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Abstract 

For a rapid area coverage multiple UAVs are often used simultaneously. However, a path planning for a UAVs group 

during an area coverage task is computationally challenging. In practice, heuristic algorithms are applied to solve this 

problem. This paper overviews approaches to an area coverage problem with a group of UAVs using genetic 

algorithms. The article explores modifications that may be useful for a genetic algorithm for solving the coverage 

problem as well as representation methods for chromosomes that reflect a path of multi-UAV. Additionally, UAV 

group collision avoidance strategies during area coverage are considered. 
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1. Introduction 

A current rapid progress in robotics drives robotic 

systems into many areas of a human life including 

autonomous driving [1], manufacturing [2], search and 

rescue activities [3], agriculture [4], [5], and medical 

services [6]. In modern industrial applications of Industry 

4.0 [7] a human–robot interaction in a shared workspace 

is emphasized [8], [9]. Service robotics [10] is a 

promising area for robots’ integration covering multiple 

applications from education [11] and medicine [12] to 

entertainment [13] and advertisement [14]. A task of area 

coverage using mobile robots often arises in various 

practical applications of mobile robotics. Together with a 

proper scheduling, a determining of an optimal route for 

a mobile robot to ensure coverage of all points in a certain 

area while avoiding collisions with obstacles plays an 

important role [15]. 

Unmanned Aerial Vehicles (UAVs) provide an 

efficient solution for automating coverage and 

monitoring of large areas. UAVs are not constrained by 

obstacles on the ground and can quickly navigate through 

hard-to-reach areas while reducing human labor costs 

[16]. The use of UAVs for area coverage can be a key 

element in solving complex problems such as security 

[17], mapping [18], forest fire monitoring [19], search 

operations [20]. The task of covering an area with a group 

of UAVs attempts finding a path for each UAV such that 

the UAVs observe all locations of a given area without 

colliding with each other [21]. This task may have 

constraints, such as a time limit for an entire mission, 

safety constraints related to a minimum distance between 

UAVs, flight range constraints due to a battery capacity, 

and others.  

The coverage path problem for a mobile robot is NP-

hard [22] due to a need of analyzing an entire set of 

possible solutions, a number of which grows 

exponentially with increasing a complexity and a size of 

an area to be covered. In practice, heuristic algorithms are 

often employed for this task as they allow to get close to 

the optimal solution rather quickly, yet do not find a 

guaranteed optimal solution.  

Genetic algorithms are popular heuristic algorithms that 

have a relatively simple implementation and could be 

easily parallelized, which is especially important when 

working with large solution spaces. Genetic algorithms 

can deal with multiple optimization criteria, which is 

often the case in practice. They provide a method for 

170



Ramil Faizullin, Tatyana Tsoy, Edgar A. Martínez-García, Evgeni Magid 

©The 2024 International Conference on Artificial Life and Robotics (ICAROB2024), J:COM HorutoHall, Oita, Japan, 2024 

exploring an entire solution space to find a global 

optimum, which is useful in problems with many local 

extrema. All these turn genetic algorithms into an 

effective solution of the multiagent coverage problem. 

2. Genetic algorithms 

Genetic algorithms are based on principles of biological 

evolution and often are applied to search problems [23]. 

They model a process of natural selection to find optimal 

solutions. These algorithms interact with a population of 

potential solutions, each called an individual. By 

successively evaluating a set of solutions a new 

generation is created. The best solutions have a higher 

chance of passing on their characteristics to a next 

generation. Over time, solutions within the population 

become better adapted to a particular task. 

First a genetic algorithm creates an initial population, 

which in typically contains random chromosomes. Each 

chromosome is a possible solution of a problem and a  

fitness function assigns each chromosome a numerical 

value that reflects its effectiveness in solving the problem. 

To create a next generation, individuals are selected from 

the population in a fixed manner. Individuals with a 

higher fitness for an environment have a better chance of 

surviving and passing their traits on to the next generation. 

This leads to an improvement in the population over time. 

A crossover operation is performed to create new 

offspring chromosomes. This allows new individuals to 

inherit the best characteristics from their parents, thus 

preserving them for future generations. Mutations are 

random changes in chromosomes of individuals that 

maintain a genetic diversity and periodically contribute 

to significant leaps in a population development. After a 

crossover, there is a certain probability that a mutation 

occurs. This mutation slightly alters chromosomes of an 

offspring. 

3. Features of genetic operators’ application in 

area coverage 

In the area coverage problem for UAVs, it is necessary 

to find an optimal trajectory employed by a UAV to visit 

all given points of an area. Each chromosome encodes a 

trajectory of a UAV and the population is a set of possible 

UAV trajectories. In practice, chromosomes are usually 

sequences of integers, yet a user decides on a way of 

trajectory encoding within a chromosome [24]. 

An important feature of applying a genetic algorithm to 

the coverage problem is that after crossover or mutation 

operations, a chromosome must encode some trajectory 

for a UAV. Therefore, crossover and mutation operations 

are subjects to certain constraints. 

Fig. 1 shows a two-point classical crossover operation 

that produces two offspring. A chromosome represents an 

order of visiting obstacle-free cells while covering a 

UAV's assigned area. If parents represent acceptable 

chromosomes, the offspring could contain the same genes 

and do not represent solutions of the coverage problem. 

For example, child A contains genes 2, 4, and 5, and 

according to the chromosome, the UAV trajectory passes 

through these regions twice, but it does not visit regions 

1, 3, and 8. 

 

Fig. 1. An example of a crossover operation where an 

offspring no longer reflects a proper UAV trajectory 

One solution is to modify the crossover operation. For 

example, using a two-point crossover from a single parent. 

With this method of the crossover from a single parent 

many children are formed and then two with a highest 

value of the fitness function are selected (Fig.2). In this 

case, each offspring reflects a proper UAV trajectory. In 

[25] the authors reported a four times computation 

acceleration of a genetic algorithm simulation using the 

proposed crossover method. 

 

Fig. 2. An example of a crossover from one parent 

producing three offspring 

4. Single UAV and group of UAV coverage tasks 

In practice, using a group of UAVs for an area coverage 

increases a speed and a reliability of the procedure. Each 

UAV acts as a moving obstacle for other UAVs, and its 

route cannot be planned in isolation from the rest of the 

group [26]. Therefore, the genetic algorithm must 

consider routes of all UAVs together. A multiagent 

coverage problem solution is a path for each UAV in 
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which they cover a given area together and do not collide 

with each other, i.e., the solution combines paths of all 

UAVs into a single chromosome (Fig. 3) [27]. 

 

Fig. 3. A chromosome combines paths of four UAVs 

5. UAV group collision avoidance strategies 

during area coverage  

While using a group of UAVs reduces a time to 

complete the task, it also introduces potential risks of 

UAV collisions during the mission. Two strategies of 

UAVs’ collision avoidance are discussed in this section 

in the context of genetic algorithms: assigning UAVs a 

different coverage areas and introducing a penalty for 

approaching other UAVs. 

In the first approach, to prevent UAVs from colliding 

in the air, the area could be divided into equal subareas 

and each UAV is assigned a different subarea to cover 

[28]. This method allows a computation paralleling for 

each UAV with a genetic algorithm (as their trajectories 

are independent, (Fig. 4) and keeps a genetic algorithm 

simple. Disadvantages of this strategy include a high 

dependence of a resulting coverage effectiveness on a 

quality of an area distribution between UAVs, collision 

avoidance considerations while distributing UAVs (that 

takeoff in a common area) for the assigned subareas, and 

complicated splitting into subareas for a case of different 

survey priorities of the subareas.  

In the second approach, a penalty function can be 

introduced to reduce a fitness function value if UAVs fly 

too close to each other at a coverage time [29]. This 

strategy is a flexible way to influence the genetic 

algorithm and allows using different penalty functions 

depending on task goals. Yet, it requires a pairwise 

Fig. 4. Example of division of area to be covered into 

separate areas for each UAV 

comparison of a minimum distance between each pair of 

UAVs and as a number of UAVs increases, a complexity 

increases exponentially. 

6. Conclusions 

Classical genetic algorithms require a task dependent 

adaptation in order to be employed for the problem of 

covering a known territory with a group of UAVs as the 

use of standard genetic algorithm operators in this context 

may destruct a chromosome that represents a trajectory 

of a UAVs’ group. Genetic algorithms should optimize 

methods of representation and decomposition of a 

surveyed area and incorporate dynamic obstacles’ 

collision avoidance strategies to increase the efficiency of 

their usage. 
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