order to avoid discontinuities in the signal process-
ing, only continuous segments of the training dataset are considered. In
79
total, twelve subsets of data are formed sliding the 4279 samples from the
beginning to the end of the data in steps of 600 samples, where 3679
samples are overlapped in each case. In six cases, the test segment is



SVR model
All-passfilter

The CSBP signal
Output signal

Fig. 5. General scheme to improve the prediction performance of the five models of the CNS.

Fig. 6. Data segmentation for the cross validation process.

Table 1
Parameters used in the all-past filter and SVM for each controller.

HR PR MC VT CR

All-pass
filter

Start - stop
frequency [π
rad]

.01–.11 .01–.13 .01–.13 .01–.11 .01–.13

SVM C 10 10 10 5 5
σ 10 53 60 58 60

Table 2
MSE of each control model using SVR.

HR (%) PR (%) MC (%) VT (%) CR (%)

Training data 1.7e-3 1.14e-4 6.38e-4 7.05e-4 1.36e-4

Dataset 1 1.7e-3 1.10e-4 5.34e-4 6.06e-4 1.05e-4
Dataset 2 1.5e-3 1.10e-4 4.61e-4 5.81e-4 0.99e-4
Dataset 3 1.5e-3 0.89e-4 4.97e-4 4.55e-4 1.08e-4
Dataset 4 1.6e-3 1.03e-4 5.32e-4 5.98e-4 1.39e-4
Dataset 5 2.0e-3 1.31e-4 7.44e-4 7.55e-4 1.57e-4
Dataset 6 2.8e-3 1.83e-4 9.42e-4 1.10e-3 1.80e-4

Average Error 1.8e-3 1.20e-4 6.18e-4 6.81e-4 1.36e-4
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located at the end of each data subset (called testing data subset “a”, as
shown in Fig. 6 a–c), and in the remining cases, the test segment is
positioned at the beginning of the data subset (called testing data subset
“b”, as shown in Fig. 6 d). Thus, twelve iterations of cross validation
process are performed.

Using the grid-search procedure, as suggested in Ref. [26], the MSE
average of the 12 iterations in the cross validation process is computed to
optimize the parameters C and σ of the SVR models.
80
3.2. Validation process

Once the optimized parameters, C and σ, and the starting and the
ending frequencies of the all-pass filter are found as shown in Table 1, a
final model is built using the whole training dataset (7279 samples) for
each controller.

Finally, the SVR models of each CNS controller are then evaluated
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using the testing dataset, where the MSE of each controller is reported in
the next section.

3.3. Results

This section shows the prediction performance of each control model.
For each model, six test datasets are processed, and every output is
compared with its respective pattern. The MSE formula is used to eval-
uate the performance of the models. Also, the worst and the best MSE
cases are graphically depicted, and processing times of the tuning
81
algorithms are analyzed and discussed.
Table 2 presents theMSE of the five control models. It can be seen that

the largest average error is 1.8e-3%, which corresponds to the HR
controller.

Fig. 7 shows the best predicted result corresponding to the test dataset
3 of the peripheral resistance controller with a MSE¼ 0.89e-4%, as
shown in Table 2. In the upper trace of Fig. 7, both the expected and the
predicted output signals are depicted in the same frame, showing a good
coincidence between these two signals, demonstrating the excellent
performance of the proposed model. Such differences are shown in the



Table 3
MSE of different regression methods when predicting the test datasets against the proposed
SVR model.

HR (%) PR (%) MC (%) VT (%) CR (%)

NARMAX [13] 9.8 14.89 17.21 16.89 31.69
FIR [13] 1.37 1.49 1.41 1.47 0.09
TDNN [14] 15.35 33.76 34.02 34.04 55.69
RNN [14] 18.31 31.16 35.16 34.77 57.12
FIRa [15] 7.3e-5 7.0e-4 7.6e-6 7.9e-4 3.0e-4
GFS (GA-FIR) [16] 0.10 0.15 0.30 0.28 9.47e-30
CARFIR [17] 11.02 9.97 5.00 5.01 2.64
SVM (this study) 1.8e-3 1.20e-4 6.18e-4 6.81e-4 1.36e-4

a Patient four of five participants.
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lower trace of Fig. 7.
The worst predicted result is shown in Fig. 8, which corresponds to

the test dataset 6 of the heart rate controller. Even in this case, differences
between expected and predicted signals are not distinguishable, which
means a great accuracy of our model.

It is also important to notice that the processing times for the cross
validation process (in the worst case) are the next: to set the frequencies
of the all-pass filter about 4992 s are required and to find the best pa-
rameters C and σ, 44256 s are employed.

3.4. Discussion

This section analyzes the performance of the proposed SVR models
with those obtained in previous studies.

Table 3 summarizes the prediction results reported for the same
problem when using NARMAX, TDNN,1 RNN,2 FIR, GFS (GA-FIR),
CARFIR and the proposed SVR models. This table specifies the MSE
average for each controller, it is done by comparing the expected-
predicted outputs to each controller when the test dataset is used. As it
is noted, the row six presents the best performance obtained by Nebot
et al. [15]. In that research, a database that includes signals of five
different patients is used, where the best result corresponds to the model
built for the patient four. The average error of the proposedmodels, when
compared with the same patient of [15], is slightly higher, but the former
presents better MSE results in three of the five controllers.

The SVR model of the HR controller presents the highest error of the
five proposed models (MSE average of 1.8e-3% against 7.3e-5% of
Nebot). The main contribution to this error is due to the test dataset six
which shows a MSE¼ 2.8e-3% (see Table 2); however, this error when
compared with Netbot is considerably lower, which presented a
MSE¼ 32.1e-3%. The SVRmodels show a narrow variation margin of the
errors in the predicted responses. This indicates that our proposed
models can reproduce the behavior of the five controllers with less error
variability.

It should also be noted that, although the prediction for the CR
controller in our study (see Table 3, last column) is better than that re-
ported by Nebot [15], it does not overcome that obtained by the GFS
technique [16]. However, it should be taken into account the computa-
tional cost required to use that hybrid technique. The total execution
time for tuning the parameters and training the SVR model of each
controller is less than 14 h. Acosta reported an average time of more than
357 h to find the best parameters of the GFS models, employing a com-
puter with a 0.6 GHz processor [16]. Although, the computer processor
used in our simulations is 3.5 times faster than that used in Ref. [16], the
required lapse to build each SVR model is close to 25.5 times shorter; it
means a computational savings around 7.3 times.

As described above, changes in blood pressure cause variations in the
afferent baroreceptor signal (the input signal of the models). The outputs
of our models should activate the effector elements of the hemodynamic
1 Time Delay Neural Network.
2 Recursive Neural Network.
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system (heart and blood vessels), which in turn modify the blood pres-
sure, forming the control system of the cardiovascular system. However,
we must remark that the purpose of the present study was to predict the
control responses of the CNS to changes in blood pressure (as those
caused by Valsalva maneuvers) using SVM regression models, and the
model of the hemodynamic system has not been the focus of this
research.

4. Conclusions

In this paper, support vector machines have been used to model a
portion of the human central nervous system, which is in charge of
controlling the hemodynamic behavior of the cardiovascular system. The
controllers of heart rate, myocardial contractility, peripheral resistance,
venous tone and coronary resistance have been modeled in order to
predict their responses.

A detailed methodology to adjust important values of signal pro-
cessing filtering and SVM parameters of the proposed models have been
described. It was found that the choice of a second input signal, which
merges from a delayed version of the original input signal, was the key
factor to obtain an optimal performance of the SVR models.

The strategy to implement the training methodology of the SVR
models resulted in a low computational cost when it was compared with
other optimization techniques implemented in other models used for the
same purpose of regression.

Support vector machines represent an efficient and powerful tech-
nique that have shown a great reliability in estimating the control outputs
of the CNS over the cardiovascular system, and it could be useful in
models of the hemodynamic system to predict the behavior of the heart
and blood vessels in response to variations of the blood pressure.
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