
Bioprospection of rattlesnake venom peptide fractions with anti-adipose 
and anti-insulin resistance activity in vitro

David Meléndez-Martínez a,b,1, Erika Ortega-Hernández a,b,1, Edwin Estefan Reza-Zaldívar c,d,  
Alejandro Carbajal-Saucedo e, Gustavo Arnaud-Franco f, Ana Gatica-Colima g,  
Luis Fernando Plenge-Tellechea g, Marilena Antunes-Ricardo a,b, Daniel A. Jacobo-Velázquez b,  
Karla Mayolo-Deloisa a,b, Omar Lozano a,h, Marco Rito-Palomares a,h, Jorge Benavides a,b,*

a Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
b Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849, Monterrey, N.L., Mexico
c Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan, 45201, Mexico
d Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan, 45201, Mexico
e Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Herpetología, San Nicolás de los Garza, Nuevo León, C.P. 66450, Mexico
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A B S T R A C T

Animal venoms are natural products that have served as a source of novel molecules that have inspired novel 
drugs for several diseases, including for metabolic diseases such as type-2 diabetes and obesity. From venoms, 
toxins such as exendin-4 (Heloderma suspectum) and crotamine (Crotalus durissus terrificus) have demonstrated 
their potential as treatments for obesity. Moreover, other toxins such as Phospholipases A2 and Disintegrins have 
shown their potential to modulate insulin secretion in vitro. This suggests an unexplored diversity of venom 
peptides with a potential anti-obesogenic in Mexican rattlesnake venoms. For that reason, this study explored the 
in vitro effect of Crotalus venom peptide-rich fractions on models for insulin resistance, adipocyte lipid accu-
mulation, antioxidant activity, and inflammation process through nitric oxide production inhibition. Our results 
demonstrated that the peptide-rich fractions of C. aquilus, C. ravus, and C. scutulatus scutulatus were capable of 
reverting insulin resistance, enhancing glucose consumption to normal control; C. culminatus, C. molossus oax-
acus, and C. polystictus diminished the lipid accumulation on adipocytes by 20%; C. aquilus, C. ravus, and C. s. 
salvini had the most significant cellular antioxidant activity, having nearly 80% of ROS inhibition. C. aquilus, C. 
pyrrhus, and C. s. salvini inhibited nitric oxide production by about 85%. We demonstrated the potential of these 
peptides from Crotalus venoms to develop novel drugs to treat type-2 diabetes and obesity. Moreover, we 
described for the first time that Crotalus venom peptide fractions have antioxidant and inflammatory properties 
in vitro models.

1. Introduction

Obesity is a chronic disease characterized by an excessive accumu-
lation of body fat (Izquierdo-Torres et al., 2022; Lustig et al., 2022). In 
Mexico, overweight and obesity are health problems that affect about 
73% of the adult population. Moreover, this problem affects childhood 

(6.6 million) and adolescence (7.3 million) (Shamah-Levy et al., 2022). 
Overweight and obesity are considered risk factors for 
non-communicable diseases such as metabolic syndrome, type 2 dia-
betes, insulin resistance, and cardiovascular diseases, among others 
(Chang and Hung, 2022; Lustig et al., 2022; Verduci et al., 2022). It can 
even decrease life expectancy from 5 to 20 years (Fontaine et al., 2003). 
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Several drugs have been developed to treat obesity but have limited 
efficacy, and they present significant side effects such as cardiovascular 
and cerebrovascular problems, cancer, and psychological problems such 
as depression or suicidal ideation (Müller et al., 2021).

In recent years, many research groups have been focused on 
searching for novel molecules with less or null side effects. For that 
reason, natural products have been studied as a source of molecules for 
obesity treatment and prevention (Chang and Hung, 2022; Wen et al., 
2022), including secretions from venomous animals (Amatya et al., 
2020; Coulter-Parkhill et al., 2021; de Oliveira et al., 2023; Oliveira 
et al., 2022). Exendin-4 is a peptide isolated from Gila monster lizard 
(Heloderma suspectum) that inspired drugs such as Byetta®, Bydureon®, 
Exenatide® or Semaglutide® to treat type 2 diabetes and obesity 
(Coulter-Parkhill et al., 2021; Wen et al., 2022; Wilding et al., 2021). 
Another reptile toxin is crotamine (Ctm), isolated from the South 
American rattlesnake (Crotalus durissus terrificus) (Rádis-Baptista, 2021). 
In vivo experimentation on mice demonstrated that Ctm decreased body 
weight gain and white adipose tissue, promoting adipose browning. 
Also, increased glucose tolerance and diminished the lipid levels in 
bloodstream (Marinovic et al., 2018). Moreover, other Ctm-like peptide 
isolated from C. d. cascavella can promote insulin secretion in pancreatic 
β-cells during insulin resistance (IR) (Toyama et al., 2005). Furthermore, 
venom fractions obtained from C. adamanteus and C. vegrandis con-
taining phospholipases A2 (PLA2) and disintegrins (Dis) were demon-
strated to be insulinotropic in vitro models (Moore et al., 2015).

The information reported about the application of new toxin- 
inspired drugs to treat type-2 diabetes and obesity is scarce and 
almost limited to Exendin-4 and Ctm. Nevertheless, this information 
suggests that an unexplored diversity of peptides with a role in obesity 
control may exist in reptile venoms, particularly in the rattlesnakes 
(Crotalus spp.) from which various Ctm-like peptides have been 
described from other species than C. d. terrificus (Borja et al., 2018; 
Ponce-López et al., 2021; Ponce-Soto et al., 2007; Salazar et al., 2020; 
Toyama et al., 2005). Thus, this study explored the effect of 18 Mexican 
rattlesnake (Crotalus) venom peptide-rich fractions in obesity related in 
vitro models. These models include a lipid accumulation model in 
adipocyte-differentiated 3T3-L1 cells and insulin resistance model in 
HepG2 cells. Moreover, cellular antioxidant activity and 
anti-inflammatory activities were assayed in HepG2 and Raw 264.7 cell 
lines, respectively. The last two models were evaluated as obesity gen-
erates an abnormal hypertrophy in adipose tissue and disturbances in 
lipid and glucose metabolism, leading to chronic inflammation and 
oxidative stress (Morigny et al., 2021; Włodarczyk and Nowicka, 2019). 
These results will provide novel insights into the bioprospection of the 
rattlesnake venom peptide-rich fractions and their potential to explore 
new molecule alternatives to develop new toxin-inspired drugs to treat 
type-2 diabetes and obesity.

2. Materials and methods

2.1. Chemicals

The following chemicals: 2′,7′-Dichlorofluorescein diacetate (DCFH- 
DA), 2,2′-azobis (2-methylpropionamidine)dihydrochloride (AAPH), 3- 
Isobutyl-1-methylxanthine (IBMX), aluminum sulfate-(14–18)-hydrate, 
bovine insulin solution, dexamethasone, human insulin solution, gli-
benclamide (Glib), Glucose (GO) Assay Kit, lipopolysaccharide (LPS), N, 
N′-methylenebis acrylamide, sodium dodecyl sulfate, and sulfuric acid 
were obtained from Sigma Aldich (St. Louis, MO, USA). Dulbecco 
Modified Eagle Medium (DMEM), high glucose DMEM, fetal bovine 
serum, phosphate-buffered saline (PBS, pH 7.4), 0.25% trypsin-0.1% 
EDTA, and Penicillin-Streptomycin antibiotic (Pen-Strep) were acquired 
from GIBCO (Carlsbad, CA, USA). Acrylamide, Coomassie brilliant blue 
G-250, Precision Plus Protein™ Dual Xtra, tricine, and tris were acquired 
from Bio-Rad (Hercules, CA, USA). Griess Reagent System and CellTiter 
96 AQueous One Solution Cell Proliferation Assay kits were acquired from 

Promega (G2930, Madison, WI, USA). Bovine calf serum was acquired 
from Corning (Glendale, AZ, USA). Ethanol was acquired from Desar-
rollo de Especialidades Químicas (Monterrey, NL, México). Orthophos-
phoric acid was acquired from J.T. Baker (Phillipsburg, NJ, USA). Pierce 
Quantitative Colorimetric Peptide Assay Kit was acquired from Thermo 
Fisher Scientific (Waltham, MA, USA).

2.2. Crotalus venom samples

The venom samples from Crotalus species were obtained from spec-
imens captured in the wild and released at the same point and from 
specimens kept in captivity from various private and institutional col-
lections, listed in Table 1. Venom extraction was performed, and each 
sample was individually stored in liquid nitrogen, lyophilized using a 
Freeze Plus system (LabConco, MO, USA), and stored at − 20 ◦C until 
used (Arnaud-Franco et al., 2023).

2.3. Tricine-SDS-PAGE

The protein pattern of Crotalus whole venom samples was observed 
in Tricine-SDS-PAGE under reducing conditions according to Schägger 
(2006) and stained using Coomassie colloidal stain (Dyballa and 
Metzger, 2009). Briefly, 10 μg of each venom sample was dissolved in 5X 
loading buffer (250 mM Tris-HCl pH 6.8, 8% SDS, 0.1% bromophenol 
blue, and 40% glycerol, 10% β-mercaptoethanol), boiled and applied to 
a 16% Tricine-SDS-PAGE. The gels were run at 120 V until the molecular 
weight marker bands were completely resolved. Gels were washed trice 
with MilliQ water and stained overnight with Coomassie colloidal 
staining (0.02% CBB G-250, 5% aluminum sulfate-(14–18)-hydrate, 
10% ethanol (96%), 2% orthophosphoric acid (85 %)). Then, gels were 
washed twice with MilliQ water, and the images were obtained with the 
iBright FL1500 Imaging System (Thermo Fisher Scientific, MA, USA). 
The apparent molecular weight of the peptide bands was calculated 
using Precision Plus Protein™ Dual Xtra as the molecular weight 
marker.

2.4. Peptide fractionation

Crotalus venom peptide fractions were isolated through ultrafiltra-
tion, as previously described by da Silva Caldeira et al. (da Silva Caldeira 
et al., 2021). Briefly, about 50 mg of each pooled venom was dissolved in 
4 mL of H2O, centrifuged at 15 min for 13,500 rpm at 4 ◦C using a 
Microfuge® 22R centrifuge (Beckman Coulter, CA, USA) to remove 
insoluble proteins and cellular debris. The supernatants were ultra-
filtered to obtain the peptide-rich fraction using a 3000 Da NMWL 
Amicon Ultra-4 regenerated cellulose filter. The eluate peptide-rich 
fraction was collected and stored at − 20 ◦C until utilization.

2.5. Peptide-rich fractions quantification

Crotalus venom peptide-rich fractions were quantified using the 
Pierce Quantitative Colorimetric Peptide Assay Kit using the peptide 
digest as standard. Briefly, 20 μL of each peptide-rich fraction sample 
was mixed with 180 μL of the working reagent and incubated for 15 min 
at 37 ◦C. Absorbance was measured at 480 nm using a microplate reader 
(Synergy HT, Biotek, Winooski, VT, USA).

2.6. In vitro activity of peptide-rich fractions isolated from Crotalus snake 
venoms

The effects of Crotalus venom peptide-rich fractions were evaluated 
on the following in vitro models: IR, lipid accumulation, cellular anti-
oxidant activity (CAA), and nitric oxide production inhibition.

2.6.1. Cell lines
3T3-L1 Murine fibroblast cells, HepG2 human hepatocyte carcinoma 
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cells and Raw 264.7 murine macrophage cells and were obtained from 
the American Collection Type Culture (ATCC®, VA, USA).

2.6.2. Cell viability measurement
The viability of 3T3-L1, HepG2, and Raw 264.7 cells treated with 

Crotalus venom peptide-rich fractions was determined by the MTS [3- 
(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-
phenyl)-2H-tetrzolium]-based CellTiter 96 AQueous One Solution Cell 
Proliferation Assay. During this experiment, MTS is reduced to produce 
formazan by physiologically important reducing agents such as succi-
nate dehydrogenase, NADPH and NADH. MTS reduction is mainly 
related to the mitochondrial electron transport, demonstrating that this 
measure reflects the viability of metabolically active cells (Berridge and 
Tan, 1993). To achieve the cell viability, different concentrations of 
venom peptide-rich fractions (0–20 μg/mL) were tested for 24 h in all 
the cell lines. After incubation, absorbance was measured at 490 nm 
with a 96-well microplate reader (Synergy HT, Bio-Tek, Winooski, VM, 
USA). Cell viability percentage (%) was calculated by dividing the 
absorbance of cells treated by the absorbance of the control (non--
treated) cells and multiplied by 100.

2.6.3. Insulin resistance
The IR model was performed according to the method described by 

Huang et al. (2015) with slight modifications. Human HepG2 cells were 
grown in DMEM supplemented with 10% FBS, and 1% Pen-Strep anti-
biotic and maintained at 37 ◦C in a humidified atmosphere of 5 % CO2. 
Cells were seeded in a 96-well plate (5 × 104 cells/well) and allowed to 
adhere for 16–24 h. After that, the medium was replaced, and cells were 
incubated for 24 h with DMEM containing 25 mM D-glucose, 4 mM 
glutamine, and 1% FBS. Subsequently, half of the wells were treated 
with 50 μL insulin (5 × 10− 7 mol/L), while the remaining wells served as 

Table 1 
Crotalus venom samples used for peptide-rich fraction extraction. The 
geographical origin of each sample that comprises the pooled venom is 
described.

Species 
(Abbreviature)

Pooled 
venom 
(mg)

ID Municipality (Collection)

C. aquilus (Caq) 53.7 HK_634 Calvillo, Aguascalientes 
(INIRENA)

 HK_643 El Marqués, Querétaro 
(UAQ Vivarium)

 HK_733 Acámbaro, Michoacán 
(Najil Kaan Herpetarium)

C. armstrongi 
(Carm)

44.5 HK_727 Tancítaro, Michoacán 
(INIRENA)

 HK_728 Indapanapeo, Michoacán 
(INIRENA)

 HK_730 Morelia, Michoacán 
(INIRENA)

C. atrox (Catx) 60 IO_C1_Crax3 Juarez City, Chihuahua 
(LEBA, UACJ)

 IO_C1_Crax4 Juarez City, Chihuahua 
(LEBA, UACJ)

 IO_C1_Crax5 Juarez City, Chihuahua 
(LEBA, UACJ)

C. basiliscus (Cbas) 50.1 HK_447 Coquimatlan, Colima 
(Parque Ecologico el 
Palapo)

 HK_455 Coquimatlan, Colima 
(Parque Ecologico el 
Palapo)

 HK_499 Unknown (Najil Kaan 
Herpetarium)

C. catalinensis 
(Ccat)

46.1 HK_410 Isla Santa Catalina, Baja 
California Sur*

 HK_411 Isla Santa Catalina, Baja 
California Sur*

 HK_412 Isla Santa Catalina, Baja 
California Sur*

C. culminatus 
(Ccul)

63.2 HK_512 Jojutla, Morelos (Najil Kaan 
Herpetarium)

 HK_663 Morelos (UMA El Teutle)
 HK_745 Malinalco, Estado de México 

(UMA Malinalcóatl)
C. enyo (Ceny) 46.2 IOR_C1_Ceny1 La Paz, Baja California Sur*

 IOR_C1_Ceny2 La Paz, Baja California Sur*
 HK_782 La Paz, Baja California Sur*

C. oreganus helleri 
(Chell)

48.2 HK_911 Ensenada, Baja California 
(UABC Herpetarium)

 HK_912 Ensenada, Baja California 
(UABC Herpetarium)

 HK_918 Ensenada, Baja California 
(UABC Herpetarium)

C. molossus 
nigrescens (Cmn)

64.3 HK_339 Arteaga, Coahuila (MUDE)
 HK_353 San Juan del Río, Qerétaro*
 HK_354 San Juan del Río, Qerétaro*

C. m. oaxacus 
(Coax)

57.4 HK_351 Oaxaca*
 HK_377 Amozoc, Puebla (Staku 

Luhua Herpetarium, UV 
Xalapa)

 IOR_C1_Coax1 Oaxaca*
C. ornatus (Corn) 51 HK_334 Saltillo, Coahuila (MUDE)

 HK_335 Saltillo, Coahuila (MUDE)
 HK_336 Saltillo, Coahuila (MUDE)
 IO_C1_Cror8 Ascencion, Chihuahua 

(LEBA, UACJ)
C. polystictus 

(Cpol)
51.5 HK_393 Morelia, Michoacán 

(INIRENA)
 HK_394 Morelia, Michoacán 

(INIRENA)
 HK_638 Unknown (UAA 

Herpetarium)
C. pyrrhus (Cpyr) 44.2 HK_915 Ensenada, Baja California 

(UABC Herpetarium)
 HK_420 Ensenada, Baja California 

(UABC Herpetarium)

Table 1 (continued )

Species 
(Abbreviature)

Pooled 
venom 
(mg)

ID Municipality (Collection)

C. ravus (Crav) 49.9 HK_601 Mexico City (Facultad de 
ciencias Herpetarium, 
UNAM)

 HK_602 Mexico City (Facultad de 
ciencias Herpetarium, 
UNAM)

 HK_603 Mexico City (Facultad de 
ciencias Herpetarium, 
UNAM)

C. ruber lucasensis 
(Cluc)

56.2 IOR_C1_Cluc1 La Paz, Baja California Sur*
 IOR_C1_Cluc2 La Paz, Baja California Sur*
 IOR_C1_Cluc3 La Paz, Baja California Sur*

C. r. ruber (Crub) 55.7 HK_794 Ensenada, Baja California 
(UABC Herpetarium)

 HK_795 Ensenada, Baja California 
(UABC Herpetarium)

 HK_917 Ensenada, Baja California 
(UABC Herpetarium)

C. scutulatus salvini 
(Csal)

54.3 HK_858 Perote, Veracruz*
 HK_870 Perote, Veracruz*
 HK_871 Tepeyahualco, Puebla*

C. s. scutulatus 
(Cscu)

50.5 IO_C1_Crsc1 Janos, Chihuahua (LEBA, 
UACJ)

 IO_C1_Crsc2 Janos, Chihuahua (LEBA, 
UACJ)

Abbreviatures: INIRENA, Instituto de Investigaciones sobre los Recursos Natu-
rales; LEBA, Laboratorio de Ecología y Biodiversidad Animal; MUDE, Museo del 
Desierto; UAA, Universidad Autónoma de Aguascalientes; UABC, Universidad 
Autónoma de Baja California; UACJ, Universidad Autónoma de Ciudad Juárez; 
UMA, Unidad de Manejo para la conservación de la Vida Silvestre; UNAM, 
Universidad Nacional Autónoma de México; UAQ, Universidad Autónoma de 
Querétaro; UV, Universidad de Veracruz.
Note: The samples with an asterisk (*) were obtained from specimens captured 
in the wild and released at the same point.
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controls for each sample. As a positive control for insulin resistance 
modulation, we used 200 mM Glib to treat the cells. Glib is a commercial 
drug used for the treatment of diabetes by increasing the sensitivity of 
peripheral tissues to insulin action.

After 24 h insulin incubation, the supplemented DMEM media was 
replaced with fresh media containing Crotalus peptide-rich fractions (5 
μg/mL) for 5 h. At the end of the incubation, the amount of glucose on 
the medium was determined using the Glucose (GO) assay kit (Sigma- 
Aldrich, MO, USA) according to manufacturer’s directions. The absor-
bance values were read at 540 nm on a Synergy HT plate reader (Bio-Tek 
Instruments, Inc., VT, USA). The glucose consumption was obtained by 
subtracting the blank wells from the treatment glucose concentrations.

2.6.4. Lipid accumulation assay
The 3T3-L1 cells were grown in DMEM-high glucose supplemented 

with 10% bovine calf serum and 1% Pen-Strep antibiotic at 37 ◦C and 5% 
CO2. After reaching confluency, cells were seeded in a 24-well plate (1.5- 
2 × 104 cells/well) and differentiated according to Zebisch et al. (2012). 
Confluent wells were differentiated with DMEM high glucose supple-
mented with 10% FBS, 0.5 mM IBMX, 0.25 μM dexamethasone, and 5 
μg/mL insulin. From day forth to sixth, the cells were cultured with 
DMEM high glucose supplemented with 10% FBS and 5 μg/mL insulin. 
From the seventh to the ninth day, the cells were cultured with DMEM 
high glucose supplemented only with 10% FBS. All venom peptide-rich 
fractions dissolved in PBS were added in every cell media change, the 
effect of PBS alone was assayed (defined as vehicle in Fig. 3). The 3T3-L1 
cells were considered fully differentiated on the ninth day of culture.

The lipid accumulation in 3T3-L1 adipocytes was quantified using 
Oil Red O staining. Once the differentiation was finished, the media was 
discarded, and the cells were washed twice with 0.01 M PBS pH 7.4. 
After, the cells were fixed with 4% paraformaldehyde for 15 min and 
washed twice with PBS. Then, the cells were permeated with 60% iso-
propanol for 15 s. The cells were stained with Oil Red O solution (5 mg/L 
in isopropanol) for 20 min and washed twice with PBS. The cell treat-
ments were examined under a light microscope (OPTIKA IM-3, OPTIKA, 
Italy) coupled to a digital camera (Optikam PRO8 Digital Camera C-P8, 
OPTIKA, Italy). Finally, the Oil Red O solution retained by the cells was 
extracted with 60% isopropanol, and the total lipid content was 
measured at 490 nm. Lipid content percentage (%) was calculated by 
dividing the absorbance of cells treated by the absorbance of the control 
(non-treated) cells and multiplied by 100.

2.6.5. Cellular antioxidant activity
To evaluate the CAA of the Crotalus venom peptide-rich fractions, we 

used the pro-oxidant molecule AAPH as described by Gutiérrez-Grijalva 
et al. (2019). HepG2 cells were grown in DMEM supplemented with 10% 
FBS, and 1% Pen-Strep antibiotic and maintained at 37 ◦C in a humid-
ified atmosphere of 5 % CO2. Cells were seeded in a 96-well plate (5 ×
104 cells/well) and allowed to adhere for 16–24 h. After that, cells were 
treated with 100 μL of Crotalus venom peptide-rich fractions (2 μg/mL) 
containing DCFH-DA (60 μM). Then, the cells were incubated for 20 min 
at 37 ◦C. After, the treatment solutions were discarded, and the cells 
were rinsed twice with PBS. Lastly, 100 μL of a 500 μM AAPH solution 
was added to each well, excluding the blank and negative controls. Cell 
blank control was incubated with DCFH-DA in absence of Crotalus 
venom peptide-rich fractions and AAPH, negative controls were incu-
bated with Crotalus venom peptide-rich fractions in absence of AAPH, 
and positive control was incubated with AAPH in absence of Crotalus 
venom peptide-rich fractions. Fluorescence was measured at 485 nm 
(excitation) and 538 nm (emission) every 2 min for 90 min at 37 ◦C using 
a microplate reader. Equation (1) was utilized to calculate CAA values: 

CAA unit= 1 −

∫
SA

∫
CA

(1) 

Where 
∫

SA represents the integrated area under the curve of sample 

fluorescence versus time, and 
∫

CA represents the integrated area from 
the negative control curve.

2.6.6. Nitric oxide determination
Nitric oxide production was measured in the macrophage cell line, 

Raw 264.7, according to Ortega-Hernández et al. (Ortega-Hernández 
et al., 2023). The Raw 264.7 cells were grown in DMEM supplemented 
with 5% FBS and 1% Pen-Strep antibiotic at 37 ◦C and 5% CO2. After 
reaching confluency, cells were seeded in a 96-well plate (5 × 104 

cells/well) and allowed to adhere for 16–24 h. To evaluate the effects of 
Crotalus venom peptide-rich fractions, 50 μL of each peptide-rich frac-
tion (2 μg/mL) was added to the cells. After 4 h of incubation, half of the 
wells were stimulated with LPS at 1 μg/mL, while the remaining wells 
served as negative controls for each sample. The nitrite concentration in 
the cell culture supernatant was used to measure nitric oxide produc-
tion. The amount of nitrite in the medium (100 μL) was measured with 
the Griess Reagent System (Promega, Madison, WI, USA) according to 
the manufacturer’s directions. The absorbance readings were obtained 
at 550 nm on a Synergy HT plate reader (Bio-Tek Instruments, Inc., VT, 
USA) after 10 min incubation. A standard curve of sodium nitrite 
(1.5–50 μM) was prepared to quantify nitrate concentration. Untreated 
and LPS-stimulated cells were used as negative and positive controls, 
respectively. The percentage of nitric oxide inhibition (%) was calcu-
lated using Equation (2): 

Nitric oxide inhibition (%)=

(
Sample − Nsc

Pc − Nc

)

× 100 (2) 

Where Sample represents the LPS-stimulated cells treated with Crotalus 
venom peptide-rich fractions, Nsc (Negative sample control) represents 
the LPS-free cells treated with Crotalus venom peptide-rich fractions, Pc 
(positive control) represents the LPS-stimulated cells, and Nc (Negative 
control) represents the LPS-free cells.

2.7. Data analysis

All experiments were performed by at least three independent rep-
licates. The results were expressed as mean ± standard deviation. The 
experiments were analyzed by analysis of variance (ANOVA). When 
ANOVA showed significant differences (p < 0.05), the least significant 
difference (LSD) test was performed. LSD test allowed us to compare the 
mean of each venom sample with every other venom sample, identifying 
which venom samples have statistically different means. In the figures, 
the LSD statistical differences were denoted by letters above the bars, 
when two or more venom samples had a different letter, they did have 
statistical difference (p ≤ 0.05). The statistical analyses were done in 
Minitab 21 (PA, USA) and plotted in Prism Graph Pad 9.

3. Results

In this study, 54 samples of venom extracted from 18 Crotalus species 
and subspecies were used (Table 1). To test the therapeutic potential of 
the Crotalus venom peptide-rich fraction to treat type-2 diabetes and 
obesity, we used in vitro models to test insulin resistance and adipocyte 
lipid accumulation. Additionally, we evaluated the antioxidant and anti- 
inflammatory potential of the peptides due to obesity and type-2 dia-
betes can elicit oxidative stress and activate inflammatory pathways 
(Hurrle and Hsu, 2017; Panic et al., 2022).

3.1. Electrophoretic venom profile

The whole venom profile (including proteins and peptides) from 
each tested species was observed through 16% Tricine-SDS-PAGE 
(Fig. 1). All the venom samples showed a complex pattern of proteins 
bands distributed from 6 to 50 kDa (Fig. 1), with a similar composition 
of the major and minor toxin bands: P-I (21–25 kDa) and P-III (45–55 
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kDa) snake venom metalloproteinases, PLA2 (12–15 kDa), snake venom 
serine proteases (30–40 kDa), C-type lectins (14–17 kDa), L-amino acid 
oxidases (>50 kDa), cysteine-rich secretory proteins (25–28 kDa) 
(Arnaud et al., 2021; Borja et al., 2018; Calvete et al., 2009; Durban 
et al., 2017; Franco-Servín et al., 2021; Lazcano-Pérez et al., 2022; 
Mackessy et al., 2018; Mackessy, 2010; Roldán-Padrón et al., 2022; 
Sánchez et al., 2020; Segura et al., 2017; Smith and Mackessy, 2016). In 
addition, several bands of low molecular weight (<10 kDa, hereafter 
referred to as peptides) were evident in the venom profiles.

3.2. Insulin resistance

In the IR condition, the liver cells do not respond adequately to in-
sulin signals, so they do not efficiently absorb glucose from the blood 
(Mather et al., 2013). As a result, blood glucose levels remain elevated. 
Our results demonstrated that the Crav peptide-rich fraction increased 
the glucose uptake (65.91 ± 3.30%) as high as the negative control 
(67.43 ± 3.52%) and the Glib IR-induced control (56.41 ± 4.53%) 
(Fig. 2). Other peptide-rich fractions such as Caq (61.30 ± 0.83%), Cscu 
(60.30 ± 3.48%), Cpyr (58.38 ± 3.99%), Ccul (56.24 ± 3.56%), and 
Csal (52.92 ± 4.33%) showed an increase in the glucose cellular uptake 
as high as the observed in Glib IR-induced control. On the other hand, 
the other peptide-rich samples did not have any glucose consumption 
modulation.

3.3. Lipid accumulation effect

To perform the lipid accumulation assay, we selected an experi-
mental concentration of 25 μg/mL for all Crotalus venom peptide-rich 
fractions. This concentration generated a minimal effect on differenti-
ated 3T3-L1 cell viability (85%) during 24 h exposure. The anti- 
obesogenic potential of the Crotalus venom peptide-rich fractions was 
evaluated during the differentiation process of 3T3-L1 cells using Oil 
Red O staining, this dye is used to stain neutral lipids, cholesteryl esters, 
and lipoproteins (Du et al., 2023). The effects of 25 μg/mL of peptide 
fractions on intracellular lipid accumulation are shown in Fig. 3, 
including micrographs of some of the fractions with the most significant 
effect (Fig. 3A). A reduction in lipid content was observed after treat-
ment of 3T3-L1 cells with Coax, Cpol, Crav, and Cscu peptide fractions 
compared to the control. This change of morphology in droplet size has 
been associated with the browning of the adipose tissue (Dong et al., 
2023).

The quantification of oil red O staining (Fig. 3B) demonstrated that 
Ccul, Coax, Cpol, and Cscu peptide fractions show the most significant 
diminishment of intracellular lipids accumulation (p < 0.05), reducing 
Oil Red O staining by 24.64 ± 1.56%, 26.24 ± 3.80%, 21.70 ± 13.97%, 
and 15.49 ± 3.37%, respectively, when compared to the control group. 
The micrographs and the quantification of the oil red O confirm that the 
peptide fraction of Coax venom has the most remarkable anti- 

Fig. 1. Tricine-SDS-PAGE visualization of the toxin profile for the evaluated rattlesnake venom samples. The venom samples (10 μg of each venom) were 
separated on a 16% Tricine-SDS-PAGE under reducing conditions and the gels were stained with Coomassie colloidal dye. Caq, C. aquilus; Carm, C. armstrongi; Catx, 
C. atrox; Cbas, C. basiliscus, Ccat: C. catalinensis; Ccul, C. culminatus; Ceny, C. enyo; Chel, C. oreganus helleri; Cmn, C. molossus nigrescens; Coax, C. m. oaxacus; Corn, 
C. ornatus; Cpol, C. polystictus; Cpyr, C. pyrrhus; Crav, C. ravus; Cluc, C. ruber lucasensis; Crub, C. r. ruber; Csal, C. scutulatus salvini; Cscu, C. s. scutulatus; MWM, 
molecular weight marker.

Fig. 2. In vitro IR modulation by the Crotalus venom peptide-rich fractions in HepG2 cells. Crotalus venom peptide-rich fractions were tested using 5 μg/mL for 
5 h. Negative control (N) was cultured in the absence of insulin, whereas IR control was cultured in the presence of insulin. Both controls were cultured in the absence 
(Ctl) and presence of 200 μM Glib. The results were expressed as mean (black boxes) ± standard deviation (gray bars). Letters above the bars indicate the statistical 
differences through LSD test, different letters denotated statistical differences between venom samples (p ≤ 0.05). Caq, C. aquilus; Carm, C. armstrongi; Catx, C. atrox; 
Cbas, C. basiliscus, Ccat: C. catalinensis; Ccul, C. culminatus; Ceny, C. enyo; Chel, C. oreganus helleri; Cmn, C. molossus nigrescens; Coax, C. m. oaxacus; Corn, C. ornatus; 
Cpol, C. polystictus; Cpyr, C. pyrrhus; Crav, C. ravus; Cluc, C. ruber lucasensis; Crub, C. r. ruber; Csal, C. scutulatus salvini; Cscu, C. s. scutulatus.
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Fig. 3. Anti-obesogenic effect of the Crotalus venom peptide-rich fractions on white adipocyte differentiated 3T3-L1 cells. A) Representative micrographs of 
3T3-L1 cells treated with Crotalus venom peptide-rich fractions (Coax, Cpol, Crav, and Cscu) at the end of the differentiation process and stained with oil red O. These 
micrographs demonstrated the diminishment of lipid content. The micrographs were acquired with a 20X objective. Scale bar equal to 250 μm. B) The lipid content at 
the end of the experimentation was measured, through the extraction of the oil red O dye retained from 3T3-L1 cells. The results were expressed as mean (black 
boxes) ± standard deviation (gray bars). Letters above the bars indicate the statistical differences through LSD test, different letters denotated statistical differences 
between venom samples (p ≤ 0.05). Caq, C. aquilus; Carm, C. armstrongi; Catx, C. atrox; Cbas, C. basiliscus, Ccat: C. catalinensis; Ccul, C. culminatus; Ceny, C. enyo; Chel, 
C. oreganus helleri; Cmn, C. molossus nigrescens; Coax, C. m. oaxacus; Corn, C. ornatus; Cpol, C. polystictus; Cpyr, C. pyrrhus; Crav, C. ravus; Cluc, C. ruber lucasensis; Crub, 
C. r. ruber; Csal, C. scutulatus salvini; Cscu, C. s. scutulatus; Ctl, control; VH, vehicle. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)

Fig. 4. Cellular antioxidant activity (CAA) percentage of the Crotalus venom peptide-rich fractions on HepG2 cells. The antioxidant activity was evaluated 
incubating the HepG2 cells with the Crotalus venom peptide-rich fractions (2 μg/mL) to prevent the pro-oxidant effect of AAPH. The results were expressed as mean 
(black boxes) ± standard deviation (gray bars). Letters above the bars indicate the statistical differences through LSD test, different letters denotated statistical 
differences between venom samples (p ≤ 0.05). Caq, C. aquilus; Carm, C. armstrongi; Catx, C. atrox; Cbas, C. basiliscus, Ccat: C. catalinensis; Ccul, C. culminatus; Ceny, 
C. enyo; Chel, C. oreganus helleri; Cmn, C. molossus nigrescens; Coax, C. m. oaxacus; Corn, C. ornatus; Cpol, C. polystictus; Cpyr, C. pyrrhus; Crav, C. ravus; Cluc, C. ruber 
lucasensis; Crub, C. r. ruber; Csal, C. scutulatus salvini; Cscu, C. s. scutulatus.
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obesogenic activity. On the other hand, Chel (139.50 ± 1.12%) and 
Crub (138.70 ± 7.86%) peptide-rich fractions incremented the quantity 
of lipids contained in differentiated 3T3-L1 cells.

3.4. Cellular antioxidant activity

The CAA measured the ability of the venom peptide-rich fractions to 
react or neutralize the reactive oxygen species (ROS) generated in the 
cells after an oxidant stimulus elicited by AAPH. According to our re-
sults, the venom peptide-rich fractions with the higher antioxidant po-
tential were Csal (82.41 ± 7.82%), Caq (81.70 ± 8.52%), Crav (78.86 ±
7.95%), and Cluc (77.09 ± 7.54%), inhibiting about 80% of AAPH ROS 
production (Fig. 4). In contrast, less antioxidant activity was shown by 
Cpol (28.65 ± 2.66%) peptide-rich fraction.

3.5. Nitric oxide production inhibition

Nitric oxide is an important biomarker involved in different physi-
ological processes. Its synthesis is generated by the nitric oxide synthase, 
and can be elicited due to proinflammatory agents, including LPS, to 
mediate the host innate immune response to pathogens (Yoon et al., 
2009; Yoshikawa et al., 2000). Typically, nitric oxide (NO) production 
plays a vital role in combating bacteria and viruses. However, excessive 
NO production can lead to conditions such as sepsis or inflammatory 
diseases, including asthma, rhinitis, and cancer (Hong et al., 2023). 
Regulation of nitric oxide production is desirable for inti-inflammatory 
molecules. Therefore, we evaluated the potential anti-inflammatory 
activity of the venom peptide fractions through nitric oxide produc-
tion modulation. Our results showed an important nitric oxide produc-
tion reduction of 89.22, 85.72, and 87.02% elicited by Cpyr, Caq, and 
Csal venom peptide-rich fractions, respectively (Fig. 5). Cpol 
peptide-rich fraction showed the lower anti-inflammatory potential, 
exhibiting only 23% inhibition of nitric oxide.

4. Discussions

4.1. Electrophoretic venom profile

The peptide bands in Crotalus venom samples were evident in almost 
all venom samples except Caq, Ceny, Csal, and Cscu (Fig. 1). Never-
theless, even when the peptide content was not visible in the electro-
phoretic analysis, the peptide quantification method used in this 

research (Pierce Quantitative Colorimetric Peptide Assay Kit) demon-
strated the presence of the peptides. These bands were observed in the 
molecular weight range of the Dis (7–12 kDa) and Ctm-like peptides/ 
myotoxins (6–8 kDa). The venoms of Carm, Catx, Cbas, Ccat, Ccul, Chel, 
Coax, Corn, Cpol, Cpyr, Crav, Cluc, and Crub showed bands in the re-
ported molecular weight of Dis; interestingly, only Catx, Ccat, and Cpol 
venom had been described for having this toxin family in its venom 
(Arnaud et al., 2021; Calvete et al., 2009; Mackessy et al., 2018). On the 
other hand, the samples of Carm, Cbas, Ccat, Ccul, Chel, Corn, Cluc, and 
Crub showed bands with a molecular mass similar to Ctm-like myotoxin 
peptides. However, the presence of this toxin family has been described 
only for Cbas, Ccul, and Chel venoms (Ponce-López et al., 2021). 
Furthermore, other toxin families that are present in Crotalus venoms, 
such as natriuretic peptides, bradykinin-potentiating peptides and tri-
peptide inhibitors (Mackessy, 2010). Nevertheless, our results did not 
show bands with a similar molecular mass to these toxin families.

4.2. Insulin resistance

Some isoforms of the PLA2, Dis, and Ctm-like myotoxin families have 
been described to show modulatory effect in insulin resistance models 
(Marinovic et al., 2018; Moore et al., 2015; Nogueira et al., 2005; 
Toyama et al., 2005), as Glib, these peptides can sensitize the 
β-pancreatic cells to insulin (Finneran and Landon, 2018). The Ccul 
peptide-rich fraction was the only one among the different rattlesnake 
venoms that improved the glucose uptake in the IR model, from which a 
proteomic characterization has confirmed the presence of Dis and 
Ctm-like peptides (Durban et al., 2017). Besides, the Cpyr and Crav 
venoms had toxins with an apparent molecular mass similar to Dis and 
Ctm-like peptides, whereas, in the Caq, Csal, and Cscu venom samples, 
bands with this molecular weight were not observed (Fig. 1).

The mechanism of action of these toxins to generate the modulation 
of IR has yet to be fully understood. Nevertheless, Ctm-like peptides are 
assumed to induce this effect by modulating of the Nav channels present 
in β-pancreatic cells (Toyama et al., 2005; Toyama, 2000). Moreover, it 
has been demonstrated that margatoxin, isolated from the Bark Scorpion 
(Centruroides margaritatus) venom, which shares a similar molecular 
mechanism with Ctm-like peptides, increases the glucose uptake 
through the inhibition of Kv1.3 channels (Li et al., 2006). On the other 
hand, Dis may play a role in activating the β-pancreatic cell signaling 
pathways through receptor tyrosine kinases (Moore et al., 2015). These 
results suggest that Crav, Caq, Cscu, Cpyr, Ccul, and Csal peptide-rich 

Fig. 5. Nitric oxide inhibition by Crotalus venom peptide-rich fractions on Raw 264.7 cells. To evaluate the nitric oxide production, the Raw 264.7 cells were 
incubated with the Crotalus venom peptide-rich fractions (2 μg/mL). After the peptide-rich fraction incubation, nitric oxide production was stimulated with LPS (1 
μg/mL). The results were expressed as mean (black boxes) ± standard deviation (gray bars). Letters above the bars indicate the statistical differences through LSD 
test, different letters denotated statistical differences between venom samples (p ≤ 0.05). Untreated and LPS cells were used as positive control. Caq, C. aquilus; Carm, 
C. armstrongi; Catx, C. atrox; Cbas, C. basiliscus, Ccat: C. catalinensis; Ccul, C. culminatus; Ceny, C. enyo; Chel, C. oreganus helleri; Cmn, C. molossus nigrescens; Coax, C. m. 
oaxacus; Corn, C. ornatus; Cpol, C. polystictus; Cpyr, C. pyrrhus; Crav, C. ravus; Cluc, C. ruber lucasensis; Crub, C. r. ruber; Csal, C. scutulatus salvini; Cscu, C. s. scutulatus.

D. Meléndez-Martínez et al.                                                                                                                                                                                                                  Toxicon: X 24 (2024) 100209 

7 



fractions contain peptides that may serve to mitigate IR on type-2 dia-
betic patients.

4.3. Lipid accumulation effect

The adipocyte reduction of lipid droplet size and lipid content 
generated by Ccul, Coax, Cpol, and Cscu peptide-rich fractions (Fig. 3) 
suggest that the peptides contained in these fractions activate lipid 
catabolism and may generate browning on adipocytes. This phenome-
non is especially important, as the fat-burning generated by brown 
adipocyte cells is related to body weight loss and IR mitigation (Cheng 
et al., 2021). This phenomenon is only described for two snake venom 
toxins, Ctm from C. d. terrificus and pOh2 from the king cobra (Ophio-
phagus hannah). Both toxins reduced lipid accumulation in adipocytes 
(Marinovic et al., 2018; Nguyen et al., 2017).

The mechanism of action of both toxins to elicit the lipid accumu-
lation diminishment remains unclear. Nevertheless, the mechanism of 
action of these peptide fractions to promote this reduction of lipid 
accumulation could be induced through Kv1.3 channel modulation since 
this channel regulates energy homeostasis and body weight (Xu, 2003). 
It has been reported that venom toxins such as ShK-186 and margatoxin 
can inhibit the Kv1.3 channel to induce insulin sensitivity and diminish 
lipid accumulation (Li et al., 2006; Upadhyay et al., 2013). Moreover, a 
similar effect was observed in mice treated with a Kv channel modulator 
Ctm from C. d. terrificus venom (Peigneur et al., 2012), generating 
browning in adipocytes (Marinovic et al., 2018). Other Ctm-like pep-
tides have been described or visualized in Ccul, Cpol, and Cscu venoms, 
which can explain the results observed in 3T3-L1 cells (Borja et al., 
2014; Mackessy et al., 2018; Ponce-López et al., 2021).

On the other hand, Chel and Crub peptide-rich fractions increased 
the lipid content on 3T3-L1 (Fig. 3). This suggests that these peptide-rich 
fractions are still inducing adipocyte differentiation. Nevertheless, to 
ensure that the Chel and Crub peptide-rich fractions are inducing 
adipocyte differentiation, the activation of other markers such as the 
peroxisome proliferator-activated receptor γ and CCAAT/enhancer- 
binding protein α must be measured (Choi and Yoo, 2018).

4.4. Cellular antioxidant activity

Snake venoms and their toxins, such as snake venom metal-
loproteinases, PLA2, and L-amino acid oxidases, are traditionally 
recognized for their pro-oxidant activity during envenomation (dos Reis 
et al., 2022; Sunitha et al., 2015), while no antioxidant activity has been 
previously reported in the Crotalus venoms. The BmT-2 toxin isolated 
from the Brazilian Lancehead (Bothrops moojeni) venom and 
salamandrin-I from the Fire Salamander (Salamandra) skin secretions 
was demonstrated to generate antioxidant activity (Dematei et al., 2022; 
Plácido et al., 2020). Both toxins are aromatic-rich peptides, in which 
Trp and Tyr residues could function as an electron acceptor when 
exposed to AAPH (Fuentes-Lemus et al., 2016; Zheng et al., 2016), 
suggesting that small peptides rich in aromatic residues from snake 
venoms can act as an antioxidant component. The presence of the two 
Trp and one Tyr residues in the Ctm-like peptides surface (Coronado 
et al., 2013) could be responsible for the antioxidant activity found in 
this work. However, a more detailed analysis must be performed to 
corroborate this hypothesis.

The antioxidant effect observed in Csal, Caq, Crav, and Cluc peptide- 
rich fractions may be beneficial during type-2 diabetes and obesity 
treatments. Both diseases increase oxidant stress, exacerbating its long- 
term effects. Here, the Crotalus venom peptides may have a dual effect, 
acting as anti-diabetic and anti-obesogenic drugs and mitigating 
oxidative stress.

4.5. Nitric oxide production inhibition

Several snake venoms and isolated toxins are reported to modulate 

macrophage metabolism and functioning (Sampaio et al., 2001), 
including Ctm (Lee et al., 2016), crotoxin (Neves et al., 2023; Sampaio 
et al., 2003), PLA2 (Zuliani et al., 2024). Particularly, the increase in 
nitric oxide production is described for the whole venom of the Golden 
Lancehead (B. insularis) venom (Alberto-Silva et al., 2020), as well as the 
peptide fraction of the Yarará Lancehead (B. jararaca) venom (Menezes 
et al., 2016) and pure Ctm from C. d. terrificus venom (Lee et al., 2016). 
In contrast, an RGD-containing Dis isolated from the Brown spotted pit 
viper (Protobothrops mucrosquamatus) venom is capable of 
down-regulate the expression of the inducible nitric oxide synthase on 
Raw 264.7 cells (Hung et al., 2016). This phenomenon is elicited 
through Dis interaction with αVβ3 integrin, blocking MAP kinase and 
activating of NF-κB transcription factor. Crotalus venoms are rich sour-
ces of Dis toxins (Sánchez et al., 2006; Scarborough et al., 1993; Soto 
et al., 2007), suggesting that they could be involved in the inhibition of 
inflammatory response by a similar mechanism reported for 
P. mucrosquamatus.

The suppression of the inflammatory process generated by Cpyr, Caq, 
and Csal venom peptide-rich fractions may be relevant during type-2 
diabetes and obesity treatment. Both diseases are associated with an 
excessive inflammatory response. Therefore, anti-inflammatory activity 
present in Crotalus peptides may be beneficial during type-2 diabetes 
and obesity treatment.

This research demonstrated that the peptides contained in peptide- 
rich fractions from Caq, Cpyr, Crav, Csal, and Csu are relevant to 
revert IR, diminishing lipid accumulation, and mitigate oxidative stress 
and inflammation. Nevertheless, to develop a drug to treat any of these 
health problems several steps must be followed. First, activity-guided 
isolation must be performed to have an active isolated peptide. Then, 
corroborate the in vitro and in vivo activity of the peptide. And finally, 
test the effectiveness and safety of the peptide in preclinical models.

5. Conclusions

This work showed that the peptide-rich fractions from Crotalus 
venoms contain peptides that can revert IR, diminish lipid accumula-
tion, and mitigate oxidative stress and inflammation on in vitro models. 
Notably, Caq, Cpyr, Crav, Csal, and Cscu peptide-rich fractions 
demonstrated significant potential to revert the IR condition and miti-
gate oxidative stress. Ccul peptide-rich fraction was able to modulate IR 
and lipid accumulation. Coax, Corn, and Cpol peptide-rich fractions only 
modulated lipid accumulation. Finally, Cmn and Cluc peptide-rich 
fractions were able to reverse cellular oxidation. These results demon-
strated the therapeutic potential of the peptides contained in the Cro-
talus venoms to develop novel toxin-inspired drugs to treat metabolic 
diseases such as type-2 diabetes and obesity.
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Pérez from Vivarium UAQ.

References

Alberto-Silva, C., Franzin, C.S., Gilio, J.M., Bonfim, R.S., Querobino, S.M., 2020. 
Toxicological effects of bioactive peptide fractions obtained from Bothrops jararaca 
snake venom on the structure and function of mouse seminiferous epithelium. 
J. Venom. Anim. Toxins Incl. Trop. Dis. 26. https://doi.org/10.1590/1678-9199- 
jvatitd-2020-0007.

Amatya, R., Park, T., Hwang, S., Yang, J.W., Lee, Y., Cheong, H., Moon, C., Kwak, H.D., 
Min, K.A., Shin, M.C., 2020. Drug delivery strategies for enhancing the therapeutic 
efficacy of toxin-derived anti-diabetic peptides. Toxins 12. https://doi.org/10.3390/ 
TOXINS12050313.
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Borja, M., Castañeda, G., Espinosa, J., Neri, E., Carbajal, A., Clement, H., García, O., 
Alagon, A., 2014. Mojave rattlesnake (Crotalus scutulatus scutulatus) with type B 
venom from Mexico. Copeia 7–13. https://doi.org/10.1643/OT-12-041, 2014. 
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