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Abstract: In the field of structural damage detection through vibration measurements, most existing
methods demand extensive data collection, including vibration readings at multiple levels, strain
data, temperature measurements, and numerous vibration modes. These requirements result in
high costs and complex instrumentation processes. Additionally, many approaches fail to account
for model uncertainties, leading to significant discrepancies between the actual structure and its
numerical reference model, thus compromising the accuracy of damage identification. This study
introduces an innovative computational method aimed at minimizing data requirements, reducing
instrumentation costs, and functioning with fewer vibration modes. By utilizing information from a
single vibration sensor and at least three vibration modes, the method avoids the need for higher-
mode excitation, which typically demands specialized equipment. The approach also incorporates
model uncertainties related to geometry and mass distribution, improving the accuracy of damage
detection. The computational method was validated on a steel frame structure under various damage
conditions, categorized as single or multiple damage. The results indicate up to 100% accuracy in
locating damage and up to 80% accuracy in estimating its severity. These findings demonstrate the
method’s potential for detecting structural damage with limited data and at a significantly lower cost
compared to conventional techniques.
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1. Introduction

Structural damage detection has garnered significant attention over the past few
decades due to its importance in ensuring the safety and longevity of civil infrastruc-
tures. Damage detection methodologies can generally be categorized into local and global
methods. While local methods offer high precision in identifying damage location, they
often require predefined search regions and unrestricted access to structural components,
which is not always feasible. On the other hand, global methods, particularly those rely-
ing on vibration response measurements, have proven more practical for large structures
where accessibility and instrumentation are limited. These vibration-based methods uti-
lize either raw signals, such as acceleration and velocity, or processed data like modal
frequencies and shapes to detect damage, offering a non-destructive means of structural
health monitoring [1–13]. Despite their benefits, these methods face challenges related to
the complexity and non-linear behavior of structures [14]. Recent developments in the
use of neural networks for predicting structural behaviors have demonstrated a strong
ability to handle large datasets and adapt to the physical conditions of the environment. In
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