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Abstract: Biting midges (Culicoides) are vectors of many pathogens of medical and veterinary im-
portance, but their viromes are poorly characterized compared to certain other hematophagous
arthropods, e.g., mosquitoes and ticks. The goal of this study was to use metagenomics to identify
viruses in Culicoides from Mexico. A total of 457 adult midges were collected in Chihuahua, northern
Mexico, in 2020 and 2021, and all were identified as female Culicoides reevesi. The midges were sorted
into five pools and homogenized. An aliquot of each homogenate was subjected to polyethylene
glycol precipitation to enrich for virions, then total RNA was extracted and analyzed by unbiased
high-throughput sequencing. We identified six novel viruses that are characteristic of viruses from
five families (Nodaviridae, Partitiviridae, Solemoviridae, Tombusviridae, and Totiviridae) and one novel
virus that is too divergent from all classified viruses to be assigned to an established family. The
newly discovered viruses are phylogenetically distinct from their closest known relatives, and their
minimal infection rates in female C. reevesi range from 0.22 to 1.09. No previously known viruses were
detected, presumably because viral metagenomics had never before been used to study Culicoides
from the Western Hemisphere. To conclude, we discovered multiple novel viruses in C. reevesi from
Mexico, expanding our knowledge of arthropod viral diversity and evolution.

Keywords: Culicoides; midges; virus discovery; metagenomics; RNA-seq; Mexico

1. Introduction

Biting midges (genus Culicoides, family Ceratopogonidae) are the most abundant hematophagous
insects worldwide, with a geographic distribution encompassing the tropics, subtropics,
tundra, and temperate regions [1–3]. Many female Culicoides require blood meals for egg
production, and their bites are often painful and sometimes cause acute allergic reactions.
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Moreover, Culicoides are vectors of many viruses, bacteria, parasitic protozoa, and nema-
todes of medical and veterinary importance. An example of a Culicoides-transmitted viral
pathogen in humans is the Oropouche virus (family Peribunyaviridae) [4,5]. The Oropouche
virus occurs in Central and South America, where it has caused over half a million cases of
febrile illness, with some cases accompanied by aseptic meningitis. Culicoides-transmitted
viruses of veterinary importance include the Akabane virus (family Peribunyaviridae), the
African horse sickness virus (AHSV; family Sedoreoviridae), the bluetongue virus (BTV;
family Sedoreoviridae), the bovine ephemeral fever virus (BEFV; family Rhabdoviridae), and
the Schmallenberg virus (family Peribunyaviridae) [1,6–10]. Culicoides-transmitted viruses
that cause wildlife disease include AHSV, BTV, BEFV, and epizootic hemorrhagic disease
virus (family Sedoreoviridae) [11].

The advent of rapid and inexpensive unbiased high-throughput sequencing platforms
and bioinformatics tools has resulted in the discovery of numerous viruses that would have
been difficult, if not impossible, to detect using traditional virus detection techniques [12–15].
These technologies have allowed for the detection of novel viruses in diverse sample types
(animal, plant, and environmental). Numerous viral metagenomics studies have been
performed on hematophagous arthropods, but most have focused on mosquitoes and
ticks, with Culicoides spp. midges and other hematophagous arthropods being relatively
neglected [16–21].

A small number of studies have characterized the viromes of Culicoides spp. midges [22–28].
Viromes have been characterized for C. arakawae from Japan, C. imicola from Senegal, C.
impunctatus from Scotland, at least three Culicoides spp. (C. arakawae, C. lungchiensis, and C.
punctatus) from Zhoushan Island in China, an unspecified number of Culicoides spp. from
Yunnan in China, and ten Culicoides spp. from Greece. Many taxonomically diverse viruses
were identified in these studies. For example, 14 novel viruses from at least 10 families were
detected in the midges from Greece [22]. However, the viromes of Culicoides spp. midges
from the Western Hemisphere have not been characterized. In this study, a metagenomics-
based approach was used to determine the composition and diversity of viruses in C. reevesi
from Mexico.

2. Materials and Methods
2.1. Study Sites and Midge Collections

Study sites were established close to San Buenaventura, a town in the municipality of
Buenaventura in Chihuahua, northern Mexico (Figure 1). Collections were performed in
2020 and 2021 along the Santa Maria River, which borders San Buenaventura to the west.
Blood-seeking midges were collected from 4.00 to 8.00 p.m. using the human landing catch
method. Hand-held aspirators were used to remove midges from the exposed arms of
the collectors before blood meals could be acquired. Midges were placed into individual
cryostorage vials and transported in liquid nitrogen to the laboratory at the Universidad
Autónoma de Ciudad Juárez. Midges were placed on chill tables, then inspected under
a microscope and morphologically identified using published taxonomic keys [29–31].
Midges were sorted into pools of up to 100 individuals and stored at −80 ◦C until they
were transported on dry ice by express delivery to Iowa State University.

2.2. Homogenizations

Midges were placed in polypropylene, round-bottom 5 mL tubes with 2 mL of phosphate-
buffered saline (PBS) supplemented with 100 units/mL penicillin and 100 µg/mL strepto-
mycin. Four 4.5-mm-diameter copper-clad steel beads (BB-caliber airgun shot) were added
to each tube and midge pools were homogenized by vortexing for 30 s. Midge homogenates
were centrifuged (10,000× g, 10 min, 4 ◦C) and supernatants were collected and stored at
−80 ◦C.
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2.3. Polyethylene Glycol Precipitation

An aliquot of each supernatant was subjected to polyethylene glycol (PEG) precipita-
tion to enrich for virions. Briefly, 100 µL of each supernatant was added to 900 µL of PBS
then centrifuged (10,000× g, 10 min, 4 ◦C) to remove any residual debris. Supernatants
were filtered, mixed with an equal volume of 2 × PEG solution (20% PEG-8000 [w/v]
and 0.6M NaCl in PBS, pH 7.4) and rotated overnight at 4 ◦C. Samples were centrifuged
(15,000× g, 10 min, 4 ◦C) and pellets were resuspended in PBS.

2.4. Unbiased High-Throughput Sequencing

Unbiased high-throughput sequencing (UHTS) was performed as previously de-
scribed, with minor modifications [32]. Briefly, total RNA was extracted from each PEG-
precipitated sample using Trizol Reagent (ThermoFisher Scientific, Wattham, MA, USA).
An aliquot was taken from each total RNA sample then the aliquots were mixed together to
create a single sample. Ribosomal RNA was depleted from the sample using the NEBNext®

rRNA Depletion Kit (New England BioLabs, Ipswich, MA, USA), and an RNAseq li-
brary was generated using the NEBNext® Ultra™ II Directional RNA Library Prep Kit for
Illumina® (New England BioLabs). Sequencing was performed using the Novaseq 6000
system (Illumina, San Diego, CA, USA) at the Iowa State University DNA Facility.

2.5. Bioinformatics

Sequencing reads were analyzed using the FastX Toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/) (accessed on 1 December 2023) to remove barcodes and low-quality ends
(Phred quality score ≥ 33). Duplicate reads were identified and removed using Cdhit-
454 (http://weizhongli-lab.org/cd-hit/) (accessed on 1 December 2023). Host sequences
were depleted by mapping the remaining reads to the genome of Culicoides sonorensis
using Bowtie 2 [33]. Culicoides sonorensis is the only Culicoides spp. with a fully sequenced
genome [34]. Unmapped reads were analyzed using the sortMeRNA program to remove
ribosomal RNA-related reads [35]. Remaining reads were subjected to de novo SPAdes
assembly (version 3.5.0) [36]. Contigs were aligned by BLASTn, BLASTx, and tBLASTx to
the NCBI nucleotide database (downloaded December 2023) using an e-value of <10−5.

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://weizhongli-lab.org/cd-hit/
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Unaligned contigs were translated into all six reading frames and matches were found
using BLASTp and InterProScan 5 [37]. Data were transformed by Python programming
(https://www.python.org/).

2.6. RT-PCR and Sanger Sequencing

RT-PCRs were performed to retrospectively identify the pools that contained the newly
discovered viruses and to confirm the species identity of midges. Complementary DNAs
were generated using Superscript III reverse transcriptase (ThermoFisher Scientific) and
PCRs were performed using high-fidelity Taq polymerase (Thermo Fisher Scientific) in
accordance to the manufacturer’s instructions. Primers specific to the newly discovered
viruses were designed from the sequences generated by UHTS. For midges species con-
firmation, two primer pairs were used: universal primers that amplify a 710 bp region
of the invertebrate mitochondrial cytochrome c oxidase subunit I (COI) gene [38] and
primers designed in-house using a C. reevesi voucher COI gene sequence of 496 bp from
the Genbank database (forward primer: 5′-GATTAGTTCCCCTTATACTCGG-3′; reverse
primer: 5′-AAAATATAAACTTCTGGATGTCC-3′). RT-PCR products were purified using
the PureLink gel extraction kit (ThermoFisher Scientific) and sequenced using a 3730x1
DNA Analyzer (Applied Biosystems, Foster City, CA, USA) at the Iowa State University
DNA Facility.

2.7. Virus Isolation in Cell Culture

We attempted to isolate each novel virus by performing virus isolation using Aedes
albopictus (C6/36) mosquito and African green monkey kidney (Vero) cells. Culicoides
cell lines have been developed [39] but none are commercially available. C6/36 cells
were cultured in Liebovitz L15 medium (Thermo Fisher Scientific) and Vero cells were
cultured in Dulbecco’s modified Eagle medium (Thermo Fisher Scientific). All media was
supplemented with a 10% fetal bovine serum (FBS), 2 mM of L-glutamine, 100 units/mL of
penicillin, and 100 µg/mL of streptomycin, except when cultures needed to be maintained
with minimal cell proliferation, in which case, the concentration of FBS was reduced to
2%. C6/36 cells were cultured at 28 ◦C and Vero cells were cultured at 37 ◦C with 5% CO2.
Homogenates were filtered and inoculated onto subconfluent monolayers of C6/36 or Vero
cells in 75 cm2 flasks. The cells were incubated for 1 h at room temperature on an orbital
shaker, then the media was removed. Cells were rinsed five times in PBS and incubated in
12 mL of fresh media for 7 days. Supernatants were collected and an aliquot (100 µL) of
each supernatant was inoculated onto new subconfluent monolayers of the same cell type.
The process was repeated until three cell culture passages had been performed. Total RNA
was extracted from the final passage supernatants and tested for viral RNA by RT-PCR.

2.8. Phylogenetic Analysis

Amino acid sequences were aligned using MUSCLE [40]. Bayesian phylogenetic trees
were constructed using BEASTv1.10.4 [41]. Phylogenies were performed under the WAG
amino acid substitution model with Gamma + Invariant sites using 4 as the number of
gamma categories, an uncorrelated relaxed clock model with lognormal relaxed distribution
and a constant-size coalescent priors while sampling across the sites for 10 million sampling
iterations, discarding the first 25% as burn-in. Midpoint-rooted tree figures were created
using Figtree. Select nodes are labeled with posterior probability values.

3. Results
3.1. Midge Collections and Virus Identification

A total of 457 adult midges were collected in Chihuahua, morphologically identified
as female Culicoides reevesi, and sorted into five pools. Species identifications were con-
firmed by amplifying and sequencing a region of the COI gene using primers designed
in-house because the universal primers did not generate amplicons. RT-PCR products were
sequenced, and the resulting sequences were aligned and revealed to have 100% nucleotide

https://www.python.org/
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identity with each other. Because the COI sequences are identical, only one was deposited
into the Genbank database (Genbank Accession No. PP359630). Our sequences have 98.4%
nucleotide identity to the corresponding regions of C. reevesi voucher COI gene sequences
previously deposited into the Genbank database.

Unbiased high-throughput sequencing revealed that the midges contained seven
novel viruses but no previously known viruses (Table 1). Five viruses could be assigned
to four established families (Nodaviridae, Partitiviridae, Tombusviridae, and Totiviridae), and
another belongs to the family Solemoviridae, or a closely related, but yet-to-be-created
family. The final virus was too divergent from all classified viruses to be assigned to an
established family. The library contained 11,449,252 high-quality reads, deposited into the
NCBI database under Biosample Accession No. PRJNA1127052. After non-viral reads were
subtracted, 12,980 viral reads remained. The average read depth of each novel virus is
provided (Table S1). Each pool was retrospectively analyzed by RT-PCR using virus-species
primers to identify those that contained novel viruses (Figure S1). The minimal infection
rates (MIRs) in female C. reevesi for the novel viruses ranged from 0.22 to 1.09 (Table 2).
None of the viruses replicated in C6/36 or Vero cells.

Table 1. Novel viruses detected in midges from Mexico and their proposed taxonomic classification
and closest known relatives.

Virus Proposed Taxonomic
Classification

1 Amount of Genome
Sequenced
(nt. or bp)

2 Closest Known
Relative Based on

Amino Acid Sequence
Alignments

% Amino Acid
Identity (% Coverage)

[Translation
Product(s)]

Chihuahua culicoides
nodavirus 1 Nodaviridae 996 Riboviria sp.

(QJI53480.1) 34.5 (98) [CP]

Chihuahua culicoides
partitivirus 1 Partitiviridae 1543 Hubei partiti-like virus

56 (APG78242.1) 67.8 (99) [RdRp]

Chihuahua culicoides
partitivirus 2 Partitiviridae 1703 Riboviria sp.

(WKV33652.1) 62.3 (95) [RdRp]

Chihuahua culicoides
solemo-like virus 1 Solemoviridae? 1159 [segment 1]

Erysiphe necator
associated sobemo-like
virus 3 (QKN22638.1)

57.4 (99) [RdRp]

1480 [segment 2] Turkana Sobemo-like
virus (UCW41649.1) 59.0 (100) [CP]

Chihuahua culicoides
tombusvirus 1 Tombusviridae 327

Hubei tombus-like
virus 8

(YP_009336791.1)
50.5 (87) [CP]

Chihuahua culicoides
totivirus 1 Totiviridae 774

Mute swan feces
associated toti-like

virus 1 (QUS52816.1)
40.0 (100) [RdRp]

Chihuahua culicoides
virus 1 Unclassified 1849

Leuven
wasp-associated virus 1

(QZZ63336.1,
QZZ63337.1)

25.2 (94) [HP]
36.8 (100) [RdRp]

CP, capsid protein; HP, hypothetical protein; RdRp, RNA-dependent RNA polymerase. 1 For each virus, only the
longest contig was deposited into the GenBank database, unless the virus has a segmented genome, in which
case the longest contig for each segment was deposited. 2 GenBank Accession No. of closest known relatives are
provided in parentheses.
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Table 2. Minimal infection rates in female Culicoides reevesi for the novel viruses.

Virus a No. Pools Positive b Minimal Infection Rate

Chihuahua culicoides nodavirus 1 1 0.22
Chihuahua culicoides partitivirus 1 5 1.09
Chihuahua culicoides partitivirus 2 3 0.66

Chihuahua culicoides solemo-like virus 1 5 1.09
c Chihuahua culicoides tombusvirus 1 1 0.22

Chihuahua culicoides totivirus 1 3 0.66
Chihuahua culicoides virus 1 1 0.22

a There are a total of five pools; b Calculated as (the number of positive pools divided by the total number of
midges tested) × 100; c CCTV1 RNA was detected by RT-PCR in the single PEG-precipitated sample, but none
of the five pools comprising this sample, even though three primer pairs were used. One explanation for this
finding is the amount of viral RNA is below the limit of detection of the RT-PCR, unless PEG precipitation is used
to remove the non-viral RNA and concentrate the viral RNA. We have assumed that at least one pool contains
CCTV1 RNA.

3.2. Nodaviridae

The family Nodaviridae has two recognized genera (Alphanodavirus and Betanodavirus)
which consist of viruses that infect insects and fish, respectively [42]. Many noda-like
viruses and unclassified nodaviruses (e.g., nodaviruses not formally assigned to a genus)
have been detected in other metazoans, most notably crustaceans and nematodes [43–47].
Nodaviruses have bipartite, positive-sense RNA genomes of 3.1 kb (RNA1) and 1.4 kb
(RNA2) that encode an RNA-dependent RNA polymerase (RdRp) and capsid protein
precursor, respectively [42].

We provide evidence of a novel nodavirus, designated Chihuahua culicoides no-
davirus 1 (CCNV1). A 996 nt region of the CCNV1 genome was recovered (Genbank
Accession No. PP101790) and it encodes a predicted 289-residue translation product char-
acteristic of a capsid protein truncated at the C-terminus (Tables 1 and S2). The translation
product has greatest (34.5%) amino acid identity (98% coverage) to the corresponding
region of an unclassified virus listed in the Genbank database as Riboviria sp., which was
detected in an anal swab collected from a Radde’s warbler (Phylloscopus schwarzi) in China
(no article available, Genbank Accession No. QJI53480.1). Alignments were also performed
using the predicted translation product of CCNV1 and the corresponding regions of a
representative virus from each established genus of the family Nodaviridae. The CCNV1
translation product has 21.0% identity (100% coverage) to the black beetle virus (an alphan-
odavirus) and 23.6% identity (100% coverage) to the barfin flounder nervous necrosis virus
(a betanodavirus), while the two classified viruses have 23.5% identity (100% coverage) to
one another.

Bayesian inference was used to analyze the partial capsid protein sequences of CCNV1
and select closely related viruses (Figure 2A). Two distinct clades (denoted as clades 1 and 2)
are observed and the posterior support for each grouping is 1.0. Clade 1 comprises classified
viruses of the genus Alphanodavirus. Clade 2 contains four nested clades (denoted as 2A to
2D). CCNV1 is in clade 2A, along with two unclassified viruses detected in avian swabs.
The posterior support for this topological arrangement is not strong (0.45). Clades 2B,
2C, and 2D contain nematode-associated nodaviruses, betanodaviruses, and crustacean-
associated nodaviruses, respectively. We propose that CCNV1 should be classified within
the family Nodaviridae and assigned to a yet-to-be-established genus.
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Figure 2. Phylogenetic relationships among each novel virus found in this study and closely re-
lated viruses from the taxonomic groups (A) Nodaviridae, (B) Partitiviridae, (C,D) Solemoviridae,
(E) Tombusviridae, and (F) Totiviridae. Amino acid sequences were aligned using MUSCLE and
Bayesian phylogenetic trees were constructed using BEASTv1.10.4. Select nodes are labeled with
posterior probability values. Viruses identified in this study are bolded. Select genus names are
denoted in parentheses.

3.3. Partitiviridae

The family Partitiviridae has five recognized genera (Alphapartitivirus, Betapartitivirus,
Gammapartitivirus, Deltapartitivirus, and Cryspovirus) and consists of viruses that infect
plants, fungi, and protozoa [48]. Unclassified partitiviruses and partiti-like viruses have
been detected in other metazoans, including Culicoides spp. midges [22,47,49–51]. Parti-
tiviruses have bipartite, double-stranded RNA genomes of 3.0 to 4.8 kbp (1.4 to 2.4 kbp per
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segment) [48]. The genomic segments are designated dsRNA1 and dsRNA2 and encode
the RdRp and capsid protein, respectively.

We detected two novel viruses, designated Chihuahua culicoides partitivirus 1 and
2 (CCPV1 and CCPV2, respectively). A 1543 bp region of the CCPV1 genome was se-
quenced (Genbank Accession No. PP101791), and it contains a complete open reading
frame (ORF) predicted to encode a 497-residue RdRp. The translation product has the
greatest (67.8%) amino acid identity (99% coverage) to the corresponding region of Hubei
partiti-like virus 56, an unclassified partiti-like virus detected in insects (unspecified species)
in China [47]. We also sequenced a 1703 bp region of the CCPV2 genome (Genbank Acces-
sion No. PP101792). The sequence encodes a predicted 561-residue protein characteristic
of an RdRp truncated at the N-terminus. The translation product has the greatest (62.3%)
amino acid identity (95% coverage) to the corresponding region of an unclassified virus, des-
ignated Riboviria sp., detected in an anal swab collected from a bird (unspecified species) in
China (no article available, Genbank Accession No. WKV33652.1). The CCPV1 and CCPV2
amino acid sequences have 30.0% identity (54% coverage) to each other and ≥21.5% amino
acid identity (≥30% coverage) to the corresponding regions of select classified viruses in
the family Partitiviridae (Table S3).

A phylogenetic tree was constructed using the partial RdRp sequences of CCPV1,
CCPV2, and select closely related viruses (Figure 2B). Viruses from all five established
genera of the family Partitiviridae were included. Seven clades are observed (denoted as
clades 1 to 7). The posterior support for each grouping is ≥0.96. CCPV1 and CCPV2
are in clades 5 and 4, respectively. Both clades comprise unclassified viruses detected in
insects, crustaceans, and/or avian swabs and feces. Clades 1, 2, 3, 6, and 7 contain viruses
belonging to the genera Alphapartitivirus, Betapartitivirus, Cryspovirus, Deltapartitivirus, and
Gammapartitivirus, respectively. We propose that the family Partitiviridae requires two new
genera, one to accommodate CCPV1 and the other clade 5 viruses, and the second for
CCPV2 and its clade 4 counterparts.

3.4. Solemoviridae

The family Solemoviridae consists of viruses with single-stranded, positive-sense RNA
genomes of 4 to 6 kb, and some of these viruses are important pathogens of crops [52].
The family contains four established genera: Enamovirus, Polemovirus, Polerovirus, and
Sobemovirus. These viruses are usually transmitted via mechanical wounding, vegetative
propagation, or insects (i.e., aphids and beetles). Unclassified solemoviruses and solemo-
like viruses have also been described, some of which were detected in Culicoides spp.
midges [22,23]. Solemo-like viruses with bipartite genomes of 4.1 to 4.6 kb (1.5 to 2.8 kb per
segment) have also been described, with many detected in insects [22,47,53].

We provide evidence of a novel virus species, designated as Chihuahua culicoides
solemo-like virus 1 (CCSV1), which is closely related to viruses in the family Solemoviri-
dae. Two contigs of 1159 and 1480 were detected (Genbank Accession Nos. PP101793-4,
respectively). The 1480 nt. contig contains a complete ORF that encodes a predicted 216-
residue capsid protein (Table 1). The translation product has greatest (59.0%) identity (100%
coverage) to the putative capsid protein of Turkana Sobemo-like virus, an unclassified
virus detected in midges (unspecified species) in Kenya (no article available, Genbank
Accession No. UCW41649.1). Turkana Sobemo-like virus has a bipartite genome. The
1159 nt. contig contains a partial ORF predicted to encode a 383-residue RdRp truncated at
the N-terminus. The translation product has greatest (78.8%) identity (55% coverage) to the
partially sequenced RdRp of Turkana Sobemo-like virus, but a higher BLAST E-value and
greater coverage (57.4% identity and 97% coverage) with the putative RdRp of Erysiphe
necator-associated sobemo-like virus 3, a sobemo-like virus detected in fungus in Spain (no
article available, Genbank Accession No. QKN22638.1).

A phylogenetic tree was constructed using the capsid protein sequence of CCSV1 and
the corresponding regions of select closely related viruses (Figure 2C). Erysiphe necator-
associated sobemo-like virus 3 was not included because its capsid protein gene has not
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been sequenced. Three clades are observed (denoted as clades 1 to 3). Clade 2 contains
CCSV1 and other unclassified solemo-like viruses. The posterior support for this grouping
is 0.97. Clade 1 contains viruses from the genus Sobemovirus, in addition to Poinsettia latent
virus, the sole member of the genus Polemovirus [52]. Poinsettia latent virus is a recombinant
virus, with the 5′ three-quarters of its genome closely related to the corresponding region of
poleroviruses and its capsid protein sequence closely related to those of sobemoviruses [54].
Clade 3 contains enamoviruses and poleroviruses, with the latter forming a nested clade
(denoted as 3A).

Another tree was constructed using the partial RdRp sequence of CCSV1 and the
corresponding regions of select closely related viruses (Figure 2D). Turkana Sobemo-like
virus was not included because its RdRp gene is unresolved at the 3′ end and the sequence
in the Genbank database is considerably shorter than the sequences used for the analysis.
Two major clades are observed (denoted as clades 1 and 2), and the posterior support for
both groupings is 1.0. CCSV1 is in clade 2, which comprises unclassified solemo-like viruses.
CCSV1 is closely related phylogenetically to Erysiphe necator associated sobemo-like virus
3. Clade 1 contains three nested clades (denoted as 2A to 2C). Clades 2A and 2C contain
viruses in the genera Enamovirus and Sobemovirus, respectively, while clade 2B contains
viruses in the genus Polerovirus in addition to the Poinsettia latent virus, the sole member
of the genus Polemovirus.

We propose that at least one new genus needs to be created to accommodate CCSV1
and the other unclassified solemo-like viruses, but it is ambiguous whether these viruses
belong to the family Solemoviridae or to a closely related, yet-to-be-established family. In the
phylogenetic tree constructed using RdRp sequences, CCSV1 and the other unclassified
solemo-like viruses belong to a different clade than the classified solemoviruses, with
neither clade basal to the other, making the family designation of CCSV1 unclear. However,
in the phylogenetic tree created using capsid protein sequences, the viruses in clade 3
(enamoviruses and poleroviruses) are basal to those in clade 1 (unclassified solemo-like
viruses) and clade 2 (polemoviruses and sobemoviruses), suggesting that it is not necessary
to create a new family.

3.5. Tombusviridae

The family Tombusviridae contains 18 genera of plant viruses, most of which have
monopartite positive-sense RNA genomes of 3.7 to 4.8 kb, although some have bipartite
genomes [55]. Tombusviruses are usually spread by mechanical transmission, seed and
pollen transmission, and through infected plant material used for propagation and grafting,
and sometimes by fungal and beetle vectors. Many unclassified tombusviruses and tombus-
like viruses have been detected in other metazoans, including midges [17,23,49,56].

We identified a novel virus, designated Chihuahua culicoides tombusvirus 1 (CCTV1),
an apparent member of the family Tombusviridae. A 327 nt region of the CCTV1 genome
was sequenced (Genbank Accession No. PP101795) and it encodes a predicted 108-residue
translation product characteristic of a capsid protein truncated at both termini. The transla-
tion product has greatest (50.5%) amino acid identity (87% coverage) to the corresponding
region of an unclassified tombus-like virus, designated as Hubei tombus-like virus 8, dis-
covered in a mixed pool of insects from China [47]. When compared to classified viruses,
CCTV1 has greatest (37.8%) amino acid identity (32% coverage) to Oat chlorotic stunt virus
(genus Avenavirus), a soil-borne virus of cereals [57].

Bayesian inference was used to analyze the partial capsid protein sequences of CCTV1
and select other viruses, including viruses from seven of the 18 genera of the family
Tombusviridae (Figure 2E). The viruses grouped into two main clades (denoted as clades
1 and 2), with clade 1 containing two nested clades (denoted as 1A and 1B). CCTV1
has a close phylogenetic relationship with Changjiang tombus-like virus 8 and Hubei
tombus-like virus 8, unclassified tombus-like viruses detected in crustaceans and insects,
respectively [47]. These viruses are in clade 1B, along with other unclassified tombus-like
viruses. The posterior support for this topological arrangement is 0.98. Clades 1A and 2
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contain classified tombusviruses. We propose that a new genus needs to be created within
the family Tombusviridae to accommodate CCTV1.

3.6. Totiviridae

The family Totiviridae contains five recognized genera (Giardiavirus, Leishmaniavirus,
Totivirus, Trichomonasvirus, and Victorivirus) [55,58,59]. Viruses in the genera Totivirus and
Victorivirus mostly infect fungi and yeast, while those in the genera Giardiavirus, Leish-
maniavirus, and Trichomonasvirus infect parasitic protozoa. Many unclassified totiviruses
and toti-like viruses have recently been detected in arthropods, bats, crustaceans, fish,
and plants [50,60–64]. Viruses in the family Totiviridae have monopartite, double-stranded
RNA genomes of 4.6 to 7.0 kbp that contain two overlapping ORFs. The 5′-proximal ORF
encodes the capsid protein and several additional proteins while the 3′-proximal ORF
encodes the RdRp.

We sequenced a 774 bp region of the genome of a novel virus, designated Chihuahua
culicoides totivirus 1 (CCTotiv1; Genbank Accession No. PP101796). The deduced amino
acid sequence encodes a predicted 258-residue translation product characteristic of an RdRp
truncated at both termini. The predicted translation product has greatest (40.0%) amino acid
identity (100% coverage) to the corresponding region of mute swan feces associated toti-like
virus 1, an apparent totivirus identified in avian fecal material in the United Kingdom (no
article available, Genbank Accession No. QUS52816.1). Pairwise alignments revealed that
the CCTotiv1 sequence has 22.9 to 35.2% identity (≥40% coverage) to the corresponding
regions of the type virus species of each genus of the family Totiviridae (Table S4). The type
species have 20.2 to 31.2% identity (≥8% coverage) to one other.

Bayesian inference was used to analyze the partial RdRp sequences of CCTotiv1
and select closely related viruses, including a representative virus from each of the five
genera of the family Totiviridae (Figure 2F). Most viruses are grouped within a large clade
(denoted as clade 1), but the posterior support for this topological arrangement (0.4) is
not strong. Clade 1 contains two nested clades (1A and 1B). Clade 1B consists exclusively
of unclassified toti-like viruses and includes CCTotiv1. The posterior support for this
topological arrangement is 1.0. Clade 1A consists of three viruses: Helminthosporium
victoriae virus 190S, Leishmania RNA virus 1-1, and Trichomonas vaginalis virus 1, which
belong to the genera Victorivirus, Leishmaniavirus, and Trichomonasvirus, respectively. Basal
to clade 1 are Saccharomyces cerevisiae virus L-A and Giardia lamblia virus (genera Totivirus
and Giardiavirus, respectively). We propose that at least one new genus needs to be created
within the family Totiviridae to accommodate CCTotiv1 and the other clade 1B viruses.

3.7. Unclassified Virus

We detected a novel virus, designated Chihuahua culicoides virus 1 (CCV1), which
could not be assigned to an established family because it is too divergent from all classified
viruses. A 1849 nt region of the CCV1 genome was sequenced (Genbank Accession No.
PP101797) and shown to contain one complete and one partial ORF. The complete ORF
is predicted to encode a 532-residue protein of unknown function that has the greatest
(25.2%) identity (94% coverage) to the corresponding region of Leuven wasp-associated
virus 1, an unclassified virus detected in wasps from Belgium [65]. The partial ORF
is predicted to encode a 389-residue protein characteristic of an RdRp truncated at the
C-terminus. The translation product has the greatest (36.8%) identity (100% coverage)
to the corresponding region of Leuven wasp-associated virus 1. Both CCV1 translation
products have no significant identity to any unclassified viruses. Phylogenetic trees were
not generated because the phylogenies would not be of assistance in the family-level
classification of CCV1.

4. Discussion

We report the detection of multiple novel RNA viruses in C. reevesi from Mexico. The
viruses are taxonomically diverse, belonging to multiple established families (Nodaviridae,



Viruses 2024, 16, 1160 13 of 18

Partitiviridae, Tombusviridae, Totiviridae, and possibly Solemoviridae) or being too divergent
from all classified viruses to be assigned to an established family. Two novel viruses were
detected in all five pools, indicating that they commonly infect C. reevesi in the study area,
although a larger number of midges needs to be tested to accurately estimate the viral MIRs.
No previously known viruses were detected, but this was not unexpected because viral
metagenomics had never before been performed on C reevesi or any other Culicoides spp.
midges from the Western Hemisphere. All previous studies were performed on midges
from countries in the Eastern Hemisphere, namely China, Greece, Japan, Kenya, Scotland,
and Senegal [22–28].

Isolates were not obtained for any viruses. These experiments were performed using
C6/36 and Vero cells. A Culicoides cell line was not used because none are commercially
available, even though they have been developed for C. nubeculosus, C. sonorensis, and C.
variipennis [39,66,67]. A likely explanation why no viruses were isolated is because they
have narrow host-ranges that preclude mosquito and vertebrate cell replication. A less
likely explanation is that none of the midges contained an infectious virus, despite the
maintenance of a continuous cold-chain. In this regard, viral nucleic acid is more stable
than infectious virions. In all other Culicoides metagenomics studies, virus isolation was
not attempted using any eukaryotic cell lines [22–28], although giant viruses were isolated
from C. imicola in Senegal using amoebal cultures [27].

The closest known relative of each novel virus was determined by BLAST analysis and
Bayesian inference. In each case, the closest known relative was a poorly characterized virus
detected in insects or avian swabs. It is unknown whether the viruses detected in swabs replicate
in birds or were acquired through the consumption of virus-infected material (i.e., insects). None
of the closest relatives are known to replicate in humans, vertebrate animals or plants and our
phylogenetic data indicate that most, if not all, of the newly discovered viruses are insect-specific.
Some insect-specific viruses (ISVs) are capable of modulating the replication and transmission
of pathogenic viruses. Therefore, ISVs may affect human and vertebrate animal health despite
their insect-only phenotypes [68–73]. Dengue virus 1 (a pathogenic flavivirus) is transmitted
to mice more efficiently by mosquitoes also infected with Phasi Charoen-like virus (an
insect-specific phasivirus) and Humaita Tubiacanga virus (an unclassified ISV) compared
to mosquitoes not infected with these ISVs [69]. Eilat virus (an insect-specific alphavirus)
delays the dissemination of chikungunya virus (a pathogenic alphavirus) in mosquitoes [68].
Experiments have not been performed to determine whether Culicoides-associated ISVs
modulate the replication or transmission of pathogenic viruses.

Based on the genomic organizations of their closest known relatives, four viruses
detected in our study likely have bipartite genomes. The viruses are CCNV1 (a nodavirus),
CCPV1 and CCPV2 (both partitiviruses), and CCSV1 (a solemo-like virus). A characteristic
feature of nodaviruses and partitiviruses is the presence a bipartite genome, where RNA1
encodes the RdRp and RNA2 encodes the capsid protein [42,48]. Solemoviruses have
monopartite genomes, but a rapidly increasing number of solemo-like viruses with bipartite
genomes have been described [22,47,52,53]. We detected both genomic segments of CCSV1,
but only RNA1 of the partitiviruses and RNA2 of CCNV1. One explanation why only
RNA1 was detected for the partitiviruses is because the RdRp is the most conserved protein
of RNA viruses, making RdRp sequences the easiest viral sequences to identify during the
bioinformatics analysis [74–76]. There are many other examples of unclassified nodaviruses
where sequence data are available only for the RdRp-encoding segment [77–81]. As noted
above, only RNA2 was detected for CCNV1. RdRp sequences were undoubtedly present,
but potentially at levels below our detection limit. Sequences encoding the capsid protein,
but not the RdRp, were also recovered for the Barns Ness breadcrumb sponge noda-like
virus 1, an unclassified nodavirus discovered in a sea sponge off the coast of Scotland [82].

5. Conclusions

We report the discovery of multiple novel viruses in Culicoides biting midges from
Mexico. These findings provide new insights into the diversity, host range, phylogeny, and



Viruses 2024, 16, 1160 14 of 18

taxonomy of arthropod-associated viruses. These findings also add to the rapidly growing
plethora of viruses discovered in recent years using unbiased high-throughput sequencing
and bioinformatics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v16071160/s1, Figure S1. Retrospective analysis of midge pools
by RT-PCR using primers specific to (A) Chihuahua culicoides nodavirus 1, (B), Chihuahua culicoides
partitivirus 1, (C), Chihuahua culicoides partitivirus 2, (D) Chihuahua culicoides solemo-like virus 1,
(E) Chihuahua culicoides totivirus 1, and (F) Chihuahua culicoides virus 1. Reactions were performed
using total RNA extracted from the five pools (lanes 1-5). A non-template negative control was
also included (lane 6). M denotes the molecular weight marker with the size of each band denoted.
RT-PCRs were also performed using Chihuahua culicoides tombusvirus 1-specific primers, but no
amplicons were detected and therefore, the gel image is not shown; Table S1: Average read depths of
novel viruses detected in midges from Mexico; Table S2: Predicted genome sizes and percentage of
genome coverage of novel viruses detected in midges from Mexico; Table S3: Genetic relatedness
between Chihuahua culicoides partitiviruses 1 and 2 and select classified viruses within the family
Partitiviridae; Table S4: Genetic relatedness between Chihuahua culicoides totivirus 1 and the type
species of each genus within the family Totiviridae.
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