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A R T I C L E I N F O

Keywords:
Many-objective optimization
Interactive approach
Fuzzy optimization
Progressive preference articulation
Swarm intelligence

A B S T R A C T

One of the main challenges in applying preference-based approaches to many-objective optimization problems is
that decision makers (DMs) initially have only a vague notion of the solution they want and can obtain. In this
paper, we propose an interactive approach that aids DMs in articulating a preference model in a progressive way.
The quality of a solution is determined in terms of its “preference closeness” to an aspiration point, which is a
subjective concept that can be outlined by the DM. Our proposal is based on compensatory fuzzy logic, which
allows for the construction of predicates that are expressed in language that is close to natural. One main
advantage is that the model can be optimized via metaheuristics, and we utilize an ant colony optimization
algorithm for this. Our model complies with the principles of hybrid augmented intelligence, not only because
the algorithm is enriched with knowledge from the DM, but also because the DM also learns the concept of
“preference closeness” throughout the process. The proposed model is validated on benchmarks with five and 10
objective functions, and is compared with two state-of-the-art algorithms. Our approach allows for better
convergence to the best compromise solutions. The advantages of our approach are supported by statistical tests
of the results.

1. Introduction

Multi-objective evolutionary algorithms (MOEAs) have become a
leading way of addressing the challenges that arise from complex multi-
objective optimization problems (MOPs). MOEAs have been shown to be
able to find an approximation to the Pareto frontier for many problems.
In this case, the decision maker (DM) must identify the best compromise
solution, i.e., the one that is most in agreement with their particular
preferences and values, within a privileged preference zone (region of
interest, RoI) [1]. However, as the number of objectives increases, the
search space becomes highly dimensional, making it challenging to find
true Pareto solutions and to identify the most preferred solution. MOPs
are complex due to the conflicting nature of the objectives and the

multidimensionality of the search space.
MOPs with more than three objectives are known in the literature as

many-objective optimization problems (MaOPs). To enable them to be
applied to such problems, several essential challenges associated with
MOEAs must be overcome, such as an exponential increment of non-
dominated solutions and a degradation of the selective pressure to-
wards the Pareto frontier caused by the increase in the dimensionality of
the objective space [2,3]. This high dimensionality makes visualization
challenging [4] and finding a suitable set of Pareto optimal solutions
difficult [5]. These and other aspects are discussed in the literature [6,
7].

Currently, algorithms with a focus on solving MaOPs are being
developed and tested (e.g., [2,8]). The aim of these algorithms is to find
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a convergent, representative, well-distributed Pareto frontier sample.
However, more work is needed to solve MaOPs completely. It should be
highlighted that the final solution is always related to a DM’s prefer-
ences, and these preferences must, therefore, be incorporated in some
way in order to identify the “best” solution.

Three key aspects must be considered when designing a method for
incorporating preferences into MaOPs:

1. The stage or phase of the search in which the preferences are
incorporated (i.e., a priori, progressively, or a posteriori);

2. The preferential information that must be provided by the DM;
3. The multi-criteria preference model to be used.

Regarding the first point, the progressive (interactive) incorporation
of preferences offers certain advantages (e.g., [9–13]):

- It is accepted that interactive approaches help DMs “learn” about
their problem, mainly with regard to the complex interactions
among the objective functions and the trade-offs they will need to
make on the Pareto front. The DM’s preferences are updated at each
interaction step, enabling better solutions to be identified.

- DMs tend to feel more comfortable with the results of interactive
procedures, as they are involved in the search process and have
systematically accepted its output as satisfactory solutions.

- Evidence shows that interactive approaches reduce the search space
and help in finding the RoI [14,15], particularly for MaOPs [16–18].
In view of their capacity to offer ever more focused lists of solutions
to DMs, these approaches have become known as “pruning methods”
based on the DM’s preferences and knowledge [19].

Some of the disadvantages of interactive preference incorporation
methods are as follows:

• Difficulty in making preference judgments in regard to solutions to
problems with many objectives. To avoid irrational behaviors,
interactive methods often require transitive judgments from DMs
[20]; these types of demand contradict, to a great extent, the
cognitive limitations of the human mind (cf. [21]) and may be hard
to fulfill when the DM needs to compare, rank, or judge solutions
described by five or more conflicting objectives.

• Difficulty in establishing friendly and fluid communication between
DMs and optimization algorithms. This is mainly because DMs are
often not familiar with the formal and technical aspects of the pref-
erence models implemented in the method.

Aspects 2 and 3 are closely related. The use of reference points or
aspiration levels (including the ideal point as a particular case) is
perhaps the most popular way to incorporate preferences into MOEAs,
as many DMs feel comfortable expressing their preferences in terms of
aspiration levels. Examples of this strategy can be found in studies by
Aggarwal and Mishra [22], He et al. [23], Jiang et al. [24], Li et al. [25],
Ngo et al. [26], Peng et al. [27], Yu et al. [28], Zhao et al. [29], and Zou
et al. [30,31] Indeed, reference points or aspiration levels have been
used over time as part of various strategies for solving problems with
multiple criteria or objectives, for example:

(i) TOPSIS [32] and VIKOR [33] in the context of multi-criteria
decision analysis; and

(ii) conventional multi-objective optimization techniques such as
goal programming (e.g., [34]), compromise programming (e.g.,
[35]), and scalarizing functions (e.g., [36]).

When aspiration levels are used to represent preferences, it is
assumed that the propositions “x is closer than y to the aspiration point”
and “x is preferred to y” are equivalent. This assumption becomes crit-
ical in regard to the selection of an appropriate closeness measure. Many

different metrics are used in methods based on aspiration levels to assess
the nearness of solutions to an aspiration point, and these metrics are not
free of arbitrariness. An appropriate metric should measure the extent to
which a solution is satisfactory to the DM, and should model the
“preference closeness” to their aspiration point. Indeed, the best
compromise solution can be defined as the Pareto optimal solution that
maximizes the preference closeness to the aspiration point.

Since both “closeness” and “preference closeness” are vague con-
cepts, we propose using fuzzy logic to model them. Fuzzy logic is of the
utmost importance in many areas due to its ability to handle impreci-
sion, vagueness, and ambiguity, which are features of real-world prob-
lems (e.g., [25,37–40,]). Fuzzy logic is a powerful tool for building a
mathematical model using vague statements expressed in natural lan-
guage [41]. This ability is essential in creating a friendly “preference
closeness” model, as it facilitates the interaction between DMs and
interactive optimization algorithms. Although fuzzy sets have been
extensively used in conventional multi-objective optimization [42], to
the best of our knowledge, this approach has not previously been pro-
posed as a tool for modeling the preference closeness to the best
compromise in MOEAs and MaOEAs. Hence, it is not an option in the
different available surveys related to incorporating preferences.

This paper presents a fuzzy preference model that is integrated into
an interactive method for learning and updating preferences, thereby
creating a hybrid-augmented intelligence (HAI) system for addressing
MaOPs. Our approach is aligned with the original concept developed by
Zheng et al. [43], wherein an HAI system introduces human interaction
into an artificial intelligence (AI) model. As time progresses, the AI
model enriches (augments) human expertise, knowledge, and experi-
ence [18]. The implementation of effective interaction represents an
important challenge in terms of handling learning preferences and
ensuring satisfactory results for complex problems [44] such as MaOPs.

This paper makes several contributions to the current literature:

− We present a preference closeness model of the best compromise,
based on an aggregation of the component predicates regarding the
nearness of each objective function to an aspiration point and its
importance within the set of objectives (for more flexibility, the in-
formation on the importance of each objective should be purely
ordinal).
− The DM’s multi-criteria preferences are represented using a fuzzy
predicate based on plain natural language statements regarding the
closeness to their aspiration point.
− We propose an interactive method in which DMs—taking into
account the truth values of a predicate regarding the preference
closeness combined with their judgments about the current sol-
utions—can clarify their actual preferences, modify ill-shaped pref-
erences and values in their mind, and update the logical model of
preference closeness to the best compromise. This interactive
method is robust with regard to the increment in the number of
objective functions and possible intransitive judgments.

To validate the contributions of our work, we carry out the following:

− We perform simulations of the DM’s learning process and updated
preferences through their interaction with the search algorithm;
− We create a powerful enriched metaheuristic that is able to exploit
the model of preference closeness; and
− We test this enriched metaheuristic on a wide range of challenging
benchmark problems with many objective functions, including a
comparison with some state-of-the-art metaheuristics.

The paper is structured as follows: some concepts related to prefer-
ence closeness and compensatory fuzzy logic are briefly reviewed in
Section 2, and in this context, the fuzzy preference model and the
interactive learning process are discussed in Section 3. Section 4 outlines
the ant colony optimization (ACO) algorithm used to address the fuzzy
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predicate about preference closeness. Some computer experiments
conducted to demonstrate the potential of the new approach, its
robustness with respect to increasing dimensionality, and its advantages
in comparison with other state-of-the-art algorithms are described in
Section 5. Lastly, our conclusions and some directions for future
research are discussed in Section 6.

2. Background

This section introduces some background required to understand our
contributions adequately. Section 2.1 gives an overview of the origin
and evolution of the concept of “preference closeness”, and Section 2.2
reviews the basis of compensatory fuzzy logic.

2.1. Concept of preference closeness

In computational intelligence, preference closeness describes the
degree of proximity—from the point of view of a preference—between
the outcomes of a multi-criteria decision problem or recommendation
system. A high degree of preference-based proximity is equivalent to a
statement of indifference towards the outcomes.

The idea of maximizing a preference closeness to the ideal point may
have originated with TOPSIS [32], a method developed for
multi-criteria decision-making. Its primary idea relies on identifying
solutions with the shortest preference-based distance from the ideal
solution and the farthest preferential distance from the negative-ideal
solution.

Several interpretations of preference closeness can be found in the
scientific literature. Fig. 1 presents a timeline of the main contributions
to the notion of preference closeness. The underlying principle of
maximizing preference closeness has also been used in various appli-
cations, including technology transfer efficiency, industrial robotic
systems evaluation, and wastewater treatment technology evaluation
[17,45].

The application of preference closeness to MaOPs represents a
research gap, which this study aims to narrow by using a model based on
compensatory fuzzy logic to articulate the DM’s preferences.

2.2. Compensatory fuzzy logic

Preferential knowledge is the understanding that a DM can generally
provide, which involves the explicit articulation of preferences and
decision-making heuristics in their field of expertise to reach a final
decision [46]. There are several alternative approaches in the literature
with regard to the challenge of building preferential knowledge.
Although AI typically focuses on diagnosis and knowledge representa-
tion, it often does not model human preferences, and limits subjectivity.
Decision analysis methods, including functional and relational ap-
proaches, lead the modeling of the DM’s multi-criteria preferences and
risk attitudes, and dismiss human experience and reasoning [20,50].

Learning from examples using AI has become an important approach
to decision-making. Dominance-based rough set methodology is prob-
ably the best representative of an approach that bridges AI and multi-
criteria decision analysis [51]. However, learning from examples lacks

Fig. 1. Timeline of contributions related to preference closeness [32,46–49].
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an explicit model of preferences, and limitations arise in terms of
handling conflicting attributes as the number of attributes increases, due
to the cognitive limitations of humans.

Building preferential knowledge, which emphasizes the explicit
representation of a DM’s preferences and reasoning, remains an open
area of research. Today, the main challenge lies in using AI technologies
to represent this preferential knowledge, including the ways in which
DMs aggregate multi-criteria information and reasoning to arrive at a
final decision [52].

Fuzzy logic has enabled advances in using verbal expressions to
describe preferences and decision-making heuristics. It has been used to
model preference representation and reasoning in a flexible and refined
way; for example, rather than using strict binary choices such as “like”
and “dislike,” fuzzy preference models can capture degrees of preference
[53,54].

Compensatory fuzzy logic is a recent axiom-based approach that is
compatible with the preferential reasoning that characterizes realistic
decision-making processes [55]. This approach extends traditional fuzzy
logic by exploiting its benefits in terms of modeling decision-making
scenarios where there are compensatory effects between multiple
criteria. It allows for a trade-off between different criteria, where a
deficiency in one criterion can be compensated to a certain extent by
excellence in another. In general, compensatory fuzzy logic removes
classical axioms to give a sensitive and idempotent system. Unlike
conventional fuzzy logic, where the truth value of a conjunction is al-
ways smaller than or equal to the truth values of its components, and the
truth value of a disjunction is always greater or equal, compensatory
fuzzy logic removes these constraints. This foundational change enables
compensatory fuzzy logic to compensate for decreased truth values in
one component predicate by increasing another, thereby allowing for
higher conjunction values.

An instance of compensatory fuzzy logic is defined as a quartet of
continuous operators (∧, ∨, o, ¬), (representing conjunction, disjunc-
tion, strict order, and negation, respectively), which satisfy a set of ax-
ioms stated by Espin-Andrade et al. [46]. Some of these axioms are the
following:

• Compensation: min{x1,x2, …, xn} ≤ ∧(x1,x2, …, xn) ≤ max{x1,x2,
…, xn};

• Strict growth: if x1 = y1, x2 = y2, …, xi− 1 = yi− 1, xi+1 = yi+1, …,

xn = yn are different from zero and xi > yi, then ∧ (x1,x2, …, xn) >
∧
(
y1,y2, …, yn

)
;

• Veto: If xi = 0 for a given i, then ∧(x1,x2, …, xi, xi+1,…, xn) = 0;
• Symmetry: ∧

(
x1,x2, …, xi, xj,…, xn

)
= ∧

(
x1,x2, …, xj, xi,…, xn

)
;

• Fuzzy transitivity: if o(x, y) ≥ 0.5 and o(y, z) ≥ 0.5, then o(x, z) ≥
max {o(x,y), o(y, z)}.

Espin-Andrade et al. [46] argued that the axioms given above
combine rational features of the functional approach to decision-making
with the veto capacity, a characteristic of some outranking approaches.

Each instance of compensatory fuzzy logic is defined by several
fundamental operators. Geometric mean-based compensatory fuzzy
logic (GMCFL) was proposed by Espin-Andrade et al. [46] as the first
instance of a compensatory fuzzy logic. The geometric mean is a kind of
quasi-arithmetic mean that forms the class of compensatory operators
that fulfill the set of axioms of compensatory fuzzy logic. Like any
compensatory operator, the geometric mean satisfies the property of
idempotence; that is, ∧(x, x,…, x) = x. This is one of the most widely
used operators of the quasi-arithmetic mean class. The geometric mean
is an instance of the ordered weighted geometric operator, which has
desirable properties for fuzzy-based decision-making [56].

In addition, the geometric mean is simpler than most quasi-
arithmetic means. Several fundamental operators and properties of the
GMCFL are shown in Table 1. It should be noted that the disjunction
operator in Table 1 fulfills the same properties of the geometric mean.

Espin-Andrade et al. [55] proved that GMCFL is compatible with
Archimedean logic based on the popularly used product t-norm as the
conjunction operator. Compatibility means that any order of the predi-
cates in the universe is the same when both logic systems are applied.
Hence, the maximum value of truth of a predicate defined on a set
corresponds to the same element of the set, and it does not matter which
compatible logic system is used to assess truthfulness. Indeed, the
unique compensatory logic that fulfills this feature regarding the prod-
uct t-norm is the GMCFL.

3. Learning the notion of preference closeness to a reference
point

We propose a preference model based on reference points, and as-
sume that the DM can judge the solutions based on their closeness to
such points. Here, we differentiate between two reference points: aspi-
ration and reservation. The aspiration point is an m-dimensional vector
with the values the DM would like to achieve; in contrast, the reserva-
tion point contains the values the DM wants to avoid.

Our model works based on the following fundamental premises:

Assumption 1. The best compromise solution is a point on the Pareto
front where the preference closeness to the aspiration point is a
maximum.

Assumption 2. The DM can progressively improve the preference
model by judging the solutions generated during the search process.

Assumption 3. Using natural language statements, the DM can ex-
press their current understanding of preference closeness to their aspi-
ration point in terms of nearness to the aspiration point and the priority
attached to each objective.

Regarding Assumption 1, we note that all models based on aspiration
points rest on a similar premise. We also note that Assumption 2 is a core
premise of interactive approaches. Assumptions 1 and 2 then conjointly
demand the same conditions of any interactive approach based on
reference points (cf. [25]). Consequently, Assumption 3 is the only
unique condition required by our model. Obviously, no preference
model is free of all assumptions about the DM’s capabilities or behavior,
and each of them assumes the capacity of the model to match the actual
preferences of a subset of DMs. A typical DM is likely to feel more
comfortable expressing their preferences using natural language-like
predicates than initializing complex mathematical models. This advan-
tage is connected to our model based on fuzzy logic. As an additional
benefit, it is interpretable, allowing DMs to provide clear reasons that
justify their final decision.

The model proposed in this paper includes several optimization
phases. After each phase, the solutions are presented to the DM for
perusal. This approach allows the DM to “learn” an appropriate notion of
preference closeness and to progressively update the aspiration levels.
After each interaction, the DM gathers knowledge about the optimized
solutions, mainly in terms of the range of the objective functions and
their trade-offs. This knowledge can be expressed through compensatory
fuzzy logic. Based on Assumptions 1–3, the DM’s learning process is
illustrated in Fig. 2. This should be considered as only one possible
learning path, since other ways exist to express the current notion of
preference closeness that are compatible with the above assumptions. In
the following, we describe each step of our approach.

Table 1
Some operators of the GMFCL.

1. Conjunction ∧(x1,…,xn) =

( ∏n
i=1

(xi)
)1/n

2. Disjunction V(x1, ...,xn) = 1 −
( ∏n

i=1
(1 − xi)

)1/n

3. Negation ¬(x) = 1 − x 4. Strict order o(x,y) = 0.5[x − y] + 0.5
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• Phase 0

At this stage, the objectives are to explore the search space and to
obtain an approximate sample of the Pareto frontier.

• Interaction

First, the solutions are presented to the DM, who then proposes the

reference points. Without loss of generality, this model focuses on
minimizing objectives. Let O be a set of actions assessed based on m
criteria (known as “objective functions” in the jargon of optimization).
We can consider the following axioms:

(i) The most stringent instance of the aspiration point is the ideal
point; in other words

Fig. 2. Flowchart for the process of preference articulation.
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A =
{
zid1 , z

id
2 ,…, zidi , z

id
i+1,…, zidm

}
, (1)

where A stands for the aspiration point and zidi is defined as

zidi = min
x∈PS(O )

{zi(x)} ∀i ∈ {1, 2, 3,…,m}, (2)

where zi(x) is the value of x in the ith objective function, O is the so-
lution set, and PS(O ) is the subset of Pareto-efficient solutions.

(ii) The loosest instance of the reservation point is the nadir point of
O ; in other words

R =
{
znad1 , znad2 ,…, znadi , znadi+1 ,…, znadm

}
, (3)

where R stands for the reservation point, and znadi is defined as

znadi = max
x∈PS(O )

{zi(x)} ∀i ∈ {1, 2, 3,…,m}. (4)

Derived from Assumption 1, the feasible region for aspiration and
reservation points is bounded by the ideal and nadir points of PS(O ).
Consequently, it is impossible to reach solutions with values better than
the ideal point, as stated in (i). In addition, the DM should not settle for
values that are worse than the nadir point, to ensure that the best
compromise is Pareto-efficient, as stated in (ii). For the sake of
simplicity, the aspiration and reservation points are instantiated here as
the ideal and nadir points of the Pareto-efficient solutions known so far.
Nevertheless, our model is compatible with any other instance fulfilling
(i) and (ii) and A i < R i ∀i ∈ {1, 2, 3, …,m} (i.e., the aspiration point
is strictly better than the reservation point for every single criterion).

Once the reference points are known, their distances can be
computed. Let δi(x) represent the proportional difference between zidi
and zi(x) at the ith coordinate:

δi(x) =
zi(x) − zidi
znadi − zidi

∀i ∈ {1, 2, 3,…,m}. (5)

We can then model how the DM perceives such distances. Consider
the fuzzy linguistic variable

ai : x is close to the aspiration point at the ith coordinatewith the
following membership function

μ(ai ) = 1 − s(δi(x),α, γ), (6)

where s(δi(x), α, γ) is a decreasing sigmoid function with parameters α
and γ, defined as

s(δi(x), α, γ) =
1

1+ e− α(δi(x)− γ). (7)

Note that α and γ should be set to reflect the DM’s preference in
regard to the ith criterion. One advantage is that this task can be per-
formed during the interaction. γ represents the point where μ(ai ) = 0.5,
which can be directly elicited after presenting the solutions to the DM
and asking for a point where the value is as true as it is false. α is the
growth rate, which can be isolated from Eq. (7) by asking for a point
where the DM is sure that μ(ai ) ≈ 1. Some examples of eliciting α and γ
are presented by Espin-Andrade et al. [41]. Fig. 3 depicts an example of
μ(ai ).

Using the sigmoid function as a membership function has several
beneficial properties, especially when it involves optimization. It mainly
has asymptotes, thus ensuring a greater degree of truth if further opti-
mized values are found.

We can now model the linguistic variable
b i : x is very close to the aspiration point at the ith coordinatewith

the fuzzy membership function

μ(b i ) = [μ(ai )]
2
. (8)

• Phase 1

Initially, the DM would like to obtain a solution that is as preferen-
tially close as possible to their aspiration point, which corresponds to the
predicate

P 1(z(x)) = ∧
i=1

m
μ(ϑi) (9)

Eq. (9) represents the degree of truth for the statement “x is very
close to the aspiration point across all criteria.” Suppose there are so-
lutions with acceptable values (typically greater than 0.85). In this case,
the best compromise is the solution with the highest degree of truth,
which can be modeled as

P
★
1 = arg max

x∈PS(O )

{P 1(z(x))}. (10)

P
★
1 is the best compromise for Phase 1 of this preference model, and

an a priori optimization algorithm can be used to approximate it. Since
objective functions often conflict in MaOPs, the DM may not be
completely satisfied with the provided solution. The model then offers a
second phase with a lower level of strictness.

Fig. 3. Plot of μ(ai ) for values of γ = 1 and α = 5. The x-axis represents the proportional distance from a solution x to the aspiration point at the ith coordinate, and
the y-axis represents the truth degree of the linguistic variable “x is close to the aspiration point at the ith coordinate.”
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• Phase 2

Consider the following fuzzy predicate

P 2(z(x)) = ∧
i=1

m
μ(αi) (11)

representing the degree of truth for the statement “x is close to the
aspiration point across all objectives.” Then, the best compromise during
Phase 2 should be

P
★
2 = arg max

x∈PS(O )

{P 2(z(x))}, (12)

which would match the DM’s preference if it has a high value.
Suppose there is no solution satisfying the DM’s requirements, which

implies that no solution is preferentially close to their aspiration point
across all objective functions simultaneously. The best compromise
should then be reformulated in terms of not only proximity but also
farness from the aspiration point.

• Phase 3

We can model the fuzzy linguistic variable
c i : x is far from the aspiration point at the ith coordinatewith the

following membership function

μ(c i ) = ś (δi(x), αʹ, γʹ) =
1

1+ e− αʹ(δi(x)− γʹ)
. (13)

Note that ś (δi(x),αʹ, γʹ) is an increasing sigmoid function with pa-
rameters αʹ and γʹ, which should be elicited during an interaction with
the DM. It is possible that the DM would like a solution that is close to
their aspiration point for certain objectives they consider more impor-
tant, and may be prepared to tolerate losses in the less important ones.
Let P = {P1, P2, P3,…} be the set of priority objectives, where
1 ≤ Pi ≤ m.

Consider the following fuzzy predicate

P 3(z(x)) = ∧
i=1

m
gi (14)

where

g
i
=

{
μ(ai ) if i ∈ P,

¬μ(c i ) otherwise. (15)

P 3(z(x)) is the degree of truth for “x is close to the aspiration point in
the priority objectives but is not far in the non-priority ones.” Accord-
ingly, the best solution in Phase 3 is

P
★
3 = arg max

x∈PS(O )

{P 3(z(x))}. (16)

If P
★
3 does not satisfy the DM, Phase 4 is executed.

• Phase 4

Here, the DM may propose any predicates involving the priority of
the objectives and distances to their aspiration point. The DM may vary
the distance modifiers and priority levels. We study the following two
cases:

Case 1. A solution is preferentially close if it is very close to the aspiration
point for the priority objectives and is not too far from the aspiration point for
the non-priority ones.

The intensifier “too much” can be applied to Eq. (13) as follows:

μ(d i ) = [μ(c i )]
2
. (17)

Hence, the degree of truth for the statement “x is very close to the
aspiration point for the priority objectives and is not too far for the non-
priority ones” should be considered as

P 4(z(x)) = ∧
i=1

m
hi (18)

where

h i =

{
μ(b i ) if i ∈ P,

¬μ(d i ) otherwise. (19)

Case 2. A solution is preferentially close if it is very close to the aspi-
ration point for the highest priority objective and is close for the rest of the
priority objectives, and is not too far for the non-priority ones.

The degree of truth for this predicate should be modeled as

P 4(z(x)) = ∧
i=1

m
fi (20)

where

f
i
=

⎧
⎪⎪⎨

⎪⎪⎩

μ(b i ) if i = P∗,

μ(ai ) if i ∈ P,

¬μ(d i ) otherwise,

(21)

where P∗ is the highest priority objective. Regardless of the case, the
best solution in Phase 4 is

P
★
4 = arg max

x∈PS(O )

{P 4(z(x))}. (22)

If the degree of truth of P
★
4 is still low, the DM should:

(1) AcceptP ★
4 as the best compromise even though they are not fully

satisfied. The solution that the DM wants cannot be generated by the
search algorithm (and may even be unfeasible).
(2) Try some of the following measures:
(a) reducing the number of priority objectives,
(b) relaxing their notion of preference closeness by changing the
parameters of the sigmoid function (α and γ),
(c) attaching different priority levels to the objectives (e.g., highest,
high, medium, and low), and trying a combination of different lin-
guistic states (e.g., very close, close, far, and too far). The DM should
then proceed with the optimization algorithm using the new
predicate.

We would like to highlight the versatility of our framework. In
problems complying with the three fundamental premises presented at
the beginning of this section, DMs will discover their own definition of
preference closeness by composing different prompts, modeled as fuzzy
predicates, that serve as the preference model they want to optimize.

4. Optimization algorithm

In this study, we extend ACOR—ant colony optimization for
continuous domains [57]—to address the preference model. The ratio-
nale for this choice is given as follows:

• ACOR is the most representative ACO algorithm for optimization
problems with continuous decision variables (cf. [58]).

• It has been successfully applied to MaOPs, with acceptable conver-
gence to the Pareto frontier (e.g., [59]).

• ACOR has been extended to incorporate the DM’s preferences in
many-objective optimization, with competitive performance (cf.
[58]).
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• The pheromonematrix can support progressive models, and provides
encouraging results when several interactions with the DM are per-
formed during optimization (e.g., [60]).

Considering the above remarks, an extension of ACOR seems
adequate for embedding the proposedmodel. Wemodify the pheromone
matrix, taking as our objective function the degree of truth of the
predicate used to assess the DM’s preference. Note that the objective
function varies depending the phase being optimized. A particular case
is Phase 0, which uses the R2 score [61]. R2 is an indicator of the uni-
form distribution of vector solutions. Consequently, the ACO algorithm
behaves like an a posteriori approach (in other words, it searches for a
well-distributed sample of the complete Pareto frontier) before the DM
sets any preferences for the solutions. Table 2 depicts the pheromone
matrix used in this paper.

In Table 2, κ is the size of the colony, n is the number of decision
variables, and τj =

〈
τj,1, τj,2, τj,3,…, τj,n

〉
is the jth solution, with values

τj,i ∀i ∈ {1,2,3,…, n} in the decision variables. f(τκ) is the value of the
preference model, specifically:

f(τκ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R2(z(τκ)) before the first interaction,
P 1(z(τκ)) after the first interaction,
P 2(z(τκ)) after the second interaction,
P 3(z(τκ)) after the third interaction,
P 4(z(τκ)) after the fourth interaction.

(23)

Note in Table 2 that the solutions are kept sorted by f(τκ) in
decreasing order of preference. The last column is ωj, defined as:

ωj =
e− φ(j)

ς⋅κ
̅̅̅̅̅̅
2π

√ , where φ(j) =
(j − 1)
2ς2κ2

. (24)

In Eq. (24), ωj acts like the weight of τj, which depends on its posi-
tion. The weights are calculated through a normal function (argument j,
mean 1.0) with standard deviation ς⋅κ. Here, ς is the parameter that sets
the exploitation-exploration balance (0 < ς ≤ 1).

The colony constructs new solutions by taking the rows of the
pheromone matrix as variable distributions, which it samples. A new
solution xj =

〈
xj,1, xj,2, xj,3, …, xj,n

〉
takes values following:

xj,i ∼ giı(x) ∀i ∈ {1, 2, 3, …, n} . (25)

In Eq. (25), ı is a row of the pheromone matrix, which is selected
through a roulette wheel function on the weights, and giı(x) is a normal
function, defined as

giı(x) =
e− ϕi(ı)

siı
̅̅̅̅̅̅
2π

√ , where ϕi(ı) =
(
x − xı,i

)2

2
(
siı
) , (26)

where siı is the standard deviation, which is calculated as the colony
sample solutions over the iterations as follows:

siı = ξ
∑κ

J=1

⃒
⃒xJ,i − xı,i

⃒
⃒

κ − 1
(27)

Algorithm 1 outlines the ACO extension used for optimization. The
time-complexity function of Algorithm 1 is O(κ(κm + n)), where κ is the
size of the colony, m is the number of objectives, and n is the number of
decision variables (cf. [62]). We encourage the reader to consult Socha
and Dorigo [57] for a more detailed description of the optimization
algorithm.

5. Results

This section presents some numerical results to illustrate the benefits
of our approach. In Section 5.1, we describe the setting for the experi-
ments. Section 5.2 gives an illustrative application of our approach.
Lastly, Section 5.3 compares the results with two state-of-the-art algo-
rithms, the reference-vector-guided evolutionary algorithm with
improved growing neural gas, shortened to RVEA-iGNG [63], and the
two-stage non-dominated sorting genetic algorithm II, shortened to
TS-NSGA-II [64], on two classic test suites:

• The Deb, Thiele, Laumanns, and Zitzler problems [65], abbreviated
as DTLZ.

• The Walking Fish Group problems [66], abbreviated as WFG.

5.1. Experimental conditions

We coded the ACO algorithm using standard C in Linux (Ubuntu 18)
on a computer with an Intel Core i7-6700 at 3.4 GHz and 16GB of RAM.

The ACO’s parameters were set to ς = 0.1 and ξ = 0.05. These values
were identified by experimentation, and represent the best combination
from (ς, ξ) ∈ {0.01, 0.05, 0.1, 0.2} × {0.01, 0.05, 0.1, 0.2} in terms of
the performance of the algorithm.

We also used the DTLZ [65] and WFG [66] test suites to validate our
approach. Both of these suites have become standards for judging the
performance of multi- and many-objective optimization algorithms,
with widespread use in recent research studies (e.g., [67–70]).
Furthermore, a survey by Guo [71] stated that these two benchmarks
were challenging enough to be used for the performance assessment of
newly proposed MOEAs. In view of this, and as mentioned by many
other authors, we consider both test suites pertinent.

The DTLZ and WFG problems are scalable in terms of the number of
decision variables (n) and objective functions (m). These suites provide
16 unconstrained continuous problems (seven DTLZ problems plus nine
WFG problems); jointly, they offer a wide range of properties in terms of
their Pareto frontiers, being reasonably representative. Each problem
was tested with five and 10 objective functions. In total, we tested 32
input instances, each of which was customized in regard to the param-
eters n (number of decision variables) and k (number of position-related
variables) as follows:

• For DTLZ: n = m+ k+ 1, where k = 5 for DTLZ1, k = 10 for
DTLZ2–6, and k = 20 for DTLZ7.

• For WFG: k = 2(m − 1), and n = 47 if m = 5, or n = 105 if m = 10.

In addition, 20 preference systems were synthetically generated by
choosing the priority objectives at random (with four priority objectives
form = 10, and two form = 5). The parameters of the sigmoid functions
were standardized as follows:

Table 2
Structure of the pheromone matrix in our ACO algorithm.

τ1 = τ1,1 τ1,2 … τ1,i … τ1,n f(τ1) ω1

τ2 = τ2,1 τ2,2 … τ2,i … τ2,n f(τ2) ω2

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮
τκ = τκ,1 τκ,2 … τκ,i … τκ,n f(τκ) ωκ

Algorithm 1
Outline of the ACO metaheuristic.

1. Initialize: A ←∅, iter←0
2. . While iter < itermax

b3.. For each ant in the colony
4. A←buildNewSolution() // Using Eq. (25)
5. End for
6. τ←τ ∪ A
7. Sort τ // See Table 2
8. Remove from τ the last solutions exceeding κ
9. If an interaction is required
10. updatePreferenceModel(); // Section 3
11. End if
12. iter←iter+ 1
13. End while
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• Membership function for closeness, μ(ai ): We used a value of γ = 0.1,
and α was isolated from Eq. (7) with μ(ai ) = 0.99 at δi(x) = 0.01.
This setting models the situation where the DM hesitates (with a
degree of truth of 0.5) over whether a distance of 10 % can be
considered close to their aspiration point in the ith objective; in
contrast, the DM is sure for a distance of 1 %.

• Membership function for farness, μ(c i ): We used a value of γʹ = 0.25,
and αʹ was isolated from Eq. (13), with μ(c i ) = 0.99 at δi(x) = 0.5.
This setting models the case where the DM hesitates (with a degree of
truth of 0.5) over whether a distance of 25 % can be considered far
from their aspiration point in the ith objective; in contrast, the DM is
sure with a distance of 50 %.

5.2. Illustrative example: analysis of a single run

We consider a hypothetical DM faced with DTLZ1, with 10 objective
functions. This DM is interested in addressing the problem using our
approach. Our algorithm performs 228 iterations using a colony with
220 ants (i.e., 50,160 objective function evaluations). The ACO algo-
rithm will interact with the DM as follows:

• Phase 1: after iteration #45
• Phase 2: after iteration #91
• Phase 3: after iteration #136
• Phase 4: after iteration #182
• Presentation of the final prescription: after iteration #228

During the first 45 iterations, the optimization algorithm searches for
a representative and well-distributed sample of the Pareto frontier (this
part of our approach behaves as an a posteriori algorithm). An approxi-
mation of the reference points can then be presented to the DM (as the
algorithm keeps the reference points updated after each iteration).

Since the DM wants to optimize all objective functions, the DM will
pressure the algorithm to simultaneously find solutions as close as
possible to the ideal point for all criteria. The DM has no reason to settle
for less at this point. The DM then articulates the first fuzzy predicate as
stated in Eq. (9) (Phase 1): “A solution is preferentially close if it is very
close to the aspiration point across all criteria.”

Fig. 4 tracks the objective function throughout the optimization al-
gorithm, at each iteration. Here, P 1(⋅) starts at 0.045994 (iteration
#46) and finishes at 0.058684 (iteration #91). This suggests that an
ideal solution cannot be reached. The DM should move forward to Phase
2 by relaxing the preference model, as stated in Eq. (11) (Phase 2): “A

solution is preferentially close if it is close to the aspiration point across
all criteria.”

As shown in Fig. (4), P 2(⋅) starts at 0.242248 (iteration #92) and
finishes at 0.242258 (iteration #136). This highly stable behavior sug-
gests that the algorithm cannot simultaneously find a solution closer to
the reference point for all objectives. The DM should therefore
contemplate the idea of prioritizing objectives during the third inter-
action. Here, the hypothetical DM has indicated objectives 1–4 as being
the main priorities. This objective prioritization is taken to model the
fuzzy predicate as stated in Eq. (14) (Phase 3): “A solution is preferen-
tially close if it is close to the aspiration point for the priority objectives
and is not far from the aspiration point for the non-priority ones.”

In Fig. 4, P 3(⋅) starts at 0.221728 (iteration #137) and finishes at
0.793497 (iteration #182). This fuzzy preference function leads the
optimization algorithm to solutions that match the DM’s preference
more closely. During the fourth interaction, the DM may explore the
possibility of obtaining a better compromise by updating the preference
closeness model, and by indicating the most important objective func-
tion among the priority ones. Here, the hypothetical DM indicates
objective 1 as being the most important one. This two-level objective
prioritization allows us to apply Eq. (20) (Phase 4, Case 2), whose
interpretation is: “A solution is preferentially close if it is very close to the
aspiration point for the highest priority objective and is close for the rest
of the priority objectives, and is not too far for the non-priority ones.”

In Fig. 4, P 4(⋅) starts at 0.913502 (iteration #183) and finishes at
0.928901 (iteration #228). It is plausible that the DM is satisfied, as the
degree of truth is nearly 0.93. According to Picos [72], the average
values of truth associated with the linguistic labels false, almost false,
more false than true, as false as true, more true than false, almost true, and
true are as follows:

• false = 0.033
• almost false = 0.172
• more false than true = 0.341
• as false as true = 0.493
• more true than false = 0.661
• almost true = 0.833
• true = 0.966

The example presented in this section represented only one of many
runs of our approach. We have chosen these results because they are
representative and exemplify a straightforward way in which the DM
may discover their preference model by gaining an idea of the ranges of
the objective functions for optimized solutions and prioritizing

Fig. 4. Tracking of the fuzzy objective function.
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objectives. The DM progressively learns about the problem and their
own preference system.

5.3. Comparison with the state-of-the-art algorithms

RVEA-iGNG and TS-NSGA-II are two state-of-the-art algorithms for
many-objective optimization. These two algorithms are competitive in
terms of the most popular multi-objective indicators. Indeed, experi-
mental results show that these have outperformed many evolutionary
algorithms (cf. [63,64]). We therefore use RVEA-iGNG and TS-NSGA-II
to validate whether our approach meets the standards for efficiency
according to the state of the art.

The algorithms were configured to stop immediately after the iter-
ation in which a total of 50,000 evaluations of the objective functions
were reached. The parameter values of RVEA-iGNG and TS-NSGA-II
were set as suggested by Liu et al. [63] and Ming et al. [64].

In addition, we calculated 1,000,000 Pareto-optimal points to mea-
sure convergence to the true Pareto frontier. The approximated RoI (A-
RoI) is composed of the solutions with the best values in terms of the
fuzzy predicate of Phase 4 (i.e., P ★

4 in Eq. (22)).
RVEA-iGNG and TS-NSGA-II were run 30 times per instance. For our

ACO algorithm, we generated synthetic DMs by selecting different
subsets of priority objectives (10 DMs for five-objective instances, and
20 DMs for 10-objective instances). Our algorithm was run 30 times per
DM and per instance. We took the solution with the highest degree of
truth from each single run as the best compromise offered by our
proposal.

We assessed the quality of solutions based on the DM’s satisfaction,
as expressed by the fuzzy preference closeness. Classical multi-objective
indicators measure the distribution, convergence, and extent of a sample
of the true Pareto frontier. They are broadly accepted because a posteriori
algorithms approximate the whole Pareto frontier. In contrast, a priori
and interactive algorithms aim to approximate a subset of the Pareto
frontier; in this case, the multi-objective indicators become misleading,
as they do not consider the performance in terms of the preferred so-
lutions (cf. [16]).

The metric used to assess the performance of a preference-based al-
gorithm should therefore consider how closely the search algorithm
follows the DM’s preferences, i.e., whether the solutions actually reflect
the DM’s preferences [73]. Here, the best compromise solution is
defined as the solution with the highest degree of truth for the fuzzy
predicate that models the last expression of the DM’s preferences.

Finally, we conducted Friedman non-parametric tests with Nemenyi
post hoc analyses, using a confidence interval of 0.95, to assess the
statistical significance of the results. Table 3 summarizes the results from
the three algorithms for each instance. The average value of the fuzzy
objective function is presented along with the gap regarding the A-RoI.
All differences concerning ACO were significant.

The following observations can be made from Table 3:

• Our progressive approach using ACO consistently outperformed both
state-of-the-art algorithms regarding the preference closeness-based
model learned by the DM in the fourth phase.

• The gap between the results from the state-of-the-art algorithms and
the A-RoI increased as the number of objectives rose.

• In contrast, the advantages of our approach became more pro-
nounced as m increased, with a narrower gap for m=10 than for
m=5.

• In the 10-objective problems, the average gap was 4.08 % for Case 1
and 5.16 % for Case 2. In the five-objective problems, the average
gap was 6.02 % for Case 1 and 6.93 % for Case 2.

• The best performance (gap=0.16 %) was obtained for WFG8 with
m=10. The Pareto frontier of WFG8 is non-separable, concave,
markedly biased, and unimodal. According to Huband et al. [66],
WFG8 is one of the most challenging problems in the WFG test suite.

• The worst performance (gap=10.87 %) was obtained for DTLZ1 with
m=10. The Pareto frontier of DTLZ1 is separable, linear, non-biased,
and multi-modal. It is interesting to note that the geometry of DTLZ1
shares few similarities with WFG8.

With the objective of analyzing the overall performance, we per-
formed a Borda analysis of the three algorithms for each number of
objectives. The algorithms were sorted by performance for each input
instance, based on the Friedman test and the Nemenyi post-hoc analysis.
The sum of their positions over the 16 problems describes the average
performance of the metaheuristics.

Table 4 presents the Borda scores for each algorithm. Regardless of
the preference closeness model used (Case 1 or Case 2) and the number
of objectives, the ACO algorithm obtained a lower Borda score than the
state-of-the-art algorithms, which indicates a better performance
ranking. This difference becomes larger when m = 10; in this case, we
suggest applying our approach, especially on many-objective optimi-
zation problems.

Lastly, we identified the number of DMs satisfied with the solution
obtained by each algorithm. Again, we used the linguistic variables and
their average degree of truth, as reported by Picos [72]. Fig. 5(a) shows
the results for the problems withm = 5. We would like to emphasize the
following points:

• There are 320 different DMs (two models, with 10 preference sys-
tems for each model, and 16 problems).

• The number of solutions close enough to the true value (0.966) in the
A-RoI—the nearest approximation to the optimal solution we
have—is 102 (see linguistic variable true). Our ACO algorithm
identified 83, RVEA-iGNG identified 58, and TS-NSGA-II identified
61.

• The number of solutions that is close enough to true or almost true
(0.833) in the A-RoI is 233. Our algorithm gave 225, RVEA-iGNG
gave 218, and TS-NSGA-II gave 216.

• There are several cases in which the DM could always be dissatisfied,
even with solutions in the A-RoI. These are the 26 cases where the
best value reached was as false as true. The DM should settle for the
‘least bad’ solution in such a case.

• Lastly, our approach gave the lowest number of dissatisfied DMs (see
the linguistic variable more false than true).

Similarly, Fig. 5(b) presents the results for the problems with m =

10. The following points summarize them:

• There are 640 different DMs (two models, with 20 preference sys-
tems for each model, and 16 problems).

• The number of solutions that were close enough to true in the A-RoI
was 192. Our ACO algorithm identified 160, RVEA-iGNG identified
122, and TS-NSGA-II identified 109.

• The number of solutions that were close enough to true or almost true
in the A-RoI was 483. Our algorithm gave 467, RVEA-iGNG gave
443, and TS-NSGA-II gave 454.

• There are several instances in which the DM could always be
dissatisfied, even with the solutions in the A-RoI. These are the 39
cases where the best value reached was as false as true or more false
than true. Even here, our algorithm presented the lowest number of
dissatisfied DMs.

It is interesting that some preference systems never reached satis-
factory solutions, regardless of the test suite and the number of objec-
tives used. We hypothesize that this behavior occurs because of the
geometry of the Pareto frontiers, which have challenging properties in
these synthetic problems. In such cases (26 form = 5 and 39 form = 10)
our approach failed to find a satisfactory solution because when some
objectives were too close to their aspiration values, others were mark-
edly degraded. In these cases, sufficiently high values of the predicate
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Table 3
Results on the DTLZ and WFG test suites.

Problem m Algorithm Phase 1 Phase 2 Phase 3 Phase 4 Difference from the A-RoI

Case 1 Case 2 Case 1 Case 2

DTLZ1 5 ACO 0.110102 0.103464 0.785457 0.901270 0.917712 6.74 % 4.72 %
  TS-NSGA-II 0.105662 0.176790 0.727323 0.893607 0.896709 7.54 % 6.90 %
  RVEA-iGNG 0.098372 0.234386 0.740302 0.884096 0.889010 8.52 % 7.70 %
 10 ACO 0.099305 0.208883 0.725264 0.903861 0.848183 4.28 % 10.87 %
  TS-NSGA-II 0.095156 0.201286 0.447415 0.838135 0.793396 11.24 % 16.63 %
  RVEA-iGNG 0.092033 0.178582 0.642187 0.862166 0.788085 8.69 % 17.19 %
DTLZ2 5 ACO 0.181864 0.199431 0.747739 0.924796 0.901915 7.27 % 9.66 %
  TS-NSGA-II 0.181249 0.170385 0.679505 0.896790 0.861169 10.08 % 13.74 %
  RVEA-iGNG 0.174383 0.146559 0.700901 0.903779 0.875128 9.38 % 12.34 %
 10 ACO 0.155352 0.308631 0.742551 0.903411 0.930454 4.59 % 4.93 %
  TS-NSGA-II 0.152301 0.177538 0.367296 0.846377 0.837768 10.61 % 14.40 %
  RVEA-iGNG 0.140565 0.230764 0.616245 0.836054 0.856920 11.70 % 12.45 %
DTLZ3 5 ACO 0.138235 0.139541 0.763064 0.917778 0.904543 4.32 % 6.55 %
  TS-NSGA-II 0.136294 0.179473 0.695183 0.909073 0.881909 5.23 % 8.89 %
  RVEA-iGNG 0.125454 0.096520 0.735037 0.896471 0.871371 6.54 % 9.98 %
 10 ACO 0.073380 0.087701 0.745427 0.909423 0.949628 5.55 % 0.62 %
  TS-NSGA-II 0.071369 0.193558 0.613508 0.851310 0.861698 11.59 % 9.82 %
  RVEA-iGNG 0.068215 0.086884 0.431469 0.842870 0.882599 12.47 % 7.64 %
DTLZ4 5 ACO 0.142543 0.143110 0.794635 0.918313 0.918138 6.95 % 6.61 %
  TS-NSGA-II 0.138321 0.286597 0.753605 0.888618 0.914050 9.96 % 7.03 %
  RVEA-iGNG 0.128862 0.154125 0.769606 0.911186 0.898028 7.67 % 8.66 %
 10 ACO 0.070818 0.131675 0.756206 0.920976 0.813677 6.75 % 7.15 %
  TS-NSGA-II 0.068464 0.075239 0.680873 0.869443 0.765887 11.97 % 12.60 %
  RVEA-iGNG 0.063995 0.113688 0.612168 0.882636 0.770321 10.63 % 12.10 %
DTLZ5 5 ACO 0.250419 0.330873 0.776172 0.918339 0.904918 4.60 % 6.05 %
  TS-NSGA-II 0.244907 0.358680 0.747716 0.875526 0.866263 9.04 % 10.06 %
  RVEA-iGNG 0.225643 0.260566 0.755044 0.902942 0.891952 6.20 % 7.40 %
 10 ACO 0.051370 0.114657 0.773169 0.924775 0.779468 0.39 % 6.43 %
  TS-NSGA-II 0.047716 0.119591 0.545378 0.852345 0.710684 8.19 % 14.68 %
  RVEA-iGNG 0.046072 0.149417 0.529217 0.886794 0.721904 4.48 % 13.34 %
DTLZ6 5 ACO 0.236507 0.257975 0.745913 0.900374 0.909695 5.47 % 6.88 %
  TS-NSGA-II 0.231107 0.282180 0.715502 0.888840 0.867589 6.68 % 11.19 %
  RVEA-iGNG 0.220663 0.175452 0.693381 0.868028 0.880276 8.86 % 9.90 %
 10 ACO 0.038904 0.149552 0.820332 0.922999 0.942863 3.36 % 4.25 %
  TS-NSGA-II 0.038358 0.130817 0.403251 0.857518 0.872323 10.22 % 11.41 %
  RVEA-iGNG 0.036856 0.166407 0.668813 0.880616 0.903945 7.80 % 8.20 %
DTLZ7 5 ACO 0.100752 0.231556 0.798398 0.923033 0.909126 6.79 % 7.27 %
  TS-NSGA-II 0.093553 0.090382 0.720742 0.886701 0.874132 10.46 % 10.84 %
  RVEA-iGNG 0.089104 0.186374 0.770985 0.892096 0.873846 9.91 % 10.87 %
 10 ACO 0.108504 0.254808 0.809284 0.909228 0.851647 8.96 % 9.21 %
  TS-NSGA-II 0.105471 0.107499 0.517919 0.844483 0.787622 15.45 % 16.04 %
  RVEA-iGNG 0.100294 0.180270 0.446415 0.860882 0.795272 13.81 % 15.22 %
WFG1 5 ACO 0.201719 0.256567 0.750660 0.915675 0.908756 6.15 % 5.21 %
  TS-NSGA-II 0.184690 0.219607 0.697421 0.907087 0.900937 7.03 % 6.03 %
  RVEA-iGNG 0.175584 0.214598 0.698185 0.898134 0.900917 7.94 % 6.03 %
 10 ACO 0.126461 0.211747 0.821162 0.916788 0.887858 3.99 % 3.30 %
  TS-NSGA-II 0.124402 0.261306 0.633904 0.844492 0.807712 11.56 % 12.03 %
  RVEA-iGNG 0.118583 0.136465 0.470676 0.872762 0.824098 8.60 % 10.25 %
WFG2 5 ACO 0.167920 0.280483 0.789036 0.912564 0.901191 5.37 % 8.71 %
  TS-NSGA-II 0.154588 0.193252 0.732572 0.900666 0.860669 6.61 % 12.82 %
  RVEA-iGNG 0.147804 0.295434 0.759042 0.881333 0.896486 8.61 % 9.19 %
 10 ACO 0.120217 0.130268 0.785727 0.903134 0.888626 3.49 % 6.08 %
  TS-NSGA-II 0.115238 0.159556 0.723467 0.819892 0.821597 12.38 % 13.17 %
  RVEA-iGNG 0.108874 0.116427 0.645810 0.848627 0.823045 9.31 % 13.01 %
WFG3 5 ACO 0.115687 0.150643 0.741815 0.905656 0.913974 5.10 % 8.28 %
  TS-NSGA-II 0.106514 0.259662 0.721609 0.884389 0.897338 7.33 % 9.95 %
  RVEA-iGNG 0.100563 0.151243 0.690023 0.870800 0.888957 8.75 % 10.79 %
 10 ACO 0.029195 0.139902 0.815062 0.907819 0.901954 6.46 % 6.29 %
  TS-NSGA-II 0.028149 0.095181 0.771960 0.837362 0.827121 13.72 % 14.07 %
  RVEA-iGNG 0.026384 0.172169 0.641043 0.839632 0.861838 13.48 % 10.46 %
WFG4 5 ACO 0.113149 0.165574 0.784127 0.906465 0.901114 7.31 % 7.44 %
  TS-NSGA-II 0.111610 0.132423 0.765237 0.889373 0.894862 9.05 % 8.09 %
  RVEA-iGNG 0.106728 0.119569 0.731221 0.895481 0.881569 8.43 % 9.45 %
 10 ACO 0.145812 0.304179 0.819068 0.916575 0.836359 3.22 % 6.66 %
  TS-NSGA-II 0.132492 0.143312 0.786423 0.839503 0.789055 11.35 % 11.94 %
  RVEA-iGNG 0.127950 0.187754 0.495228 0.876051 0.784886 7.49 % 12.40 %
WFG5 5 ACO 0.159546 0.130361 0.750703 0.916806 0.914033 4.95 % 5.18 %
  TS-NSGA-II 0.147411 0.170787 0.713203 0.882329 0.888987 8.52 % 7.78 %
  RVEA-iGNG 0.142792 0.157651 0.698591 0.899510 0.891870 6.74 % 7.48 %
 10 ACO 0.064880 0.200308 0.728459 0.906368 0.940817 0.64 % 4.26 %
  TS-NSGA-II 0.064495 0.069087 0.429588 0.857782 0.867184 5.97 % 11.76 %
  RVEA-iGNG 0.062115 0.179906 0.569676 0.870044 0.878768 4.63 % 10.58 %
WFG6 5 ACO 0.105206 0.255472 0.753491 0.919482 0.900959 6.40 % 9.65 %

(continued on next page)

E. Fernandez et al. Knowledge-Based Systems 304 (2024) 112524 

11 



about preference closeness were unfeasible, so the preference model
could not find a satisfactory trade-off. In such cases, the DM should relax
their notions of closeness (for the priority objectives) and farness (for the

non-priority objectives). This task could be performed by updating the
parameters of the sigmoid functions μ(ai ) and μ(c i ) (Eqs. (6) and (13)).

As a last remark on Fig. 5, we would like to emphasize that our al-
gorithm’s output was distributed more similarly to the A-RoI than the
reference algorithms for bothm = 5 andm = 10, indicating that it meets
the desired quality standard according to the scientific literature.

6. Conclusions and directions for future research

This paper has presented a preference model based on compensatory
fuzzy logic, which can be embedded in search algorithms to solve
MaOPs. The model makes several innovative contributions:

• The best compromise solution is described as the preferentially
closest to an aspiration point. As a side benefit, this definition is
reasonably interpretable, as it is expressed in almost natural
language.

Table 3 (continued )

Problem m Algorithm Phase 1 Phase 2 Phase 3 Phase 4 Difference from the A-RoI

Case 1 Case 2 Case 1 Case 2

  TS-NSGA-II 0.101402 0.241643 0.727706 0.903930 0.868435 7.98 % 12.91 %
  RVEA-iGNG 0.097014 0.079093 0.699615 0.907734 0.867651 7.59 % 12.99 %
 10 ACO 0.064435 0.204131 0.771005 0.912607 0.794474 1.16 % 3.90 %
  TS-NSGA-II 0.062439 0.219754 0.632818 0.858602 0.744035 7.01 % 10.00 %
  RVEA-iGNG 0.059125 0.111928 0.583781 0.840155 0.736295 9.01 % 10.93 %
WFG7 5 ACO 0.160423 0.262063 0.735787 0.905947 0.914411 7.21 % 5.10 %
  TS-NSGA-II 0.151056 0.277552 0.688242 0.867766 0.895233 11.12 % 7.09 %
  RVEA-iGNG 0.140182 0.233682 0.712984 0.881815 0.909802 9.68 % 5.58 %
 10 ACO 0.075378 0.197683 0.792946 0.907370 0.916117 7.81 % 4.51 %
  TS-NSGA-II 0.070024 0.171670 0.517355 0.829746 0.866257 15.69 % 9.70 %
  RVEA-iGNG 0.066550 0.175411 0.539439 0.851034 0.862572 13.53 % 10.09 %
WFG8 5 ACO 0.170916 0.293011 0.828364 0.923281 0.923013 5.94 % 6.88 %
  TS-NSGA-II 0.155915 0.241798 0.762306 0.911826 0.878042 7.10 % 11.41 %
  RVEA-iGNG 0.150382 0.291036 0.795228 0.886555 0.905146 9.68 % 8.68 %
 10 ACO 0.111354 0.118827 0.748182 0.916491 0.942364 0.16 % 3.84 %
  TS-NSGA-II 0.110706 0.183468 0.551997 0.836830 0.861967 8.84 % 12.04 %
  RVEA-iGNG 0.107372 0.144548 0.497092 0.866319 0.870809 5.63 % 11.14 %
WFG9 5 ACO 0.106349 0.097838 0.799720 0.918498 0.912167 5.71 % 6.71 %
  TS-NSGA-II 0.096188 0.122616 0.732340 0.896644 0.881168 7.95 % 9.88 %
  RVEA-iGNG 0.089828 0.128899 0.750328 0.906352 0.906981 6.96 % 7.24 %
 10 ACO 0.061005 0.131634 0.824535 0.917706 0.924207 4.41 % 0.33 %
  TS-NSGA-II 0.055167 0.125995 0.796374 0.852041 0.872956 11.25 % 5.85 %
  RVEA-iGNG 0.050850 0.173288 0.518876 0.852925 0.883989 11.15 % 4.66 %

Table 4
Borda scores for the three algorithms.

Model m Algorithm Borda
score

Model m Algorithm Borda
score

Case 1 5 ACO 16 Case 2 5 ACO 16
  RVEA-

iGNG
38   RVEA-

iGNG
39

  TS-NSGA-
II

42   TS-NSGA-
II

41

 10 ACO 16  10 ACO 16
  RVEA-

iGNG
40   RVEA-

iGNG
40

  TS-NSGA-
II

40   TS-NSGA-
II

40

Fig. 5. Number of DMs that would fall into each category.
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• To the best of our knowledge, this model is the first to define the
preference closeness through fuzzy logic.

• Our scheme allows DMs to discover their system of preferences in a
progressive fashion. During each interaction, the DM understands
the preference closeness better by perusing the reference vectors and
the optimized solutions. From the perspective of hybrid-augmented
intelligence, this feature makes our approach one of the most inte-
gral ways of addressing MaOPs.

• The model is highly customizable to the DM’s preferences, and
supports any fuzzy predicate expressed in terms of closeness to the
reference points and priorities of the objectives.

• Themodel demands minimum cognitive effort; the DM does not need
to make any comparisons or to rank solutions, which would be
particularly challenging in the presence of many criteria. The DM is
only required to express their current notion of preference closeness
in terms of nearness to their aspiration point and the priority
attached to each objective.

• Vagueness, hesitation, and imprecision can be handled via
compensatory fuzzy logic, which adds value to the proposed model.

In this paper, the preference model was instantiated in two cases. In
the first case, we considered two priority levels attached to the objec-
tives, and in the second, we considered three. Both model instances were
embedded in an ACO algorithm and validated on 16 unconstrained
optimization problems. These problems formed part of the WFG and
DTLZ test suites, which are challenging and representative sets in the
field of many-objective optimization. Compared to state-of-the-art al-
gorithms (specifically, RVEA-iGNG and TS-NSGA-II), our approach
showed better convergence to the best compromise solution. The results
were statistically tested, and were particularly encouraging for 10-objec-
tive problems.

In future research, we will conduct broader experimentation to
assess the synergy of this approach with more metaheuristic algorithms
on different benchmark problems. Lastly, it would also be interesting to
elicit the parameters of the sigmoid functions during the interactions
with the DM, especially in those preference systems where a satisfactory
solution was not found (26 for the five-objective problems and 39 for the
10-objective problems). The DM could learn not only a definition of the
preference closeness but also the definitions of the linguistic variables
“close to” and “far from” for each objective regarding the reference
points.

Appendix: List of acronyms

ACO Ant Colony Optimization
ACOR Ant Colony Optimization for Continuous Domains
AI Artificial Intelligence
DM Decision Maker
DTLZ Deb, Thiele, Laumanns, and Zitzler
GMCFL Geometric Mean-Based Compensatory Fuzzy Logic
HAI Hybrid-Augmented Intelligence
MaOP Many-Objective Optimization Problem
MOEA Multi-objective Evolutionary Algorithm
MOP Multi-objective Optimization Problem
RoI Region of Interest
RVEA-
iGNG

Reference-Vector-Guided Evolutionary Algorithm with Improved
Growing Neural Gas

TS-NSGA-
II

Two-Stage Non-dominated Sorting Genetic Algorithm II

WFG Walking Fish Group
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[3] A. López Jaimes, C.A. Coello Coello, Study of preference relations in many-
objective optimization, in: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, 2009, pp. 611–618, https://doi.org/10.1145/
1569901.1569986.
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