

## THE EFFECT OF COATING ON LIN<sub>0.33</sub>Mn<sub>0.33</sub>C<sub>0.33</sub>O<sub>2</sub> WITH VANADIUM OXIDE AND ITS INTERACTION WITH AQUEOUS PROCESSING WITH APPLICATION IN SOLID-STATE BATTERY

<u>Joel Obed Herrera Robles</u><sup>1</sup>, Hector Camacho Montes<sup>1</sup>, Claudia Alejandra Rodríguez González<sup>1</sup>, Yoanh Espinosa Almeyda<sup>1</sup>, Pierre Mani<sup>1</sup>

<sup>1</sup>Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Mexico.

The compound LiN<sub>0.33</sub>Mn<sub>0.33</sub>C<sub>0.33</sub>O<sub>2</sub> has high power, high energy, and a long lifetime but, despite these characteristics, it presents poor capacity due to its lower electrochemical performance limiting its application for electric vehicles. Unfortunately, in this material, Li presents a high chemical affinity with environmental moisture and CO<sub>2</sub> leading to a formation of LiOH and Li<sub>2</sub>CO<sub>3</sub> provoking Li loss and hence performance degradation. These reactions limit the possibility of aqueous processing of these materials. The LiN<sub>0.33</sub>Mn<sub>0.33</sub>C<sub>0.33</sub>O<sub>2</sub> was synthesized by the sol-gel wet method and then coated with  $V_2O_5$  with various thicknesses to analyze its transfer charge, ionic diffusion, and stability. The powders were sintered through a conventional method. Electrochemical impedance spectroscopy (EIS) is used to measure ionic and electronic conductivity. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to confirm the phase and morphology of the compound. The results confirm that the layer V<sub>2</sub>O<sub>5</sub> on the surface can stabilize the structure with H<sub>2</sub>O interactions.

Keywords: Energy, Aqueous processing, Solid state

## Acknowledgment:

Joel O. Hererra Robles acknowledges the CONAHCYT for the postdoctoral scholarship "Estancias postdoctorales por México para la formación y consolidación de Investigadores por México" at IIT, UACJ, 2022-2024

Presenting author's email: joel.obed.herrera@hotmail.com \*Corresponding author's email: joel.obed.herrera@hotmail.com