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Enhancing financial risk prediction with symbolic
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Machine learning for financial risk prediction has garnered substantial interest in recent
decades. However, the class imbalance problem and the dilemma of accuracy gain by loss
interpretability have yet to be widely studied. Symbolic classifiers have emerged as a pro-
mising solution for forecasting banking failures and estimating creditworthiness as it
addresses class imbalance while maintaining both accuracy and interpretability. This paper
aims to evaluate the effectiveness of REMED, a symbolic classifier, in the context of financial
risk management, and focuses on its ability to handle class imbalance and provide inter-
pretable decision rules. Through empirical analysis of a real-world imbalanced financial
dataset from the Federal Deposit Insurance Corporation, we demonstrate that REMED
effectively handles class imbalance, improving performance accuracy metrics while ensuring
interpretability through a concise and easily understandable rule system. A comparative
analysis is conducted against two well-known rule-generating approaches, J48 and JRip. The
findings suggest that, with further development and validation, REMED can be implemented
as a competitive approach to improve predictive accuracy on imbalanced financial datasets
without compromising model interpretability.
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Introduction

he subprime crisis of 2008 triggered the most profound

post-war recession, catching most policymakers and the

financial community by surprise and bringing commercial
banks’ financing and investment decisions into sharp focus
(Cukierman 2019; Zubair et al. 2020). One of its primary causes
was the flawed mortgage model that incentivised laxity that was
used by financial entities in granting loans. These institutions,
aware that they would not retain the mortgages, then sold them to
other entities, which led to a lack of diligence in verifying
applicant information (Hubbard and Navarro 2010). This resul-
ted in the emergence of subprime mortgages, which were
designed as high-risk loans that extended to borrowers who were
unable to demonstrate the necessary credit scores or monthly
income level corresponding to the requested credit amount (Jones
and Sirmans 2019).

Consequently, financial institutions in the past two decades
have prioritised implementing more effective decision-making
methods for risk assessment with the goal of improving the
accuracy of forecasting business failures and estimating cred-
itworthiness. Thus, machine learning (ML) approaches have
emerged as crucial tools for the financial sector (Leo et al. 2019;
Quan and Sun 2024), such as by addressing the need to build
automated bank fragility prediction (Shang et al. 2024) and credit
scoring models from large datasets. These models aim to accu-
rately classify cases into “good” or “bad” based on solvency ratios
or estimated payment capacities (Biicker et al. 2022; Chen et al.
2016; Hussin-Adam-Khatir, Bee (2022); Nali¢ and Martinovic
2020).

Nevertheless, in practical applications of ML classification for
financial risk management, an additional challenge called the
class imbalance problem must be addressed (Niu et al. 2020; Shen
et al. 2019) since most financial datasets exhibit a vastly greater
number of solvent examples (majority class) than insolvent
examples (minority class), resulting in financial-related datasets
that are often strongly imbalanced (Hussin-Adam-Khatir, Bee
(2022); Kennedy et al. 2010). Therefore, classification results tend
to be skewed due to a bias towards the majority class (Shen et al.
2019), leading to poor performance of classifiers in identifying
examples of the minority class (Niu et al. 2020; Wang et al. 2015).
Notably, misclassifying an insolvent case as a solvent incurs a
higher cost in risk management than missing out on an oppor-
tunity (Hussin-Adam-Khatir, Bee (2022); Shen et al. 2019).

On the other hand, ML approaches for financial assessment
must maintain a balance between accuracy and interpretability
(Florez-Lopez and Ramon-Jeronimo 2015; Hayashi 2016). Inter-
pretability refers to a model’s ability to provide information in a
human-comprehensible form. This aspect holds significance
because of both commercial and legal considerations, where
financial managers need to understand the information received
to combine it with their expert judgement for more accurate
financial risk evaluation. Additionally, it is crucial for scenarios
such as explaining to an applicant why their credit request was
rejected (Biicker et al. 2022; Florez-Lopez and Ramon-Jeronimo
2015; Hayashi 2016). Similarly, in adherence to banking regula-
tions and audit requirements in many countries, financial insti-
tutions are required to justify their decisions regarding accepting
or denying finance requests (Biicker et al. 2022; Florez-Lopez and
Ramon-Jeronimo 2015; Hayashi 2016; Tomczak and Zieba 2015).

In this sense, symbolic algorithms based on decision trees
(DTs) and rule systems (Apté and Weiss 1997) in the final form
of IF-THEN statements are the most commonly used methods for
building expressive and human-readable representations of
knowledge (Wu and Hsu 2012). Unlike neural networks (NNs)
and support vector machines, which do not provide insight into
how to generate their predictions (ie., they are black box
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methods) (Lantz 2013), rule solutions can be adequately incor-
porated for decision-making processes requiring the utmost
clarity (Wu and Hsu 2012) and direct applicability in contexts
such as financial risk management (Florez-Lopez and Ramon-
Jeronimo 2015). However, the interpretability and conciseness of
extracted rules pose a critical compromise (Hayashi 2016); a large
set of rules or a higher average number of antecedents per rule
results in more complex and less concise rules, diminishing
interpretability and the ability to generalise from observed data to
unseen data (a phenomenon known as overfitting) (Hayashi and
Oishi 2018; Ying 2019). Hence, the simplification of extracted
rules becomes crucial for enhancing interpretability in the
decision-making process (Cano et al. 2011; Gacto et al. 2011;
Lanzarini et al. 2017; Hayashi 2016), reducing the effort needed to
understand their meaning (Gacto et al. 2011).

From this perspective, numerous research efforts have been
implemented to assess financial risk using strategies to address
the adverse effect of class imbalance on the predictive power of
ML approaches; however, overall performance considering the
trade-off between accuracy and interpretability has not been
sufficiently addressed (Chen et al. 2024). Therefore, we present an
overview of recent ML studies that have addressed the research
gap in dealing with class imbalance problems in financial data
and integrate rule solutions to improve the interpretability of the
models.

Literature review

Many studies have developed ensemble methods by training
multiple models and combining their predictions to improve
performance in classifying financial risks from imbalanced data-
sets (He et al. 2018; Xia et al. 2020; Zhang et al. 2018). For
example, Florez-Lopez and Ramon-Jeronimo (2015) proposed an
ensemble model based on DTs as base learners, creating a
correlated-adjusted decision forest (CADF) univariate to yield an
accurate and comprehensible classification model for credit risk
evaluation. The ensemble strategy involved merging four indivi-
dual DT models from a single dataset. Feature and instance
diversity were included via different wrapper-feature selection
processes for each inductive model. A 10-fold cross-validation
(where the dataset is randomly split into 10 mutually exclusive
equal subsets for 10 training and testing sessions) was employed
for DT construction. Additionally, bootstrapping (by sampling n
instances uniformly from the data with replacement for training
and using the remaining instances for testing) was implemented
for out-of-sample validation. A penalty function was also intro-
duced to generate adjusted-weighted votes using a mixed
accuracy-correlation ranking scheme. CADF univariate was tested
on the German credit risk dataset from the UCI repository.
Comparative evaluations of predictive accuracy and interpret-
ability against each DT classifier used to build the ensemble
model, and other decision forest strategies revealed that CADF
univariate outperforms any single classifier in terms of out-of-
sample accuracy and emerged as the most interpretable among
complex decision forest models.

Similarly, Hayashi et al. (2016) proposed another ensemble
approach to increase the conciseness of extracted rules for
automated financial risk models. They employed a recursive ML
algorithm to extract classification rules (Re-RX) from a feedfor-
ward NN (Setiono et al. 2008), replacing the C4.5 DT classifier
(Quinlan 1993) with the unique variant J48graft from the WEKA
workbench (Panigrahi and Borah 2018). Experiments were con-
ducted in six two-class financial datasets, which considered dis-
crete variables before analysing continuous data. Re-RX with
J48graft resulted in a smaller and more accurate set of extracted
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rules than the Re-RX algorithm for all the databases. Later,
Hayashi extended his ensemble strategy by including the selection
of continuous attributes (Continuous Re-RX) and sampling
selection techniques (Sampling Re-RX) to achieve higher accuracy
and interpretability (Hayashi 2016). The effectiveness and
appropriateness of the Re-RX family algorithm were assessed in
four real-life, two-class mixed (discrete and continuous attributes)
financial datasets. The findings suggest that Continuous Re-RX,
Re-RX with J48graft, and Sampling Re-RX comprised powerful
management tools for creating accurate, concise, and inter-
pretable decision support systems for financial risk analysis.

As an extension, Hayashi and Oishi (2018) proposed a
straightforward two-stage sequential ensemble classifier to
achieve a well-balanced rule extraction method that prioritises
high accuracy while generating a concise number of rules. This
approach employs a backpropagation NN alongside Continuous
Re-RX with J48graft via recursive feedback. Experiments were
performed on two mixed financial datasets, demonstrating that
the proposed ensemble method represented the best trade-off
solution, that offers both accuracy and interpretability.

Lanzarini et al. (2017) employed a hybrid ML approach based
on a competitive learning vector quantisation (LVQ) NN
(Kohonen et al. 2001) with particle swarm optimisation (PSO)
(Wang et al. 2007) to establish classification rules. The method’s
performance was tested using a real consumer credit dataset
against the C4.5 and PART (Witten et al. 2011) classifier algo-
rithms. Across ten independent runs, the LVQ network of 30
neurons + PSO showed a slightly lower accuracy than benchmark
models but with a significantly lower average number of rules and
antecedents.

Conversely, Wu and Hsu (2012) proposed an enhanced deci-
sion support model (EDSM) incorporating a relevance vector
machine (RVM) (Tipping 2000) and DT for analysing financial
rating domains. Their ensemble strategy employed a de-
compositional approach that deconstructed the RVM structure
to obtain relevance vectors and predicted labels based on the best
cross-validation result. These outputs were then fed into a rule-
based classifier with explanatory capabilities, enabling it to
understand and leverage the insights from the RVM. According
to the results of the final rankings, the EDSM outperformed six
other classifiers in forecasting solvent rating status using real data
from the Taiwan financial system.

Similarly, another study used a Taiwanese customer dataset
and proposed the SPR-RIPPER hybrid model (Xu et al. 2018).
This model combines the RELIEF method (Kira and Rendell,
1992) to remove redundant features, enhancing model inter-
pretability. Additionally, it utilises the synthetic minority class
oversampling technique (SMOTE) (Chawla et al. 2002) to address
the class imbalance by resampling minority classes with an
increase of 100% in the training dataset and the RIPPER algo-
rithm (Cohen 1995) for rule extraction. SPR-RIPPER exhibited
higher precision, lower time complexity, and fewer rules extracted
than base symbolic classifiers such as C4.5 and RIPPER.

In the context of financial distress prediction, Kristof and Virag
(2022) evaluated ML approaches for reliably predicting the failure
risk of the central banks of the 27 countries in the European
Union. They applied logit, C5.0 DT (Boosting C4.5) (Quinlan
1996), and a deep learning NN method to 32,287 bank-year
observations. The C5.0 generated 100 different rule sets from 100
boosted DTs with depth values between 4 and 12. Notably, the
ensemble DT method outperformed the other ML techniques in
terms of predictive power.

Table 1 summarises the findings of the studies mentioned
above regarding accuracy, interpretability, and dataset char-
acteristics used for evaluating the performance of the proposed
approaches. Additionally, we computed a complexity value (Eq. 1)

for a rule-based classifier introduced by Nauck (2002), who
proposed an interpretability measure that associates the number
of classes and antecedents per rule,

lexit ”
complexity S 1)
where m is the number of classes, 7 is the number of rules, and ¢;
is the number of antecedents used in the i-th rule. Therefore, a
higher value indicates a less complex and more comprehensible
rule system since the classifier contains fewer rules and ante-
cedents (Cano et al. 2011).

The experimental results of Chen et al. (2024) showed that
class imbalance has a negative effect on the interpretation per-
formance of ML approaches, which is consistent with our review,
since for datasets with higher imbalance rates (EU-27 banks and
Taiwan; see Table 1), the compressibility of models (complexity
value) also decreased.

Therefore, we propose a novel approach to rule extraction for
financial risk management that addresses the class imbalance
problem with a high imbalance ratio (> 10) while considering the
trade-off between accuracy and interpretability.

Methods

Financial dataset. In this study, we used the US database pro-
vided by the Federal Deposit Insurance Corporation that is
publicly available online (Serrano-Cinca, Gutiérrez-Nieto (2013)).
This strongly imbalanced dataset (Marqués et al. 2013) consists of
financial accounting statements from 8292 banks segmented into
319 insolvent and 7973 solvent cases, resulting in an imbalance
ratio of 24.99. The dataset considered 17 financial ratios as
independent variables, aiming to cover the key indicators for
diagnosing banking financial health. Table 2 presents each ratio
along with its definition.

REMED. REMED is a symbolic one-class approach for binary
classification introduced by Mena and Gonzalez (2009). The
algorithm is strategically designed to address two key aspects: 1)
addressing the class imbalance problem by constructing biased
models aimed at recognising a target class by training both classes
and 2) producing interpretable and concise rule-based systems that
comprise only one rule with m antecedents for predicting the target
class and another default rule without antecedents for predicting
the default class. To achieve both aims, the REMED learning
process unfolds in three main stages: 1) selection of antecedents, 2)
selection of initial partitions, and 3) building the rule system.

Selection of antecedents. In the first stage (Algorithm 1), REMED
estimates the probability p of an independent continuous variable
X associated with the target class using simple logistic regression
(Hosmer and Lemeshow 1989). Since the outcome is a prob-
ability, the dependent variable is bounded between 0 and 1. In
logistic regression, a logit transformation (Armitage et al. 2008) is
applied to the odds ratio, i.e., the probability of success divided by
the probability of failure. The logistic function (Eq. 2) is repre-
sented by:

1
P= g @)
1+ e_(ﬁl)_hBlX)

where coefficients 3, and 8, are estimated for each variable X
using the maximum likelihood function (Aldrich 1997). Thus, an
odds ratio of 1 indicates non-association, a ratio greater than 1
indicates a positive association (where an increase in X leads to an
increase in p), and a ratio less than 1 indicates a negative asso-
ciation (where a decrease in X leads to an increase in p). X is
considered a rule antecedent only if a statistically significant
association is at a confidence level >99%. Depending on the
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Table 1 Results and datasets of previous studies on ML for financial risk management.
Study Accuracy Interpretability Financial datasets
Authors, year Approaches Datasets Performance Rules Antecedents Complexity Name Solvent Insolvent Imbalance
metrics average average cases cases ratio
Florez-Lopez and Ramon- CADF German AR =0.758 10.25 2.25 0.087 Australian 307 383 1.25
Jeronimo (2015) univariate AUC=0.789
Type |
error=0.528
Type Il
error=0.117
Hayashi et al. (2016) Re-RX with Benel AUC=0.742 315 9.17 0.007 CARD1 307 383 1.25
J48graft Bene2 AUC=0.755 39.9 7.5 0.007
CARD1 AUC = 0.890 6.30 3.15 0.101
CARD2 AUC=0.876 7.20 3.68 0.075
CARD3 AUC=0.894 5.70 273 0.129
German AUC =0.805 14.40 536 0.026 CARD2 307 383 1.25
Hayashi (2016) Sampling Australian AR =0.865 11.04 5.27 0.034 CARD3 307 383 1.25
Re-RX AUC=0.864
Re-RX with AR =0.860 4.58 2.38 0.183
J48graft AUC=0.862
Continuous AR =0.869 14.00 5.95 0.024
Re-RX AUC =0.869
Sampling Benel AR=0.721 25.46 6.25 0.013
Re-RX AUC =0.680
Re-RX with AR=0.710 27.74 7.38 0.010 Benel 2083 1040 1.25
J48graft AUC =0.669
Continuous AR=0.725 48.40 7.52 0.005
Re-RX AUC=0.702
Sampling Bene2 AR=0.726 28.31 6.10 0.012
Re-RX AUC = 0.600
Re-RX with AR=0.707 27.61 6.46 0.0m
J48graft AUC=0.615
Continuous AR =0.747 75.90 7.95 0.003 Bene2 5033 2157 233
Re-RX AUC=0.648
Sampling German AR=0.732 19.34 6.20 0.017
Re-RX AUC = 0.660
Re-RX with AR=0.728 16.65 6.19 0.019
J48graft AUC = 0.650
Continuous AR=0.752 39.6 9.13 0.006
Re-RX AUC=0.692
Hayashi et al. (2018) Continuous Australian AR=0.884 15.4 5.66 0.023 German 700 300 2.33
Re-RX AUC =0.880
with German AR =0.790 449 7.68 0.006
J48graft AUC=0.757
Lanzarini et al. (2017) LVQ + PSO Ecuador AR=0.792 3.12 2.54 0.252 Ecuador 643 1604 2.49
Type |
error = 0.140
Wu and Su (2012) EDSM Taiwan AR=0.912 8 3.25 0.077 Taiwan 23364 6636 3.52
Sens = 0.886
Spec =0.877
Xu et al.(2018) SPR-RIPPER ~ Taiwan AUC=0.707 31 3 0.022
F1-
score = 0.534
Kristéf and Virdg (2022) 5.0 EU-27 AUC=0.937 100 8 0.003 EU-27 32287 303 106.55
banks banks
AR Accuracy rate, AUC Area under the receiver operation characteristic curve, Sens Sensitivity, Spec Specificity.

previously established association (positive or negative), it is
possible to determine the relational operator (= or <) used to
partition X within the feature space.

Algorithm 1. Selection of antecedents.
Selection of Antecedents (dataset, variables)
antecedents < @
confidence_level < 1-a // >99%
€ < 1/10k // convergence level
FOR x € variables DO
X [...] ¢ dataset[x] // instances for each continuous variable

X
D, odss_ratio < Logistic Regression (X [...], ¢
IF p < (1 - cgnfidence_level) THEN
antecedents <—x, odds_ratio
END-IF
END-FOR
4

Selection of initial partitions. Symbolic classifier learning is based
on a DT scheme that divides the feature space from the top (root)
to the bottom (leaf) until each instance is assigned to a unique
class. Consequently, partitions are a set of exhaustive and
excluding conditions for building a symbolic rule, which
exhaustively classifies all instances by assigning them only one
class (excluding). In this phase, REMED begins by sorting the
values of an antecedent X in ascending order, computing its mean
value X, and then moving towards either the start (indicating
negative association) or the end (indicating positive association)
of X[... ], based on the odds ratio, to find the closest value to X
that belongs to the target class. Subsequently, REMED computes
the average between the selected X value and its predecessor (in
the case of positive association) or successor (in the case of
negative association). This new estimation is performed only once
for each antecedent because other displacements to calculate a
new partition could include at least one instance of the target
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Table 2 Financial ratios employed for banking distress analysis. Acronyms and definitions are taken from the Federal Deposit

Insurance Corporation.

Variable Definition

INTINCY Yield on earning assets. Total interest income as a percent of average earning assets.

INTEXPY Cost of funding earning assets. Annualised total interest expense on deposits and other borrowed money as a percent of average earning
assets on a consolidated basis.

NIMY Net interest margin. Total interest income less total interest expense as a percent of average earning assets.

NONIIY Noninterest income to earning assets. Income derived from bank services and sources other than interest bearing assets as a percent of
average earning assets.

NONIXY Noninterest expense to earning assets. Salaries and employee benefits, expenses of premises and fixed assets, and other noninterest
expenses as a percent of average earning assets.

NOIY Net operating income as a percent of average assets.

ROA Return on assets (ROA). Net income after taxes and extraordinary items as a percent of average total assets.

ROAPTX Pretax return on assets. Annualised pre-tax net income as a percent of average assets.

ROE Return on Equity (ROE). Annualised net income as a percent of average equity on a consolidated basis.

ROEINJR Retained earnings to average equity. Net income, less cash dividends declared, as a percent of average total equity capital.

EEFFR Efficiency ratio. Noninterest expense, less the amortisation expense of intangible assets, as a percent of the sum of net interest income and
noninterest income.

NPERFV Noncurrent assets plus other real estate owned to assets. Noncurrent assets are defined as assets that are past due 90 days or more plus
assets placed in nonaccrual status plus other real estate owned (excluding direct and indirect investments in real estate).

LNLSDEPR  Net loans and leases to deposits. Loans and lease financing receivables net of unearned income, allowances and reserves as a percent of
total deposits.

EQV Total equity capital as a percent of total assets.

RBC1AA)J Core capital (leverage) ratio. Tier 1 (core) capital as a percent of average total assets minus ineligible intangibles.

RBCIRWAJ Tier 1 risk-based capital ratio. Tier 1 (core) capital as a percent of risk-weighted assets as defined by the appropriate federal regulator for
prompt corrective action during that time period.

RBCRWAJ  Total risk-based capital ratio. Total risk based capital as a percent of risk-weighted assets.

class instance on the opposite side of the classification threshold,
thereby reducing the probability of belonging to the aim class.
Algorithm 2 provides a detailed step-by-step description.

Algorithm 2. Selection of initial partitions.
Selection of Initial Partitions (dataset, antecedents)
partitions < &
FOR x, odds_ratio € antecedents DO
X [...] « Sort Ascending (dataset[x]) // instances sorted
ascending for each antecedent x
part < Average (X [...]) // mean of the values of X
pointer < Position (X [...], part) // searching X value closest
to X
k <« pointer
WHILE X [k].class # target class // searching the closest
value to X belonging to the target class
IF odds_ratio >1 THEN
k « k41 // positive association
ELSE
k < k - 1 // negative association
END-IF
END-WHILE
IF pointer # k THEN
IF odds_ratio > 1 then
part < (X [k].value + X [k-1].value) / 2 // positive association
ELSE
part ¢« (X [k].value+X [k+ 1].value) / 2 // negative
association
END-IF
END-IF
V)
partitions <— part // set of initial partitions
END-FOR

Building the rule system. After generating the initial partitions for
each of the m antecedents, REMED builds a straightforward rule
system with m conditions as follows:

IF I<relation> part; AND i<relation>part; AND .... AND
m<relation>part,, then => target class

ELSE => default classwhere <relation> is either > or <,
depending on whether antecedent i is positively or negatively
associated with the target class using part; (the classification
threshold).

In the final stage (Algorithm 3), REMED classifies instances
using the initial system of rules. Subsequently, it aims to improve
predictive performance by adjusting classification thresholds
using the bisection method (Burden and Faires 2000). Initially,
REMED defines the first searching interval for potential new
partitions based on partition i and the maximum or minimum
value (depending on association) for instances of antecedent i.
The algorithm then builds a temporary rule system by modifying
the current partition i with the new partition value, classifying the
instances again, and retaining the new partition only if it
decreases the number of incorrectly classified default class
examples without decreasing the number of correctly classified
target class examples. This step is repeated for each antecedent
until the established convergence level is reached or when the
current rule system no longer reduces the number of incorrectly
classified default class instances. A detailed outline divided into
instruction blocks (A-E) is as follows:

(A) REMED begins by constructing an initial rule system based
on the current partitions, classifying instances, and then saving
the results. REMED also saves the number of correctly classified
(k1) and predicted (k2) target class instances.

(B) Later, REMED begins an iterative process (1...m) to
improve the predictive value of each partition. It estimates a new
partition for antecedent i by averaging its initial classification
threshold with the maximum or minimum value of the examples
for this antecedent (based on association). REMED saves a copy
in the copy_partitions vector to evaluate the classification
performance of the new partition.

(C) REMED creates a temporary rule system by changing the
current partition of antecedent i with the new partition and
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classifies examples again. REMED saves the number of correctly
classified (k3) and predicted (k4) target class instances.

(D) REMED compares the results obtained with the new
classifier. If the number of correctly classified target class
examples decreases (k3 <kl), then REMED sets the current
partition as the maximum interval value to estimate a new
partition; otherwise, if the number of incorrectly classified default
class examples decreases (k4 <k2), then REMED saves the
number of predicted target class examples (k5) and sets the
current partition as the minimum interval value to estimate a new
partition. REMED continues estimating new partitions for

antecedent i using the bisection method until the difference in
absolute value between the maximum and minimum interval
values does not overcome the established convergence level or
until the current rule system no longer decreases the number of
incorrectly classified default class instances.

(E) If the new partition for antecedent i improves the predictive
value, it is included in the final set of partitions, and the number
of predicted target class instances is updated (k2=k5). This
process is repeated for all m antecedents.

Algorithm 3. Building the rule system.

Algorithm 3. Building the rule system.

Building the Rule System (dataset, antecedents, partitions )

class[%] - Rule (dataset, partitions, odds_ratio)

target_instances[] - Calculate Target Instances (dataset.class, class [¥]) A
k1 - Add (target_class[}]) // number of correctly classified target class instances
k2 - Add (class[%]) // number of predicted target class instances

€ <« 1/10k // convergence level
FOR/ -1% m DO

min - partition[i]

IF odds_ratio[i] > 1 THEN

max - Maximum (dataset[i]) // positive association B

ELSE

max - Minimum (dataset[i]) // negative association

END-IF
new_partition - (min + max) / 2
copy_partitions[¥%] - partitions[%)

WHILE Abs (max—min) >& DO
copy_partitions [ i] = new_partition

class [%4] -~ Rule (dataset, copy_partitions, odds_ratio)

target_instances[] - Calculate Target Instances (dataset.class, class [¥]) C
k3 - Add (target_class[%]) // number of correctly classified target class instances

k4 - Add (class[¥]) // number of predicted target class instances

IF k3 < k1 THEN // least number of correctly classified target class instances

max - new_partition

ELSE
IF k4 < k2 THEN // least number of incorrectly classified default class instances
k5 - k4
min -~ new_partition D
ELSE
EXIT-WHILE
END-IF
END-IF
new_partition - (min + max) [ 2
END-WHILE
IF min ' partitions[i] THEN
k2 - k5 // updating number of predicted target class instances
partitions[i] - min // updating set of partitions E
END-IF
END-FOR
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Therefore, the main goal of REMED is to maximise the
classification performance of the target class. This begins with the
selection of antecedents strongly associated with the aim class
(logistic regression confidence level > 99%), which is the unique
parameter needed; later, the search for partition thresholds upon
encountering the first target class example (to prevent a decrease
in the probability of belonging to the aim class) stops, and finally,
the predictive performance of the rule system tries to make
improvements without compromising the number of correctly
classified target class examples.

J48. J48 is a Java-implemented version of C4.5 (Quinlan 1993),
available through the WEKA workbench. C4.5 is a widely
recognised symbolic classifier used for financial risk management
problems (Martens et al., (2007); Cano et al. 2011; Brown and
Mues 2012; Florez-Lopez and Ramon-Jeronimo 2015; Tomczak
and Zieba 2015; Hayashi 2016; Hayashi et al. 2016; Lanzarini et al.
2017; Hayashi and Oishi 2018; Xu et al. 2018). C4.5 is a
discrimination-based approach that can handle multi-class pro-
blems, generating a DT with class membership predictions for all
the instances. The tree-building process employs a partition
selection criterion known as information gain, an entropy-based
metric that measures the purity between a partition and its sub-
partitions. Employing a recursive procedure, C4.5 selects ante-
cedents that lead to purer child nodes (where a completely pure
node includes examples belonging solely to one class) at each
step. The gain ratio assists in identifying the best target ante-
cedent. After the DT is built, C4.5 applies a pruning strategy to
prevent overfitting (Bramer (2002)).

JRip. JRip is a Java-based version of the RIPPER algorithm
(Cohen 1995), also provided by the WEKA workbench. RIPPER is
another symbolic classifier widely used in the early detection of
financial risk that induces sets of classification rules (Cano et al.
2011; Sénchez-Garreta et al., (2012); Tomczak and Zieba 2015;
Berka 2016; Obermann and Waack 2016; Xu et al. 2018; Otieno
et al. 2020). Although RIPPER can handle multi-class problems,
its learning process for binary classification tasks is particularly
interesting. RIPPER employs a divide-and-conquer approach to
iteratively build rules to cover previously uncovered training
examples (generally target class examples) in growing and
pruning sets. Rules are grown by adding conditions until each rule
encompasses only a single example in the growing set, often from
the default class. Thus, RIPPER usually generates rules starting
from the target class and extending to the default class, offering
an efficient method of learning rules specifically for the
target class.

Performance assessment. To assess the accuracy performance of
the rule-based systems generated by each symbolic classifier, we
constructed a confusion matrix containing the predicted and
actual values for binary classification (Table 3), where TP repre-
sents the number of true positives (instances correctly predicted
as good), FP represents false positives (bad predicted as good), FN
represents false negatives (good predicted as bad), and TN
represents true negatives (bad predicted as bad).

Table 3 Confusion matrix for binary classification.

Actual
Positive Negative
Predicted Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Most studies dealing with imbalanced data typically denote the
target class (minority) as positive and the default class (majority)
as negative. However, in the financial context, labelling bad cases
as positive and good cases as negative may seem unreasonable
(Tomczak and Zigba 2015). Consequently, y = 1 usually denotes a
good or solvent case, and y =0 denotes a bad or insolvent case.

Another critical issue when dealing with class imbalance is how
to satisfactorily assess classifier performance since using the
typical accuracy rate (AR) (Eq. 3) can lead to misleading
conclusions, as it measures only the overall percentage of
correctly classified instances but does not evaluate the predictive
performance for each class:

. TP+ TN
- TP+ FP+FN+ TN
Therefore, it is also necessary to determine the appropriate way
to evaluate classifiers on datasets with uneven distributions; thus,

we also used Precision measure (Eq. 4) to assess the predictive
value for identifying solvent cases:

(€)

TP
TP + FP

Moreover, the geometric mean (Gmean) (Eq. 5) serves as a
performance criterion to mitigate the impact of unbalanced data
(Tomczak and Zigba 2015). It is considered a balancing measure
between the correct classification of the positive and negative
classes when evaluated separately (Tomczak and Zigba 2015):

\/ TP TN
Gmean = X
TP+ FN TN + FP

Another weakness of AR is that it ignores the misclassification
cost (bad classified as good, or good classified as bad), which is an
important issue in financial risk assessment. In this context, a
binary classifier can incur two types of errors: Type I error (FP)
when an insolvent case is classified as a solvent and Type II error
(FN) when a solvent case is classified as an insolvent. Since the
former can imply a loss of capital and the latter can imply only a
missing business opportunity, the cost of Type I error is typically
considered higher for financial institutions. Therefore, we also
included the Type I error or the FP rate (Eq. 6) as another metric
to assess the accuracy performance of the symbolic classifiers.

Type I FP (6)
ype lerror = TN

With respect to interpretability performance, we used criteria
aimed at increasing the simplicity of the rule system. Following
the principle of Occam’s razor, the best model constructs
solutions with the smallest possible set of elements (Gacto et al.
2011). Thus, we computed complexity values (Eq. 1) as an
interpretability measure related to the number of rules and
antecedents per rule yielded by each symbolic classifier.

To prevent potential overfitting, we conducted a 10-fold cross-
validation repeated five times with different seeds for all the
classifiers. For the statistical comparison of the ML models, we
used the nonparametric Friedman test and the Nemenyi post hoc
test to determine significant differences among multiple classifiers
and the Bonferroni-Dunn test to compare the performance of
alternative approaches (J48 and JRip) with that of REMED as a
control classifier (Dems$ar 2006). We ranked the k symbolic
classifiers according to the best-performing algorithm in terms of
the N metrics used for assessing both accuracy and interpret-
ability. A trade-off rank average was computed for each classifier,
and a significance level of p<0.05 was set for significant
differences among the performances of all symbolic classifiers
and pairwise comparisons with REMED.

4)

Precision =

(©)
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Results and Discussion

The experimental results are summarised in Tables 4-7 and
Figs. 1 and 2. Table 4 presents the confusion matrix for each
classifier, allowing the calculation of their respective performance
metrics. Additionally, Table 5 shows the rule systems yielded by
REMED and JRip for estimating interpretability measures. Due to
the large size of the DT generated by J48, only the number of
antecedents per rule was indicated. REMED, as anticipated, only
selected attributes significantly associated with the target class
(p<0.0001) and with the highest confidence level (>99.99%);
consequently, this allowed the generation of a more concise set of
rules utilising fewer antecedents (12 in total) for determining a

Table 4 Confusion matrix of the classifiers.
REMED Actual
Positive Negative
Predicted Positive 7652 131
Negative 321 188
148 Actual
Positive Negative
Predicted Positive 7878 188
Negative 95 131
JRip Actual
Positive Negative
Predicted Positive 7858 172
Negative 15 147
Performance Metrics
0.966 0.983
1
0.752
0.5 0.411i \ ﬂ
0
AR Precision Type | error Gmean

W REMED mJ48 uJRip

Fig. 1 Bar plot comparing the classification performance of the classifiers.

Interpretability Metrics

ﬂn

Number of rules

50

[

0.167

L]

Complexity

0.02

0.0004
Antecedents average

®REMED mJ48 wmJRip

Fig. 2 Bar plot comparing the interpretability performance of the classifiers.

8

client’s insolvency and subsequently earned the best performance
in terms of complexity indicator, unlike JRip and J48, which
yielded multiple rules, particularly J48 with an excessive number.
Furthermore, when REMED addresses the issue of imbalanced
classes, the rule system tends to identify most instances in the
insolvent class.

Figures 1 and 2 compare the classifiers in terms of accuracy
and interpretability, highlighting the superior performance of
each approach concerning specific measures. A logarithmic scale
was used to present the results more compactly for interpret-
ability metrics. Notably, REMED is the best classifier in terms of
Gmean, Precision and Type I error, which are three widely
recognised metrics for assessing performance in class imbalance
issues. An exception arises in AR, where REMED displays the
lowest indicator among the ML models. Nonetheless, this beha-
viour is common, and the literature reports that solution pro-
posals with superior performance in unbalanced classes may
exhibit a decline in AR rates (Chao et al. 2022).

Table 6 shows the results of ranking the classifiers for each
metric separately. Rank 1 represents the best-performing
approach, rank 2 represents the second-best approach, and
rank 3 represents the worst-performing approach. Higher values
indicate better performance for accuracy metrics, except for Type
I error (insolvent classified as solvent). In the case of interpret-
ability measures, the best values are the lowest number of rules
and average antecedents, along with the highest complexity
indicator. The average rank was calculated by considering the
trade-off between accuracy and interpretability.

Table 7 reports the results of the statistical tests used to detect
significant differences among the average ranks of classifiers. The
nonparametric Friedman test was applied to rank the k=3
classifiers over the N=7 metrics, yielding a statistic =4.492
distributed according to the F distribution with degrees of free-
dom k—1=2 and (k—1)(N—1)=12. The critical value of
F(2,12) for a significance level of p =0.05 was 3.885. Therefore,
we rejected the null-hypothesis that all the classifiers were
equivalent.

Later, we proceed with the Nemenyi post-hoc test to identify
significant differences between the best-performing classifier
(REMED) and the worst (J48). This was determined by examining
their average ranks, which differed by at least a critical difference
(CD), given by:

k(k+1)

D=4\ "N

where the critical value of g,, which is based on the studentised
range statistics (Demsar 2006), at & = 0.05 with k =3 classifiers,
was 2.343. Hence, the corresponding CD was computed as

2.343,/63,‘—142: 1.252; therefore, as the difference between the

average ranks (2.714 - 1.429 =1.285) was greater than the CD
(1.252), we conclude that the post-hoc test had sufficient power to
detect significant differences (p <0.05) among the classifiers.
Furthermore, upon comparing them, we identified two additional
groups of algorithms: 1) J48 shows no significant difference from
JRip, and 2) JRip shows no significant difference from REMED.
Finally, to assess the significant performance of REMED as a
control approach versus the other symbolic classifiers, we calcu-
lated the CD for the Bonferroni-Dunn test using the same
equation as for the Nemenyi test but assigned a critical value for

a/(k-1) (Demsar 2006). We find that for gy s =2.241 and k=3
classifiers, the corresponding CD was 2.241, /2% = 1.198, which

indicated that REMED performed significantly better than J48
(2.714-0.429 = 1.285 > 1.198). However, there were no significant
differences with respect to JRip (1.857 — 1.429 = 0.428 < 1.198).
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Table 5 The rule system of the symbolic classifiers.

REMED

ELSE solvent

IF (INTEXPY >=2.5722) AND (NIMY <=3.7568) AND (NOUY <=0.045512) AND (ROA <= —0.020157) AND (ROAPTX <=0.33186)
AND (ROE < =2.4305) AND (ROEINJR <= —3.0748) AND (NPERFV >=1.9392) AND (EQV < =11.0556) AND (RBC1AAj <= 10.1801)
AND (RBCTIRWAJ < =12.9377) AND (RBCRWAJ < =14.2257) THEN insolvent

JRip

ELSE solvent

IF (RBCTIRWAJ < =9.365995) AND (NPERFV >=8.743031) THEN insolvent

IF (ROEINJR <= —10.482257) AND (RBCTIRWAJ < =10.004857) AND (NPERFV >=5.827501) AND (RBCLAAJ < =6.549245) THEN insolvent
IF (ROE <= —6.834654) AND (RBCRWAJ < =11.564752) AND (NPERFV >=3.701495) AND (EQV <= 6.787471) THEN insolvent

IF (ROE <= —6.951554) AND (RBCRWAJ < =12.718498) AND (NPERFV >=5.754693) AND (LNLSDEPR < =97.428213)

AND (INTEXPY >=3.280909) AND (NONIIY > = 0.03634) THEN insolvent

J48

56,6 7,7,6/1,11,1,13,13,12,9,9,9,8,10,10,9,6,3,2,4,5,7,8,8,6,3,556,7,10,10,9,8,6,6,5,7,7,6,5,7,7, 6, 4 antecedents*

*DT with 48 leave nodes or rules

Table 6 Individual performance and rank of the classifiers for each assessment metric.

REMED J48 JRip
Metric Performance Rank Performance Rank Performance Rank
AR 0.945 3 0.966 1 0.965 2
Precision 0.983 1 0.977 3 0.979 2
Type | error 0.41M 1 0.589 3 0.539 2
Gmean 0.752 1 0.637 3 0.674 2
Number of rules 2 1 48 3 5 2
Antecedents average 6 2 7.29 3 3.2 1
Complexity 0.167 1 0.006 3 0.125 2
Average rank 1.429 2.714 1.857

Table 7 Statistical comparisons of classifiers.

Friedman test = 4.492 (p = 0.033)*

Control Comparison Nemenyi test Bonferroni-Dunn test
Classifier Classifier Go.05= 2.343 Go.05= 2241 k=3
k=3
REMED 148 1.285>1.252* 1.285>1.198*
JRip 0.428<1.198
*p<0.05

Nevertheless, REMED was shown to be an unbiased symbolic
classifier, suggesting its potential to identify insolvent cases, which
have the highest erroneous classification cost. Moreover, non-
parametric tests provide a more suitable statistical comparison
among classifiers because these do not assume normal distribu-
tions or homogeneity of variance and can be applied to any
evaluation measure (Demsar 2006). Therefore, including perfor-
mance ranks for accuracy and interpretability metrics broadens
the scope of statistical testing to find the best compromise
solution.

On the other hand, cost-sensitive (Elkan 2001) and resampling
strategies (Chawla et al. 2002) require constructing a cost matrix
and determining under/oversampling rates (before running the
algorithm) to address the class imbalance problem. In this sense,
the fact that REMED requests a single parameter (confidence
level for attribute selection) allows a more automated ML process.

Conclusions, Limitations and Future Work

ML for financial risk management has garnered substantial
interest in the sector to improve the accuracy of forecasting
banking failures and estimating creditworthiness.

However, the joint impact of the class imbalance problem and
the dilemma of accuracy gain by loss of interpretability in ML
approaches have not been widely studied, which constitutes a
relevant gap in research for predicting bank failure and credit
scoring models.

This study aimed to assess the performance of REMED, a
symbolic classifier, in the context of financial risk prediction,
using imbalanced datasets and considering a trade-off between
accuracy and interpretability. A comparative analysis was con-
ducted against two well-known rule-generating approaches, J48
and JRip, using a dataset provided by the Federal Deposit
Insurance Corporation.

The experimental results showed that REMED performed as a
better and more direct ML method to address the problem of
improving predictive accuracy from imbalanced financial data
without affecting model interpretability. Furthermore, our study
addresses a key research gap by examining how the class imbal-
ance problem can affect interpretability performance, especially at
extreme imbalance ratios.

Conversely, a notable limitation of this study is that the per-
formance comparison was based on a single dataset of banking
crisis analysis indicators. However, the selected sample collected a
large amount of real data from 8292 banks represented by 17
independent financial attributes, which can reduce the effect of
biased variance estimations due to dependencies between exam-
ples of a unique dataset.
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A possible avenue for future research is to explore combining
REMED with an oversampling rate to increase the representation
of the target class or include cost ratio parameters to reduce
misclassified examples instead of classification errors, as well as
expanding the experimental framework to encompass a broader
collection of datasets.

Data availability

The dataset generated and/or analysed during the current study is
available in the repository of the Computer Security and Artificial
Intelligence Research Laboratory at the Autonomous University
of Nayarit: https://securitylab.uan.mx/datasets/USbanks(FDIC-
2008).csv.
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