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Abstract This research addresses the intricate challenge of optimizing plastic injec-
tion molding processes with multiple objectives. Unlike multi-objective optimiza-
tion, which often has a clear strategy for determining optimal solutions, many-
objective optimization lacks a universally accepted approach to identifying ideal 
outcomes. In our study, we utilize a many-objective decision-making methodology 
that involves iterative selection of potential solutions based on experimental design 
techniques. In this mode, this approach ensures gradual progress toward a direction 
set by the user. In addition, the focus is on improving both the quality and efficiency of 
the injection molding process by linking design variables to process parameters. The 
optimization problem, characterized by four objectives, features a specific plastic 
fan as a case study in two different scenarios. The findings validate the effectiveness
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of our proposed method as a robust mechanism for managing the complexities of 
many-objective optimization in plastic injection molding processes. 

Keywords Decision Making · Optimization · Many Objective Optimization 

1 Introduction 

Plastic injection molding is a common manufacturing method used in numerous 
industries, including the electronics, automotive, and packaging sectors. The 
following, method requires numerous input parameters and produces multiple output 
features, making it a multiple input, multiple output (MIMO) system. Because various 
aspects must be considered simultaneously, plastic injection molding presents itself 
as a multi-objective optimization problem, requiring multiple objectives to be maxi-
mized at the same time. If two or three objectives 1 < k3 are considered, the issue 
is referred to as a multi-objective optimization problem (MOP) [1, 2]. If more than 
three objectives 1 < k > 3 are included, the problem is referred to as many objective 
optimization problems (MaOP) [3, 4]. Although many-objective problems (MaOPs) 
and multi-objective problems (MOPs) share a similar theoretical definition, they 
differ significantly [5–9]. The Pareto set and Pareto front, which are the solution sets 
for MOPs, can be precisely approximated [10]. However, for MaOPs, this is not the 
case, given that the Pareto sets and Pareto fronts typically constitute k 1 -dimensional 
entities, where k denotes the total objectives, achieving accurate approximations in 
MaOPs is more challenging [11–13]. 

In addition, the production of high-quality about the Powder Injection Molding 
(PIM) parts poses significant challenges [14–16]. It requires extensive optimiza-
tion and analysis, which can be time-intensive and expensive. Ensuring part quality 
necessitates the proper integration and fine-tuning of various aspects, which encom-
passes the part and mold design, material selection, and setting of process parameters. 
This integration and coordination of multiple factors are crucial for obtaining high-
quality PIM parts efficiently. Besides, the setting of process parameters appears to 
be the most practical step toward producing high-quality parts quickly and afford-
ably. To determine the ideal values for process parameters, academics and engineers 
have used a variety of approaches, including expert systems, data fitting models, 
optimization algorithms, and reasoning based on previous cases. Comprehensively 
improving these parameter settings across many methodologies has been made easier 
and more comprehensive thanks to computer-aided engineering tools and simula-
tions. Statistical sampling techniques have shown to be helpful in obtaining improved 
optimization outcomes with reduced computational or simulation expenses, in addi-
tion to utilizing Computer-Aided Engineering (CAE) tools [17–19]. Using experi-
mental design methodologies, these sampling techniques carefully select data points 
or parameter values within the practical search space. Compared to exhaustive 
approaches, these methods offer more effective optimization and faster arrival at 
better solutions by strategically sampling from the feasible region. Beyond the use
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of CAE tools, the employment of statistical methodologies such as sampling has 
enabled the achievement of enhanced outcomes within shorter durations of execu-
tion or simulation periods. Sampling involves the collection of data, predominantly 
through strategies of experimental design, at specific values within a viable search 
domain, x ∈ D [20]. In tackling the intricate issue of optimizing settings for process 
parameters, researchers and engineers in the PIM domain have widely adopted a 
holistic strategy that merges statistical methods, smart algorithms, and CAE simula-
tions. By amalgamating these complementary technologies and strategies, they have 
pinpointed the optimal parameter configurations for PIM processes, thereby securing 
superior results. 

2 Basic Concepts 

2.1 Plastic Injection Molding 

Subsequent paragraphs, however, are indented. This section offers a summary of 
the process variables and goals reviewed in this investigation. Further details and 
an extensive outline of the PIM process can be found in references [21–25]. The 
main attention is on process parameters such as melt temperature (Tmelt), mold 
temperature (Tmold), packing time (tpack), packing pressure (Ppack), and cooling 
time (tcool), which have frequently been considered in prior research. These process 
parameters are described as follows: 

x1: : Melt temperature (Tmelt):This refers to the temperature reached by the platic 
melt when it enters the mold. 

• x2: Mold temperature (Tmold): It signifies the mold’s temperature. 
• x3: Packing time (tpack): The duration for injecting additional plastic into the 

mold cavity to counteract shrinkage inherent in the injection molding process. 
• x4: Packing pressure (Ppack): Pressure exerted on the melt during the packing 

phase is defined here. In this case, Ppack represents the packing pressure 
distributed throughout the effective packing duration t1 = 0.5 tpack as illustrated 
in a pressure profile. Figure 1 shows an example of a pressure profile.

• x5: Mold Cooling Time (tcool): Following the packing of material into the mold, 
the duration for which the part is kept inside the closed mold to cool before 
ejection. This cooling phase can represent half of the overall cycle length. 

The objectives are linked to enhancing the quality and efficiency of the PIM 
process. Both functional and aesthetic qualities are used to gauge its quality, including 
residual stressors such as the Von Mises stress and product warpage. In this sense, 
the following objectives are described in detail: 

f1 : Warping (mm): This deviation from the intended shape is caused by inconsis-
tent shrinkage rates within the plastic product. Thermal gradients existing between
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Fig. 1 Mapping of 
compressive loads during 
packing

different sections of the mold cavity are responsible for this effect. Likewise, it is 
well known like warpage conditions. 

f2 : Maximum Mold Closure Force (Tons): Supplied by the machine’s clamping 
mechanism, this force represents the highest level of clamping pressure applied to 
resist the internal cavity pressure generated during injection and packing phases. 
Judicious utilization of this force presents opportunities for energy efficiency 
improvements. 

f3: : Cycle time (seconds): Details the complete duration of the process, encom-
passing the filling, mold opening, packing, and cooling stages. The duration is influ-
enced by the packing and cooling times, which may constitute as much as 70% of 
the total cycle time. 

f4: : Residual Von Mises Stress (MPa): This metric evaluates the thermal stresses 
that remain in the ejected part once it has cooled to room temperature, using the Von 
Mises stress formulation. 

2.2 Multi-Objective Optimization (MOP) 

Minimizar F(x) 
Sujeto a : 
g(x) ≤ 0 
h(x) = 0 
x ∈ Rn 

(1) 

F is a function that maps from Rn to Rk , , where F(x) is a vector comprising 
k objective functions f1(x), …, fk(x). The constraints include inequality constraints 
represented by the vector g1(x) = (g1(x), ..., gm(x))T , and equality constraints repre-
sente by the vector vector h1(x) = (h1(x), ..., hp(x))T . The concept of dominance 
defines the idea of optimality in a multi-objective optimization problem.
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Definition 1. Consider vectors x and y in R. The vector x is considered smaller than 
y (denoted x < yp) if for every component i from 1 to k, xi is less than yi. Similarly, 
the relation ≤ p is defined. 

– A vector y within set D is said to be dominated by a vector x also in D (denoted 
x < y) in accordance with rule (1). 

– If F(x) ≤ p and F(y) �= F(x) hold true. Otherwise, y is considered nondominated 
by x. 

– A point x within the set D is termed (Pareto) optimal or a Pareto point when no 
other point y in D dominates x. 

– The collection PD consisting of all Pareto optimal solutions is known as the Pareto 
set, and its corresponding image F(PD) is referred to as the Pareto front. 

There are many approaches that use Pareto dominance as the underlying criterion 
to distinguish solutions, which directs their search for MOPs and MaOPs. 

2.3 Movement in Objective Space 

The method for finding a solution through cooperative efforts with one or more users 
or decision-makers is described below. 

The procedure starts with a first solution, x, which is chosen from the set D 
using an experimental design method. Then, for each i between 1 andN , a series of 
potential solutions, xi, are generated, with each solution denoting a movement in the 
user-specified direction. The method relies on the idea that the user has a preferred 
direction or vector, represented as dk which is a k-dimensional real vector, in the 
space of objective functions or criteria being optimized. In this mode, starting from 
an initial solution × 0, the user wants to choose solutions xi whose objective function 
values or outputs are described by the following Eq. 2: 

F(x(i + 1)) ≈ F(x(i)) + τ (i)d(k) (2) 

where: 

• F represents a function 
• x(i) and x(i + 1) represent consecutive iterations or steps 
• τ(i) is typically a step size or learning rate at iteration i 
• d (k) represents a direction or update vector (Eq. 3). 

d1 =
{−1 

0 
(3) 

The discussion is focused, without losing broader relevance, on a situation where 
there are two objective functions to be optimized. For example, let’s examine a 
scenario where the user wants to reduce the value of f 1, even if that means sacrificing.
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f 2, since f 1 is considered twice as important as f 2. In this case, the user can set 
the following: 

d1 =
{−1 

0 
(4) 

In this mode, it is highly improbable that the dataset contains a point x_i where the 
equality condition in (2) is precisely satisfied. Therefore, we must calculate a “closest 
approximation,” which we determine through the following approach in equation. 

Zi := F(x0) + τ d := Z{i−1} + τ d (5) 

In the equation, τ represents a fixed step size, which is based on the specific 
problem. The objective is to identify the closest solution within the dataset T = 
{x1, y1, ..., xn, yn}T to the reference pointZi. To achieve this, we utilize the enhanced 
weighted Tchebycheff scalarization function as described by [26], which is defined 
as follows in Eq. 6: 

min 
x∈Dk 

max 
i=i,...,n 

{wi |fi(x) − Zi|} +  ρ 
k∑
i 

wi(fi(x) − Zi) (6) 

In the equation, Zi represents the i-th reference point wi = (w1, ..., wk)
T is a vector 

of weights, where each weight wi is a positive number for wi > 0, i = 1, ..., k, and ρ. 
The parameter ρ is termed the augmentation coefficient and is required to be a small 
positive value. This approach allows us to generate a sequence of potential solutions 
that move the corresponding image sequence along the vector dk. This method’s 
pseudocode is shown in Algorithm 1. 

Algorithm 1 Move in Objective Space. 

1 Requirement: initial point x0 direction dk within the objective space 

2 Guarantee: a sequence (xi) of potential solutions 

3 for i = 1, 2, ..., do 
4 choose i ∈ R+ 

5 set Zi = Z(i−1) + τdk 
6 solve (6) starting with x0 to obtain xi 

7 Terminate 

The Fig. 2 depicts a sample situation of a bi-objective problem to help with 
visualization. In this scenario, the reference point Z1 is considered infeasible for the 
beginning position x0. As a result, the solution x1 obtained from Eq. 6 indicates the 
closest feasible solution to the stated reference point.
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Fig. 2 Example of spatial 
mobility on a bi-objective 
situation 

3 Illustrative Case 

We suggest a case study focused on the design of a particular plastic fan. In this sense, 
the Fig. 3 displays the selected plastic fan, which measures 60 × 60 × 47.8 mm. 

Figure 4 presents a schematic of the molding die, runner system, and cooling 
channels.

Using MOLDEX3D R15 2018 (moldex3d.com), a finite element (FE) model with 
34,538 elements is created to simulate the injection molding process. The material 
under study is a polypropylene (PP) variety offered by A. Schulman under the trade 
name POLYFLAM RPP 374ND CS1. Also, the attributes of Materials Polypropylene 
are presented as following.

• Density: 1.35 g per cubic centimeter. 
• Release temperature: 90 degrees Celsius. 
• Thermal conductivity: 35,000 ergs per second per centimeter per degree Celsius.

Fig. 3 Synthetic ventilation 
device 
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Fig. 4 Overview of the 
molding die, runner network, 
and cooling channels

• Elastic modulus: 3 × 10 to the power of 10 dynes per square centimeter. 
• Poisson’s ratio: 0.38. 
• Heat capacity: 1.5 × 10 to the power of 7 ergs per gram per degree Celsius. 
• Melting temperature range: 200 to 220 degrees Celsius. 
• Mold temperature range: 40 to 80 degrees Celsius. 

Then, here is a list of the process parameters, their units, and the ranges that were 
taken into consideration during the investigation. 

• x1. Melt Temperature (°C), Range: 200–250 
• x2: Mold Temperature (°C), Range: 40–80 
• x3: Packing Time (sec), Range: 3.5–5.5 
• x4: Compaction Pressure (MPa) Range: 50–90 
• x5: Cooling Time (sec), Range: 10–15 

Figure 5 shows a representation of the warpage scale within the modeling software.
In this study, we gathered 360 samples for specified values of x ∈ D. 

D := 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

x ∈ R4 

200 ≤ x1 
40 ≤ x2 
3.5 
50 
10 

≤ 
≤ 
≤ 

x3 
x4 
x5 

≤ 250 
≤ 80 
≤ 
≤ 
≤ 

5.5 
90 
15 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

(7)
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Fig. 5 Deformation in the synthetic fan

To evaluate y ∈ R4 using full factorial, 35 and stochastic design of tests methods 
[27]. 

4 Results 

This section outlines the results from applying the strategy described in subsection 2.3 
to the case study addressed earlier. In this mode, with the collected informationT = 
(x1, y1, ..., x360, y360) and the prior knowledge of the problem, the initial solution x0 
with the normalized objective vector F( x0 ) = Z0 = [0.00, 1.00, 1.00, 0.39] was 
selected. 

Also, the additional parameters evaluated in the numerical simulation; Occupancy 
time (0.81 s), Highest-pressure device (155 MPa), Quantity of injection, Magnitude 
of injection (16.16 cc), VP Change by Magnitude Filling (98.0%), Molding Empty 
Time (5.0 s), Melt Temp (90.8 °C), The temperature of the air (25.0 °C). 

Figure 6 depicts the data about the metrics for the process.
In addition, Fig. 7 represents the information about packing rate.
Consequently, the features of each function are the following: 

• The warpage deformation (in mm) represents the function f 1 and should be 
minimized. 

• The clamping force (in tons) represents the function f 2 and should be minimized. 
• The cycle time (in seconds) represents the function f 3 and should be minimized. 
• The Von Mises stress (in MPa) is represented as f 4 and should be minimized.
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Fig. 6 Metrics for the process
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Fig. 7 Details on the packing rate

4.1 Results First Scenario 

Establish f 2 and f 3 by making a sacrifice in relation to f 1 ‘s value, which results in 
the direction d = [2, -1, -1, 0] and τ= 0.02.
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Zi := Zi−1 + 0.02 

⎛ 

⎜⎜⎝ 

−2 
−1 
−1 
0 

⎞ 

⎟⎟⎠, ..., 20 (9) 

The normalized results obtained by utilizing the radar chart are displayed in Fig. 8 
to illustrate the objective requirements. 

The Fig. 9 depicts a visual representation of the same findings, with the x-axis 
showing the iteration number and the y-axis displaying the normalized values of the 
objectives.

Fig. 8 The findings corresponding to the first scenario 
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Fig. 9 The outcomes of the 
initial scenario are depicted 
using a line graph 

Additionally, the comparison carried out using an integrated method with the 
preference selection index (PSI) and multi-objective optimization based on ratio 
analysis called PSI-MOORA, as reported by [27]. In this sense, Fig. 10 demonstrates 
the results for f 3 with the best ranking to be chosen. 

The normalized objective function values of four chosen solutions, consistent with 
the direction determined by the decision-maker, are shown in Table 1.

Fig. 10 The PSI-MOORA method is used to analyze the data for the second scenario 
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Table 1 Normalized objective values identified for the first scenario 

Point f1 f2 f3 f4 

F(0) 0 1 1 0.39 

F(×5) 0.18 0.8 1 0.47 

F(×10) 0.26 0.79 0.71 0.54 

F(×20) 0.45 0.65 0.35 0.62 

4.2 Results of the Second Scenario 

In the subsequent scenario under consideration, we start with the normalized objec-
tive F(x0) = Z0 = [0.88, 0.04, 0.00, 1.00], and we select the direction vector 
fd = [−2, 1, 1, 0] along with a step length of τ = 0.01. The designated direction 
entails a diminution of the first objective function, concomitant with the acceptance 
of sacrifices in the second and third objective functions. 

Zi := Zi−1 + 0.01 

⎛ 

⎜⎜⎝ 

−2 
1 
1 
0 

⎞ 

⎟⎟⎠, ..., 20 (9) 

The chosen normalized objective values for the second scenario under consid-
eration, corresponding to the solutions obtained at iterations 0, 5, 10, and 20, are 
presented in Table 2. 

The findings are visually represented in Fig. 11.
Furthermore, a line graph depicting the outcomes of the second scenario is shown 

in Fig. 12.
According to the PSI-MOORA method, the best ranking presented in Fig. 13 

belongs to the function f 1.
The combination of MaOP and the PSI-MOORA method allows for more 

informed and accurate decision making in the context of the PIM problem. Using 
MaOP ensures that multiple objectives are considered simultaneously, which is 
crucial in situations where a single criterion cannot be optimized without negatively 
affecting others. The PSI-MOORA method, for its part, provides a clear and objec-
tive structure to evaluate and compare different alternatives, facilitating the selection

Table 2 Specified normalized objective values picked for the second scenario 

Point f1 f2 f3 f4 

F(×0) 0.88 0.04 0 1 

F(×5) 0.29 0.78 0 0.58 

F(×10) 0.08 0.64 0.28 0.62 

F(×20) 0.03 0.96 0.28 0.45 
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Fig. 11 Results for second scenario

of the best available option. Finally, the findings indicate that MaOP is a potential 
method for the PIM problem. Consequently, the PSI-MOORA method confirms the 
best function in order to make a decision.
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Fig. 12 The data for  the  
second scenario is visualized 
using a line graph

Fig. 13 Visualization of the data for the second scenario using the PSI-MOORA method

5 Conclusion 

This document concentrates on the multi-objective optimization involved in the 
plastic injection molding process. A decision-making approach is proposed to address 
a model comprising four objectives, each of which can significantly influence the 
effectiveness of the plastic injection molding (PIM) process. 

A decision-making methodology has been proposed for a model with four objec-
tives, each of which has the ability to significantly affect how well the PIM process 
performs. 

The distinctive characteristic of a multi-agent optimization problem (MaOP) is 
that their solution sets typically form (k-1)-dimensional objects, making it impractical 
to compute appropriate approximations of such sets.
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The case study demonstrated that the applied strategy iteratively selects candidate 
solutions from the data set based on the user’s preferences. Two distinct scenarios 
were examined, and in each case, a shift from the initial solution towards the targeted 
search direction was noted. Thus, the proposed method can be utilized as a tool for 
multi-objective optimization in the plastic injection molding process. 

The findings suggest that MaOP is an effective method for solving complex 
problem identification and management problems. LIkewise, integrating it with the 
PSI-MOORA method, a robust decision-making tool is obtained, confirming the best 
function and ensuring that decisions are based on a comprehensive and balanced 
analysis of all relevant criteria. 

Upcoming research efforts should concentrate on developing approaches that can 
accommodate a larger number of design variables. Additionally, this approach has 
the potential to be extended to handle movements within the decision variable space. 
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