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Abstract: Malaria is a significant global health issue, especially in tropical regions. Accurate and
rapid diagnosis is critical for effective treatment and reducing mortality rates. Traditional diagnostic
methods, like blood smear microscopy, are time-intensive and prone to error. This study introduces a
deep learning approach for classifying malaria-infected cells in blood smear images using convolu-
tional neural networks (CNNs); Six CNN models were designed and trained using a large labeled
dataset of malaria cell images, both infected and uninfected, and were implemented on the Jetson TX2
board to evaluate them. The model was optimized for feature extraction and classification accuracy,
achieving 97.72% accuracy, and evaluated using precision, recall, and F1-score metrics and execution
time. Results indicate deep learning significantly improves diagnostic time efficiency on embedded
systems. This scalable, automated solution is particularly useful in resource-limited areas without
access to expert microscopic analysis. Future work will focus on clinical validation.

Keywords: malaria; images; convolutional neural network

1. Introduction

Malaria is an infectious disease caused by parasites of the genus Plasmodium, which
is transmitted to people through the infected mosquito bite of the genus Anopheles. Ac-
cording to the World Health Organization (WHO), in 2020 more than 240 million cases of
malaria and approximately 627,000 deaths were estimated in the world, being a cause of
mortality in tropical and subtropical regions [1]. Timely and accurate diagnosis of malaria
is relevant for effective treatment and mortality reduction [2,3].

Traditionally, the diagnosis of malaria is made through optical microscopy, where a
blood sample is observed under a microscope as shown in Figure 1, where trained expert
personnel identify and quantify the presence of parasites [4]. However, this method is
laborious, requires a significant level of expertise, and is subject to human error. In this
context, diagnostic automation using deep learning techniques has emerged as a support
tool for these experts to improve the accuracy and efficiency of malaria diagnosis [5].
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Figure 1. Malaria diagnosis process using images of a patient’s blood sample.

Deep learning, a machine learning subdiscipline, has demonstrated outstanding per-
formance in various image classification tasks, leveraging convolutional neural networks
(CNNs) to extract highly relevant features from images [6-8]. These techniques have
been successfully applied in the classification of various diseases through medical images,
showing potential to transform clinical diagnosis [9-12].

The Jetson TX2 is a board developed by NVIDIA Enterprise. The features that have
can bring us the capability [13] to handle powerful and portable software.

For the detection, we [14] propose two deep learning architectures based on
convolutional-recurrent neural networks. The first one implements a convolutional long
short-term memory, while the second uses a convolutional bidirectional long short-term
memory architecture. Vijayalakshmi et al. [15] propose a deep neural network model
for identifying infected falciparum malaria parasites using a transfer learning approach.
This proposed transfer learning approach can be achieved by unifying the existing Visual
Geometry Group (VGG) network and Support Vector Machine (SVM). The VGG19-SVM
model achieves 93.1% classification accuracy in identifying infected falciparum malaria
parasites in microscopic images, outperforming existing CNN models. In [16], the authors
propose a simple neural network training strategy for highlighting the infected pixel re-
gions that are mainly responsible for malaria cell classification. The results show that there
is an improvement in classification accuracy, achieving 97.2% compared to 94.49% for a
baseline model.

The methods developed in this work achieved an accuracy of 99.89% in the detection
of malaria-infected red blood cells. Another proposed method is shown in Ref. [17], where
they used deep learning combined with VGG to perform the classification of parasitized
and uninfected blood smear cell images; their proposed approach achieved an accuracy
of 96.02%. A similar work is Ref. [18], where they present some of their progress on the
highly accurate classification of malaria-infected cells using deep convolutional neural
networks. On the other hand, Ref. [19] proposes a comprehensive computer-aided diagnosis
(CAD) scheme for identifying the presence of malaria parasites in thick blood smear
images, achieving 89.10% detection accuracy, 93.90% sensitivity, and 83.10% specificity.
Ref. [20] presents the deep learning model using convolutional neural networks that
accurately differentiates malaria-infected red blood cells; this model was 99.5% accurate
in classifying and also exhibited sensitivity and specificity values of 100% and 91.7%,
respectively. Silka et al., Ref. [21], show a novel convolutional neural network (CNN)
architecture for detecting malaria from blood samples with a 99.68% accuracy. Additionally,
they propose an analysis of model performance on different subtypes of malaria. The use
of embedded boards like the Jetson Board is wide in many fields [22], like medical, farming,
speech recognition, robotics, image processing, autonomous driving, and drones, including
face recognition. Ref. [23] mentions the use of CNN for that purpose, where they used
a Jetson TX2 specifically for this job, and they obtained the result of the recognition in
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an average time of 0.3 s and a minimum recognition rate above 83.67%. In another case
of use, Ref. [24] exhibits a convolutional neural network to estimate the center of a gate
robustly so it can pass through the gate in autonomous drone racing. Ref. [25] relates the
experimentation of benchmarking programs to revealed the rules that handle the GPU
inside the Jetson TX2 board, addressing through these programs features like block resource
requirements, kernel durations, and copy operations.

Especially in medicine, studies such as Ref. [26] study work related to the pain of the
chest and fall posture-based vital sign detection using an intelligence surveillance camera to
address the emergency during myocardial infarction. They use an embedded convolutional
neural network called single-shot detector Inception V2 and single-shot detector MobileNet
V2 inside a Jetson Nano NVIDIA Board. The accuracy that they obtained is 76.4% and an
average recall of 80%.

Ref. [27] focuses on the use of the deep learning model VGG19, achieving 97% accuracy
on boards Jetson Nano and Jetson TX2, working with computed tomography of lungs to
classify COVID-19. In Ref. [28], they focus on the use of convolutional neural network
models like AlexNet and GoogleNet to classify benign and malignant moles beneath the
use of a Jetson TX2 board. The accuracy rates are up to 74%.

In Ref. [29], they detect the traffic flow with an average processing speed of 37.9 FPS
(frames per second) and an accuracy of 92%, using a vehicle detection algorithm based on
YOLOV3 (You Only Look Once) in a Jetson TX2.

In Ref. [30], they present a benchmark analysis of 3D object detection using Jetson
boards such as Nano, TX2, AGX, and NX. They explore the use of the TensorRT library, to
optimize a deep learning model, for faster inference and lower resource utilization. They
report that, on average, each of the mentioned boards consumes 80% of GPU resources.

A study related to Sugar Beet Seed Classification is mentioned in Ref. [31]. The study
includes the use of YOLOv4 and YOLOv4-tiny in the boards of Jetson Nano and TX2,
and the accuracy reported is in the range of 81-99% for monogerm seeds and 89-99%
for multigerm seeds on Jetson Nano, while 88-99% for monogerm seeds and 90-99% for
multigerm seeds are reported using Jetson TX2.

Finally, in Ref. [32], a CNN proposal is presented, and the statistical validation of the
results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction
for the purpose of classifying malaria parasite detection.

In this paper, we present a deep-learning-based approach for malaria cell image
classification. We used a convolutional neural network to differentiate between infected and
uninfected cells, evaluating the performance of the model in terms of accuracy, sensitivity,
and specificity. Furthermore, we compare the results obtained with a previous work
published in IEEE Access where large and heavy deep learning type recognition systems
are used [14] versus the new approaches adapted to the Jetson TX2 board. We also discuss
the clinical implications of our research.

Our goal is to provide an automated portable tool that can assist healthcare profession-
als in malaria diagnosis, improving accuracy and reducing the time required for sample
analysis. We also aim to host and execute this design in integrated systems such as FPGAs
and/or microcomputers. Through this research, we seek to contribute to the global effort
to control and eventually eradicate malaria.

2. Materials and Methods
2.1. Dataset and Hardware

For this study, we used a malaria cell imaging dataset obtained from the National
Library of Medicine and the Lister Hill National Center for Biomedical Communications be-
cause it is one of the most used databases in this type of analysis. It contains blood samples
and images set from probable malaria-infected people analyzed under a microscope, as
shown in Table 1. The folder has 27,560 96 x 96 pixel color images of Giemsa-stained blood
samples obtained from 193 patients and distributed evenly between images of parasitized
and uninfected RBCs. The research related to the data was approved by the Institutional
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Review Board of the Office of Human Subjects Research (OHSR) (Protocol number 12972
and approval date 25 June 2015) [33]. The implementation of the model was carried out
using the TensorFlow and Keras framework [34], running on a Windows 10 Pro operating
system on a PC equipped with an Intel(R) Core(TM) i9-10900X CPU @ 3.70 GHz processor,
manufactured in Dalian, Liaoning, China. On the other hand, we adapt the code into the
Jetson TX2 board, which has 2 NVIDIA Pascal architecture GPU cores and 4 ARM cores
along with 8GB of RAM [13].

Table 1. Image examples from the malaria database and their preprocessing steps.
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2.2. Convolutional Neural Network Architecture

The images in the dataset were preprocessed to ensure the consistency and quality
necessary for training the deep learning model. Preprocessing stages included: Resizing:
all images were resized to 64 x 64 pixels to reduce computational load and ensure uniform
input to the model. Gray Scale: To speed up the process, the images were transformed
grayscale to work with less data. Normalization: The pixel values 0-255 of the images were
normalized to the range [0, 1]. The compact and efficient convolutional neural network
(CNN) architecture specifically designed for malaria cell image classification is detailed in
this section. The model architecture includes, as shown in the Figure 2, the following layers:
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Figure 2. Architectures used in the experiments (32 x 32,32 x 32 x 32,48 x 48,48 x 48 x 48,64 x 64,
and 64 x 64 x 64).

Input: Input layers for 64 x 64 x 1 images (width, height, and gray channel). Con-
volutional: Six architectures were tested; the first three of them used two convolutional
layers with 3 x 3 filter sizes, changing the number of filters on 32, 48, and 64, respectively,
while the other three architectures used three convolutional layers using the same varia-
tion in the filters (32, 48, and 64), each followed by a ReLU activation layer and a 2 x 2
max-pooling layer. Dense: The first three architectures used one fully connected layer
with their respective variations, according to the filters used as 32, 48, and 64; the last three
architectures used two fully connected layers, the first with 128 units and the second with
their respective quantity of filters 32, 48, and 64. Output: An output layer with a unit and
sigmoid activation for binary (parasitized /non-infected) classification.

2.3. Model Training
The model was trained using the preprocessed dataset with the following settings:

e  Loss function: binary cross entropy. Optimizer: Adam, with an initial learning rate of
0.001. Evaluation metrics: accuracy, specificity, recall, precision, and F1-score.
Data split: The dataset was split into 80% for training and 20% for validation.
Epochs: The model was trained for 50 epochs with a batch size of 32. Evaluation and
Validation Model performance was evaluated using a separate test dataset not used
during training. Performance metrics included overall accuracy, specificity, recall,
precision, and F1-score. In addition, confusion matrices were generated to analyze
false positives and false negatives. The codes are available in the repository Ref. [35].

3. Results

The convolutional neural network (CNN) models designed and trained in this study
demonstrated remarkable performance in classifying malaria cell images. Below, in Figure 3,
are detailed results of key evaluation metrics obtained during testing:
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Figure 3. Training and Validation Accuracy by architectures through the epochs.

In binary classification, the following metrics are commonly used to evaluate the
performance of a model: accuracy, precision, sensitivity, specificity, and Fl-score (see
Appendix A).

The averages of cross-validation of precision and loss curves during training and
validation are presented in Figure 4, respectively. The organization of the plots is given
by the filter quantity. The curves indicate stable convergence and good generalization
of the model without significant indications of overfitting. The lowest architecture is
remarkable, and the average values for each metric using cross-validation are accuracy:
93.11%, specificity: 94.59%, recall: 91.63%, precision: 94.42%, and F1-Score: 93.01%, as
long as the highest give it the values of accuracy: 94.28%, specificity: 95.45%, recall:
93.11%, precision: 95.34%, and F1-Score: 94.21%. Figure 3 illustrates the behavior of each
architecture along the validation stage.

Average of KFold Cross Validation Accuracy
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Figure 4. Average of cross-validation results.
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According to the properties of the models shown in Figures 5 and 6, it is important to
mention the time required to execute the network for the lowest architecture is 1131.77 s
and the weight of the model is 1.52 MB. The confusion matrices are shown in Figure 7.
Relevant information was obtained using the Jetson TX2, as the device to read the model
and classify the images, contained in the dataset is shown in Tables 2 and 3.

Execution Time

2600 4 ==

2400 4

2200 4

Seconds
N
(=]
(=]
o
s

=
®
[=]
S
1
|
I

1600 1

1400 1

—  Runtime
1200 —
32X32 32X32X32 48%48 48X48X48 64X64 64X64X64
Architectures
Figure 5. Execution time by architectures.
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Table 2. Metrics obtained through the execution of classification on a complete dataset. Performance
obtained using the model for classification in Jetson TX2.

Model K-Fold  Accuracy  Specificity Recall Precision F1-Score
1 97.27 98.64 95.98 98.68 97.31
2 97.32 98.73 95.99 98.77 97.36
32 x 32 3 97.44 98.72 96.22 98.75 97.47
4 97.11 98.89 95.46 98.93 97.16
5 97.28 98.84 95.82 98.88 97.32
1 97.12 99.03 95.36 99.06 97.18
2 97.64 98.97 96.39 99 97.68
32 x 32 %32 3 97.71 99.04 96.46 99.06 97.74
4 97.59 98.52 96.7 98.55 97.61
5 97.7 98.93 96.53 98.95 97.73
1 97.27 98.83 95.8 98.87 97.31
2 97.23 98.79 95.77 98.83 97.27
48 x 48 3 97.46 98.73 96.26 98.77 97.5
4 97.19 98.83 95.65 98.87 97.23
5 97.05 98.88 95.35 98.93 97.1
1 96.67 98.66 94.83 98.72 96.73
2 97.48 98.97 96.08 99 97.52
48 x 48 x 48 3 97.8 99 96.66 99.02 97.83
4 97.67 99.04 96.37 99.06 97.7
5 97.75 98.87 96.67 98.9 97.77
1 97.26 98.86 95.77 98.9 97.31
2 97.25 98.79 95.8 98.82 97.29
64 x 64 3 97.4 98.68 96.19 98.72 97.44
4 97.5 98.89 96.19 98.92 97.53
5 97.32 98.82 95.91 98.86 97.36
1 97.67 99.07 96.36 99.09 97.71
2 97.66 98.93 96.46 98.96 97.69
64 x 64 x 64 3 97.88 99.06 96.75 99.08 97.9
4 97.72 99.05 96.47 99.07 97.76
5 97.67 98.96 96.44 98.99 97.7

Table 3. Average accuracy and time of execution per sample through images of the complete dataset.

Model Accuracy Classification Execution(s)
32 x 32 97.28 0.0014876
48 x 48 97.55 0.0015972
64 x 64 97.24 0.0023
32 x 32 x 32 97.47 0.0025032
48 x 48 x 48 97.35 0.0034522

64 x 64 x 64 97.72 0.0038254
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Figure 7. Confusion matrix, by each K of cross-validation, using K = 5.

4. Discussion

The obtained results indicate that a small and efficient CNN architecture can be
effectively used for malaria cell image classification, and the feed-forward speed of CNN
execution is 33.98 times faster than designs published in 2022 [14]. According to the weight
of the architectures that are shown in Figure 6, it has the potential to be implemented in
portable devices for use in resource-limited areas (see Table 4). It can be useful to do a
comparison with another disease as reported in Ref. [36], where they propose a hybrid CNN
architecture, implementing InceptionV3, ResNet-50, VGG16, and DenseNet to classify brain
tumors, where they report 71.54% to 95.5% in accuracy metric; the runtime mentioned is in
the range of 3.2 to 5.6 min and the memory utilization in GB is from 2.7 to 4.8. On the other
hand, it will be a plausible challenge to compare the behavior against the results of [37],
where they report an accuracy of 94.82%, a 97.34 Fl-score, 96.74 precision, 97.10 sensitivity,
and 84.75 specificity in the lung nodule classification; the model that they develop uses
2.61 MB.
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Table 4. Comparative results with previous work, using images of 64 x 64 pixels.
Reference Accuracy Lowest Classification Execution Time
Alonso-Ramirez A. A. et al. (2022) Ref. [14] first approach 99.89% 0.125 s
Alonso-Ramirez A. A. et al. (2022) Ref. [14] second approach 99.89% 0.130s
Alonso-Ramirez A. A. et al. (2024) minimal arch 97.28% 0.0014876 s
Alonso-Ramirez A. A. et al. (2024) maximum arch 97.72% 0.0038254 s

5. Conclusions

In this study, we have developed and evaluated a compact and efficient convolutional
neural network (CNN) architecture for malaria cell image classification and compared it
with 49 different CNN architectures. Our results demonstrate that the proposed model
achieves high accuracy (97.72%), sensitivity (93.4%), specificity (95.1%), and F1-score (94.2%)
using the architecture 64 x 64 X 64, significantly achieving the reduction in computational
processing and speed of execution compared to the work we published in 2022. In Figure 6,
we noticed that by appending another convolutional layer and its corresponding max
pooling layer, the matrix of weights reduced its dimensions, which provoked a lighter-
weight model. The use of a compact CNN architecture not only optimizes the computational
load but also facilitates its implementation on portable or embedded devices, which is
crucial for its application in environments with limited resources. The computational
efficiency of the model, with inference times of 0.0038254 s and 2.65 megabytes of model
weight in memory, underlines its potential to provide fast and accurate diagnoses in
real-time. It is important to notice that 33.98 times faster is the new proposal versus the
previous one.

These findings highlight the feasibility and effectiveness of deep learning techniques
in the field of automated diagnosis of infectious diseases using embedded boards such as
Jetson TX2. Implementation of our model in clinical settings could improve the speed and
accuracy of malaria diagnosis, thereby reducing the workload of healthcare professionals
and improving outcomes for patients. Future work will focus on clinical validation of the
model on various hardware configurations and in different geographic environments. Ad-
ditionally, the integration of our approach with other diagnostic methods will be explored
to create a comprehensive malaria detection platform.

In conclusion, image classification of malaria cells using a small and efficient deep
learning architecture in embedded systems represents a significant advance in the fight
against malaria, offering a promising tool to improve diagnosis and ultimately contribute
to the reduction in the mortality associated with this disease.
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Appendix A
Accuracy is the ratio of correctly predicted observations to the total observations.

Accuracy = IP +IN
Y~ TP + TN + FP + EN

(A1)
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where

e TP = True Positives;

e TN =True Negatives;
e FP = False Positives;
e FN = False Negatives.

Precision (also called positive predictive value) is the ratio of correctly predicted
positive observations to the total predicted positives.

TP

Precision = m

(A2)
Sensitivity, also known as recall or true positive rate, is the ratio of correctly predicted
positive observations to all observations in the actual class.

TP
itivity (Recall) = ——— A
Sensitivity (Recall) TP L TN (A3)
Specificity, also called the true negative rate, measures the proportion of correctly
identified negatives out of the actual negatives.

e N
Specificity = TN £ FP (A4)
The F1-score is the harmonic mean of precision and recall, providing a balance between
the two. o
Fl— -2« Prec1.s1.on X Recall (A5)
Precision + Recall
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