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Abstract
Collaborative assembly represents one of the most prevalent practical applications of collaborative robots in intelligent
manufacturing.Developing intelligent systems to ensure safety of collaborative assembly processes requires a special attention.
In this work, we introduce a visual safety system designed to monitor hazardous situations that may occur during collaborative
assembly, potentially resulting in operator injuries. Unlike many other vision-based systems, we solely rely on data from
two RGB cameras, without acquiring additional depth information from other sensors. These cameras provide top and side
projections of a collaborative workspace. The safety system assesses a current level of a risk by employing two neural network
YOLOv8-cls models. These models are pretrained on the ImageNet dataset and subsequently fine-tuned on our dataset. Upon
identifying a potential hazard, the system employs our proposed algorithm to determine whether to slow down or halt a robot’s
motion. Additionally, the system integrates with a visual control system that utilizes an operator gesture control throughout
an assembly process. We further conduct experiments to compare our system’s assessment with an assessment of human
experts. An analysis of the experiments demonstrated a high level of correlation between the evaluations of the autonomous
system and the human experts. Benefits of the proposed system encompass its relative cost-effectiveness and ease of setup.

Keywords Intelligent manufacturing · Human–robot collaboration · Human–robot interaction · Collaborative assembly ·
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Introduction

Typically, collaborative assembly entails a higher degree of
operational complexity compared to other tasks executed by
industrial manipulators (Petzoldt et al., 2023). At the same
time, safety concerns regarding collaborative assembly con-
stitute a key area of research that garners significant attention
within the intelligent manufacturing scientific community
(Keshvarparast et al., 2024; Faccio et al., 2023). An essen-
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tial direction in this domain involves an intelligent safety
systems’ development (Hanna et al., 2019; Gualtieri et al.,
2020).

A development of intelligent manufacturing processes,
which involve concurrent collaboration between robots and
humans in a shared workspace (including joint assembly)
should comply with international safety standards that reg-
ulate requirements for human–robot interaction (Galin &
Meshcheryakov, 2019; Li et al., 2023). Primarily among
these standards is ISO/TS 15066:2016 standard (Interna-
tional Organization for Standardization, 2016), as well as
ISO 10218-1 (International Organization for Standardiza-
tion, 2011a) and ISO 10218-2 (International Organization
for Standardization, 2011b) standards,which are awaiting for
updates. However, it is noteworthy that these standards offer
rather general recommendations. In practice, integrators of
collaborative robotic systems often encounter a necessity for
customizing safety modes to suit their specific tasks (Bdiwi
et al., 2022). Consequently, intelligent safety systems must
possess a flexibility in configuration to accommodate partic-
ular aspects of implemented cases.

According to ISO 10218-1, mechanical hazards are iden-
tified as primary significant hazards that robots may pose.
Therefore, in scenarios where a production process does not
entail a direct mechanical contact between a robot and a
human, one of safety system’s objectives should be to avert
any collisions between a human and a moving robot (Zhang
et al., 2022; Kanazawa et al., 2021). In collaborative assem-
bly settings, where processed parts are exchanged between a
robot and a human, this task becomes notably intricate due to
a presence of themoving robot and the humanwithin a shared
workspace. Presently, this problem remains open and poses
a challenge for researchers in the field of intelligent man-
ufacturing (Proia et al., 2022) and seamless human–robot
collaboration in industrial applications (Makris et al., 2024).

The ISO/TS 15066:2016 standard provides the following
methods of collaborative operations: safety-rated moni-
tored stop, hand guiding, speed and separation monitoring,
power and force limiting (International Organization for
Standardization, 2016). To prevent a direct mechanical con-
tact, employed practical methods include halting a robot
upon detecting a potential collision, reducing a velocity
when approaching a person, and altering a robot’s trajectory
(Scimmi et al., 2019). Our research is motivated by a neces-
sity to create an affordable, swiftly deployable vision-based
safety system tailored to monitor and prevent potentially
dangerous situations that could occur during collaborative
assembly processes. Similar systems are particularly sought
after in small and medium-sized enterprises seeking to
implement intelligent manufacturing processes that involve
collaborative assembly (Cencen et al., 2018). Integrating
such systems can enhance overall workplace safety, mitigate
risks of staff injuries, and reduce other hazards’ probabilities.

To prevent potential emergency situations that could result
in operator injuries, collaborative robotic cells are equipped
with monitoring systems, which leverage various sensor
types, including distance and motion detection sensors,
force and inertia sensors, and diverse camera configurations
(Cherubini & Navarro-Alarcon, 2021). Collisions between a
robot and a human operator can be detected using sensors
that are placed directly on the robot (Katsampiris-Salgado et
al., 2024b) or employing external monitoring (Katsampiris-
Salgado et al., 2024a).

Kamezaki et al. (2024) proposed an approach for con-
structing a dynamic collaborative workspace based on data
from three laser rangefinders. Selvaraj et al. (2023) presented
a system with a ZED2i stereo vision sensor for human detec-
tion within a collaborative environment. Wong et al. (2024)
proposed a method for distinguishing between intentional
and unintentional physical interactions with a collaborative
robot, utilizing a touch input, a user body posture, and a user
gaze.

An example of a practical implementation for collecting
data about operator actions during collaborative assembly is
an artificial intelligence-based monitoring system presented
in Gkournelos et al. (2023), which utilizes data from a static
high-definition 3D camera, a wearable 3D camera mounted
on an operator’s headset, and two wearable IMU sensors.

A significant advantage of robot–human collision avoid-
ance methods based on computer vision is an absence of a
necessity to attach additional sensors to a robot or an operator.
Commonly employed camera types include RGB-D cameras
and stereo cameras (Kozamernik et al., 2023; Maric et al.,
2021; Amaya-Mejía et al., 2022). RGB camera-based com-
puter vision systems are less commonly used in collaborative
robotics for collision prediction and prevention. However, in
some cases, a choice of RGB cameras may be justified due to
lower cost, simplified image processing, and reduced com-
putational requirements.

An objective of this research is to design a monocular
vision based control system that ensures safe collabora-
tive assembly processes within the intelligent manufacturing
paradigm of Industry 4.0 (Barari & de Sales Guerra Tsuzuki,
2021). We address a common scenario where a human and a
robot collaborate in assembling a product, with the assembly
object alternating between the robot and the human. We con-
sider a collaborative assembly case that involves one operator
and a six degrees of freedom industrial manipulator. A dis-
tinctive aspect of our scenario is a feedback between the
operator and the robot through contactless control, which is
based on a recognition of operator’s gestures (Mustafin et
al., 2023a). A primary objective of our safety system is to
avert hazardous situations where the operator may sustain
mechanical injuries due to a direct contact with the robot.
In this paper, we present the safety system, which relies on
image classification from two projections of the collabora-
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Fig. 1 An assembled object
comprising of a small
two-layered frame and secured
by four blue rivets: a side view
before the assembly (left) and a
front view of the ready product
(right) (Color figure online)

tive workspace. In laboratory settings, we replicated a typical
collaborative assembly scenario, assessed a current risk level
using our developed system, and gauged a correlation of
a system’s autonomous assessment with a human experts’
assessment.

Materials andmethods

Collaborative assembly use case description

We examined a typical collaborative assembly scenario
adaptable to situations where some assembly tasks are per-
formed by a human while others are delegated to a robot.
In this setup, the human is required to transfer an assembly
object to the robot and retrieve it, remaining within a shared
workspace and continuing with the tasks. A safety system
should continuously monitor motion of the human and the
robot, preventing any mechanical contact between the mov-
ing robot and the human, as such contact could potentially
endanger the human.

Previously, our team conducted a series of pilot exper-
iments (Mustafin et al., 2023a, b), which provided insights
into user experience when interacting with a robot through
gestures during collaborative assembly. This work was based
on the previous findings and utilized the virtual control sys-
tem UR-VC (Mustafin et al., 2023a) for contactless control
of the collaborative robot UR3e during the assembly pro-
cess. UR-VC system enables control of UR collaborative
robots through augmented reality elements, represented by
on-screen buttons and simple operator gestures based on fin-
gers’ closing and opening.

In this paper, we consider a scenario of assembling a small
frame with a picture, which is inserted into the frame and
secured with rivets (Fig. 1). An operator selects a paper card
with a picture and places it between foreground and back-

ground sections of the frame. Subsequently, the robot fastens
the two frame parts together using the rivets.

A sequence of the collaborative assembly process is as
follows. An operator initiates the object assembly within
the shared workspace and places assembly components in
a pre-defined area within the shared workspace. Using an
appropriate gesture, the operator requests the UR-VC system
to initiate the assembly on the robot’s side. Next, the robot
carries out its part of assembly operations. Once the robot
completes its actions, the operator retrieves the assembled
object. If the operator needs to pause the assembly, he/she
can pause the robot with a corresponding gesture and then
resume the robot’s actions with another gesture (if neces-
sary). Emergency stop of the robot could be activated with a
corresponding gesture or with an emergency stop button.

Collaborative work cell configuration

The collaborative assembly cell (Fig. 2) contains the follow-
ing equipment:

• Universal Robots (UR) 3e manipulator;
• A work table;
• A web camera for the UR-VC interface;
• Adisplay for presentingoperator data andUR-VCsystem
messages;

• Top-view Basler acA1300-200uc camera mounted above
the work table at a height of 1.24m;

• Side-view Basler acA1300-200uc camera positioned at a
distance of 3.15m from the work table.

It is important to emphasize that the cell lacks any physical
(security) barriers, which allows an operator to move freely
within the shared workspace. Examples of views captured by
the two cameras are depicted in Fig. 3.
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Fig. 2 A collaborative work cell
setup: UR3e, an operator, the
gesture-based control system

Fig. 3 Views from the top (left)
and side (right) cameras
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Table 1 Safety zones of the
work cell

Zone type Expected time T to a mechanical contact event

Safe zone T > �t1

Moderate hazard zone �t2 ≤ T ≤ �t1

(Increased attention zone)

Critically hazardous zone T < �t2

(Danger zone)

Assessment of safety levels

The ISO/TS 15066:2016 standard (International Organiza-
tion for Standardization, 2016) declares hazard identification
and risk reduction as prioritized aspects in a development of
collaborative robotic systems. In accordance with this, our
developed safety system aims to reduce hazards arising from
brief or quasistatic contact between an operator and the robot
during the collaborative assembly task outlined in Sect. 2.1.
According to ISO 10218-1, these hazards primarily comprise
mechanical hazards andmay result in potential consequences
such as impact, crushing, or trapping. Our proposedmonitor-
ing system assesses a current level of danger based on visual
sensory data from two RGB cameras and makes decisions
on continuing a normal operation, limiting joints’ velocities,
or a full stop of the robot.

We propose to determine a current danger level based on
a current location zone of an operator. The cell’s workspace
was divided into three zones: a safe zone, a moderately
hazardous zone, and a critically hazardous zone. A similar
simplified approach for a danger level assess is convenient in
scenarios that require a real-time decision-making and is fre-
quently employed in intelligent manufacturing (Wang et al.,
2023;Malmet al., 2019).A comprehensive example illustrat-
ing a design of dynamic safety zones within a hybrid robotic
cell can be found in Karagiannis et al. (2022).

Dimensions of the zones were established based on
ISO/TS 15066:2016 standard specifications and consider
specific characteristics of themanufacturingprocess in accor-
dancewith Table 1.When an operator stays in the safe zone, a
mechanical contact between the operator and the robotwould
occur in a time that exceeds �t1 if the operator moves along
a shortest path towards the robot. If the operator in the mod-
erately hazardous zone (referred to as an increased attention
zone) moves along a shortest path towards the robot, the
mechanical contact would occur between �t1 and �t2 time.
Finally, in the critically hazardous zone (termed a danger
zone) a mechanical contact would occur in a time shorter
than �t2, assuming the operator moves along a shortest path
towards the robot.

Time parameters �t1 and �t2 are determined based on
available data on the operator velocity, a current velocity
of the robot, and a system response time. If the operator

velocity is not limited by a technological process, ISO/TS
15066:2016 suggests assuming it as 1.6m/s in a direction
that reduces a separation distance themost. Alternatively, the
operator speed can be determined according to other relevant
specifications, including an empirical approach. The system
response time is determined experimentally during its setup;
it involves practical testing and calibration to assess a time
required for the safety system to detect potential hazards and
react accordingly.

We conducted empirical observations to compute an aver-
age velocity of an operator during the collaborative assembly.
The assessment considered velocities of the operator’s hands,
head and upper body. Monitoring male operator assembly
operations for 5min we obtained his average velocity of
0.31m/s. Using this value along with the system response
time and the robot emergency stopping time, we derived the
time threshold values as �t1 = 0.9 s and �t2 = 0.38s.
These values indicate that the robot should decelerate its
velocity when an operator approaches the moving robot to a
distance less than 28cm and should stop when the operator
gets closer than 12cm. It should be noted that the specified
zones’ width values were calculated based on characteristics
of the particular assembly process and require an adjustment
for each specific case, including a new dataset collection and
labelling. Figure4 illustrates a safety zones arrangement rel-
atively to the robot; Fig. 5 demonstrates which particular
distances the safety system calculates based on an outcome
of the image processing.

Based on the analysis of visual data from the top-view and
side-view cameras, the proposed system classifies a robotic
cell state into one of three danger levels (Table 2):

• A low hazard level does not require any actions from the
safety system and it continues monitoring in the normal
mode;

• Amedium hazard level indicates that an operator is likely
to enter the critically hazardous zone imminently. In
response, the system slows down the robot;

• A high hazard level indicates that the robot should be
stopped immediately.

A robot velocity is continuously adjusted by the system as
a response to a current level of danger according to Table 1.
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Fig. 4 The hazard zones layout
diagram: Danger zone (red),
Increased attention zone
(yellow), Safe zone (green)

Fig. 5 Examples of the distance
calculation between the robot
and the operator. In the danger
zone the human boundary
overlaps with the robot
boundary for the top and side
cameras’ images (red); in the
increased attention zone the
distance values (the yellow
arrows) are within [12,28] cm
(yellow); in the safe zone the
values of the two examples (the
green arrows) are greater than
28cm (green) (Color figure
online)

Table 2 Danger levels
identified by the safety system
and corresponding responses

Danger level Actions of the safety system The robot state

Low Workspace monitoring The robot operates in the
normal mode

Medium The robot velocity
limitation. An operator is
notified of the increased
hazard level

The robot starts moving at a
limited speed

High The robot stops. An
operator is informed of
the high hazard level and
is requested to exit the
hazardous zone

The robot is stopped and
will not resume the
operation until further
instructions from the
system
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In the safe zone a maximal angular velocity of the joints
is limited to 60deg/s with a tool speed of 250mm/s when
moving and 100mm/s during positioning. In the increased
attention zone the maximally allowed angular velocity of
the joints decreases to 12deg/s, with the tool speed reduced
to 50mm/s when moving and 20mm/s during positioning.
In the danger zone, the robot halts all joints. In addition to
limiting the joint velocities, the safety system displays on the
work cell monitor a corresponding message for each danger
level.

The two following sections provide a detailed description
of how our safety system assesses a current level of danger
based on the analysis of visual data.

Visual data processing

RGB cameras are less frequently employed in collaborative
robotics for identifying and preventing hazardous situa-
tions, unlike depth cameras and stereo cameras. However,
their availability, compactness, and ease of use render them
appealing for a widespread adoption. Consequently, in this
project, we intentionally opted for this type of a visual sen-
sor for the safety system.Nonetheless, the proposed approach
can be implemented with other types of cameras as well.

We assess a current danger level using visual data from
two RGB cameras. As depicted in Fig. 3, the top-view cam-
era’s field of view captures the operator’s hands and a portion
of the robot during collaborative work, whereas the side-
view camera captures the operator and the robot from the
side. With this information, the safety system determines the
appropriate danger level (Table 1) corresponding to a current
situation.

Various approaches can be applied for analyzing observa-
tions of a human–robot collaborative work process. The first
approach entails determining a current position of an oper-
ator relative to the robot, addressing the question “Where is
the operator?” [e.g., (Rodrigues et al., 2022a, 2023; Forlini
et al., 2024)]. To achieve this, the safety system implements
real-time human recognition or body part recognition in cap-
tured by the two cameras images. The system measures a
distance from the human to a source of danger (the moving
robot). This approach enables the system to analyze a spatial
relationship between the operator and the robot, facilitating
an assessment of potential hazards and appropriate safety
responses.

The second approach involves addressing a question “Is
the controlled area free from foreign objects?” [e.g., (Saleem
et al., 2024)]. In this scenario, the safety system assesses
whether there are foreign objects within a designated zone
and whether a zone’s appearance deviates from its normal
state. This approach focuses on detecting any anomalies or
unexpected objects within the workspace, allowing the sys-

tem to identify potential hazards and take appropriate safety
measures.

To address these questions, each approach can utilize
various computer vision and deep machine learning meth-
ods, including image classification, object detection, image
segmentation, and feature extraction. For example, success-
ful solutions for determining an operator’s position in a
video frame reported application of the MediaPipe frame-
work (Lugaresi et al., 2019) and YOLOv8 Pose family
models (Ultralytics, 2024a). These human pose detection
methods allow achieving high accuracy in answering a ques-
tion “Where is the human?” under conditions favorable for
human detection in an image. However, these methods carry
risks of encountering false negatives, wherein despite an
actual presence of an operator in a hazardous area, a computer
vision system fails to detect it. Such situations may arise, for
instance, when an operator is obscured by a robot or when
an operator’s position deviates from typical instances in a
dataset on which a model was trained.

The risks can be reduced by answering a question “Is the
controlled area free from foreign objects?” and by focusing
not on tracking an operator’s position, but on determining
a state of the hazard zones. This approach seems more reli-
able since it is simpler to identify a limited range of safe
states of the system in which foreign objects are absent in
hazardous areas, rather than analyzing a diverse range of sit-
uations related to a human behavior in a work area. However,
this method may lead to false positives, where dangerous sit-
uations could be mistakenly identified as safe.

A combination of the two approaches could minimize
risks associated with false positive and false negative detec-
tion. At the same time an additional analysis of visual data
in real-time increases computational costs and may signif-
icantly increase the system’s response time. Therefore, we
focused on determining a current state of the observed sys-
tem by tracking if an operator is located in the safe zone, in
the increased attention zone or in the danger zone.

In this study, we used the YOLOv8-cls model for
image classification, which is provided by the Ultralytics
library (Ultralytics, 2024b). However, the proposed method
permits using any other model that is suitable for image clas-
sification. The YOLOv8-cls model was selected due to its
high speed, sufficient accuracy, low computational resource
requirements, and ease of use.

To prepare datasets for classifying images from the top
and side cameras, we used a video of the standard assem-
bly process. A pre-trained experienced operator performed a
complete assembly cycle several times in a standard mode,
adhering to all safety regulations. The operator’s safety was
also controlled by an instructor using an emergency stop but-
ton, which the instructor could press at any time. It should be
noted that reproducing hazardous situations with a moving
robot for collecting training data is not possible under real
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Fig. 6 The annotation tool graphical interface: with buttons above
an image a user can move forwards and backwards between images
and save results; to the right of the image one of four options could

be selected for the annotation, which cover the three hazard classes
and inability to make a deterministic decision (be selecting Doubt f ul
option)

conditions, as it contradicts the safety standards for operating
industrial robots and puts an operator at risk. Therefore, for
gathering images that correspond to non-standard situations,
we employed a stationary unpowered robot.

We invited two experts with experience in industrial
robotics to annotate dataset images. The experts were asked
to classify images from two datasets (from the top and side
cameras) into one of the three hazard classes using their
description (Sect. 2.3). Next, all annotated images were
checked for compliance with the established criteria and
combined into a final dataset for model training. To make
the annotation processmore convenient for experts,wedevel-
oped an application that simplifies the image distribution into
the three classes (Fig. 6).

A dataset from the top camera consisted of 2520 images
and a dataset from the side camera comprised 980 images.
With these datasets, two YOLOv8n-cls models were trained
to recognize three classes of images: “Safe”, “Attention”, and

“Danger”. Two separate models classified images from the
top camera and the side camera. During dataset labelling,
images of the operator in the safe zone were assigned to the
“Safe” class, in the moderate hazard zone were assigned to
the “Attention” class, and in the critically hazardous zone
were assigned to the “Danger” class.

For training, we utilized the base architecture YOLOv8n-
cls (Terven & Cordova-Esparza, 2023), employing the
pre-trained on the ImageNet dataset (Deng et al., 2009)
YOLOv8n-cls model. Each dataset for the top and side cam-
eras was split in an 80/20 ratio for training and validation.
The training was conducted over 100 epochs and involved
the cross-entropy loss function. Optimization was performed
using the Adam algorithm with an initial learning rate of
2.3632e−04, which was reduced to 2.1277e−05 by the 100th
epoch. The batch size was set to 32.

The model trained on top camera images achieved a val-
idation accuracy of 0.92, while the model trained on side
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camera images achieved a validation accuracy of 0.93. After
processing an image, each of the two trainedmodels provided
a set of three values corresponding to the current image’s clas-
sification into one of the three classes: “Safe”, “Attention”,
and “Danger”. The safety system aggregated these data and
assessed a current level of danger based on an algorithm
described in Sect. 2.5.

Danger level evaluation

This section presents amethod for determining a current level
of danger based on the classification of images from the top
and side cameras. In accordance with Table 1 we consider
the following incompatible events:

H1 = {The operator is in the safe zone} ,

H2 = {The operator is in the increased attention zone} ,

H3 = {The operator is in the danger zone} .

Let ptop =
[

p1top, p2top, p3top

]
be a vector of probabil-

ity estimates from the top-view camera image at the given
moment, where:

• p1top = Ptop (H1) is a probability that the operator is in
the safe zone in the top-view camera image;

• p2top = Ptop (H2) is a probability that the operator is
in the increased attention zone in the top-view camera
image;

• p3top = Ptop (H3) is a probability that the operator is in
the danger zone in the top-view camera image.

Let pside = [
p1side, p2side, p3side

]
be a vector of probability

estimates from the side view camera image at a given time,
where:

• p1side = Pside (H1) is a probability that the operator is in
the safe zone in the side-view camera image;

• p2side = Pside (H2) is a probability that the operator is
in the increased attention zone in the side-view camera
image;

• p3side = Pside (H3) is a probability that the operator is in
the danger zone in the side-view camera image.

Let H̄i denote an event that is an opposite to event Hi ,
i = 1, 3. If we consider Ptop (Hi ) and Pside (Hi ) as proba-
bilities that an operator’s location in a specified zone were
obtained using the top view and side view cameras, respec-
tively, then Ptop

(
H̄i

)
Pside

(
H̄i

)
represents a probability that

both assessments were incorrect. Then, a probability that at

least one assessment was correct can be calculated using the
following equation:

P (Hi ) = 1 − Ptop
(
H̄i

)
Pside

(
H̄i

)
.

Thus, a probability that at a given moment the operator
is in a particular zone, provided that at least one of the two
assessments was correct, can be calculated using the follow-
ing equation:

P (Hi ) = 1 −
(
1 − pi

top

) (
1 − pi

side

)
, i = 1, 3. (1)

As a result, a set of values pi = P (Hi ), i = 1, 3, combines
the assessments from the top and side view images for each
class of the danger level.

Next, the danger level estimate at the givenmoment is car-
ried out as follows. Predefined threshold values of probability
estimates are set as follows:

• T1 for the safe zone,
• T2 for the increased attention zone.

The T1 and T2 values reflect a level of confidence estab-
lished through the expert assessment and depend on specifics
of an implemented case. Experts are provided with a set of
image pairs from the top and side cameras, where the oper-
ator is located in one of the three specified zones. Each pair
of images is supplied with p1, p2 and p3 values, which are
calculated according to Eq. (1).We recommend using a set of
at least 100 images with all three levels of danger being rep-
resented in similar proportions, i.e., at least 30% of images
for each zone of Table 1. The experts are invited to choose
one of the following confidence levels: 0.99, 0.95, 0.9, or
to specify their own confidence level, which should be in
the range from 0.5 to 1. In this study, we used the values:
T1 = T2 = 0.9. Then, for a set of values p1, p2, p3 a value
of pmax = max {p1, p2, p3} and its index, imax , are calcu-
lated. In cases where equal probability values are detected, a
value with a greater ordinal index is considered a priority.

If imax = 1 and pmax ≥ T1, then a zone in which the oper-
ator is located at the given moment is evaluated as safe. Next,
if imax = 1 and pmax < T1, then an index of a greatest among
the remaining two probability estimates is determined. If
this index is 2, then an operator location is evaluated as the
increased attention zone; otherwise, this zone is evaluated as
the danger zone.

If imax = 2 and pmax ≥ T2, then the zone in which
the operator is located at that moment is evaluated as the
increased attention zone. Otherwise, if imax = 2 and pmax <

T2, then an index of a greatest among the remaining two
probability estimates is determined. If this index is 3, then an
operator location is evaluated as the danger zone; otherwise,
this zone is evaluated as the increased attention zone.
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Table 3 Technical
specifications of the computing
nodes

Node ID Processor RAM SD storage I/O

1 Intel Core i7 8GB 256GB USB 3.0 Type-A @ 5Gbit/s

4 cores @ 3.2GHz Ethernet 1000Mbit/s

2 Intel Core i7 16GB 2.5TB USB 3.0 Type-A @ 5Gbit/s

4 cores @ 3.1GHz Ethernet 1000Mbit/s

If imax = 3, then the zone in which the operator is located
at the given moment is evaluated as the danger zone.

This algorithm allows the safety system evaluating a
present risk level and sending corresponding control com-
mands to the robot. If one of the cameras malfunctions and
thus its image assessment is impossible, the safety system
immediately activates an emergency stop scenario.

Safety system architecture and implementation

The algorithm was implemented using Ubuntu 20.04 oper-
ating system, Robot Operating System (ROS) Noetic frame-
work and the Python3 programming language. The key
libraries employed for the implementation include:RosPy for
working with ROS and Python3; Ultralytics for image clas-
sification using the YOLOv8n-cls model; OpenCV, NumPy,
and CVBridge for image processing; socket for data trans-
mission between computing nodes.

The hardware setup included two Intel Core i7 comput-
ers: the first with 8GB RAM and 256GB storage, and the
second with 16GB RAM and 2.5TB storage; both models
support USB3.0 Type-A at 5Gbit/s and 1000Mbit/s Ethernet
connectivity (Table 3). Two Basler acA1300-200uc cameras
were used for image capturing.

Figure 7 presents a safety system architecture. The system
comprises a decision-makingmodule based on visual control
of two projections of the shared workspace from the top-
view and side-view RGB cameras. Utilizing data from the
two cameras, the safety controller evaluates a current level
of danger and determines further actions in accordance with
the algorithm (Sect. 2.5).

The safety controller transmits commands to a robot con-
troller and a safety status reporter module. The later informs
an operator about a current level of danger and provides
instructions on further actions. Emergency stop can be acti-
vated in three ways: via the emergency stop button of the
robot, using the UR-VCAR interface, and through the safety
controller module. Furthermore, the safety controller pro-
hibits the robot from restarting after emergency stop if the
hazardous situation remains unresolved. The safety system
involves the following computing nodes (Fig. 8):

• Computing Node #1: a central computing node is respon-
sible for the safety system, the manipulator control
system, and data acquiring from the top view camera.

• Computing Node #2: an auxiliary computing node that
performs synchronized aggregation of data from the two
cameras, processes data with computer vision methods,
and logs data.

• Collaborative Robot Manipulator UR3e.

The computing nodes interact with each other to ensure
safe and efficient control of the manipulator within a collab-
orative environment. The computing nodes exchange data
through a local area network (LAN) with a bandwidth of
1000Mbps employing ROS 1 Noetic via topics and services
over TCP/UDP. The specifications of the computing nodes
are detailed in Table 3.

The twoBasler acA1300-200uc cameras have a resolution
of 1280x720 pixels, a frame rate of 30 frames per second, and
an image format of BGGR8. The cameras are linked to the
computing nodes via USB cables. The top camera provides
themost optimal view in termsof distance andvisibility of the
workspace, detecting foreign objects in the workspace and
its close vicinity. The side camera detects foreign objects at
a longer distance from the work cell.

To experimentally evaluate system effectiveness it is
necessary to record calculated danger levels (Table 2). Exper-
imental data were recorded in a CSV format log file. Each
line of the file represents a separate entry containing the fol-
lowing fields:

1. Time denotes elapsed time since a system’s launch, mea-
sured in seconds using ROS Time. This facilitates precise
event timing during the experiment and enables temporal
data analysis.

2. Danger class represents the hazard level class, which can
take one of three values: “0: Safe”—indicates an absence
of a danger or a low risk; “1: Attention”—indicates poten-
tially hazardous situations, requiring an attention of an
operator or the safety system; “2: Danger”—indicates a
situation with a high level of a hazard, requiring urgent
safety measures.

3. Firstmodel assessment is a probabilistic assessment that
analyzes data from the top camera and draws conclusions
about a current level of danger or safety.
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Fig. 7 Architecture of the vision-based safety system
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Fig. 8 Deployment diagram.
Computing nodes and the
manipulator are connected via
Ethernet LAN. The top-view
and side-view cameras are
connected to the corresponding
computing nodes via USB

4. Second model assessment is similar to the first model; it
analyzes data from the cameras and independently draws
conclusions about a current safety level.

5. Overall assessment is an overall probabilistic safety
assessment that can be obtained by aggregating assess-
ments from different models.

Data logging occurs at 1-s intervals preserving a system
state and safety level information at each stage of the experi-
ment for a subsequent analysis. Additional data logging may
encompass details regarding a manipulator’s state, environ-
mental parameters (such as temperature, humidity, etc.), and
other factors that could influence the system’s safety. This
approach facilitates a more comprehensive data analysis and
an identification of potential risk factors.

An image frames synchronization is accomplished using
theROSMessage Filter (T ime Synchronizer ). Thismethod
allows synchronizing data from different sources based on
ROS timestamps and ensures alignment between frames from
different cameras with a controlled level of accuracy. Aggre-
gated and synchronized frames from the cameras are saved
as a file with timestamp annotations. A resulting video has a
frame rate of 25–30 frames per second. A temporal annota-
tion of recorded data relies on the ROS Time API, ensuring
a precise time synchronization between the system’s com-
ponents. This guarantees an unambiguous identification of
time points for each video frame. Furthermore, the comput-
ing nodes are time-synchronized using the Network Time

Protocol (NTP), ensuring overall time consistency among the
nodes. This is crucial for a consistent operation of the safety
system and an accurate temporal annotation of experimental
data.

To ensure minimal latency of the safety system, we
employed a simple optimization mechanism. Received from
a camera images are stored in corresponding buffers of a
Python3 deque format, which is a list-like object that sup-
ports fast append and pop operations with first and last
elements.

Each received image I is labeled with a timestamp ts that
is employed for further comparisons of images in terms of
their relevance. The timestamp allows understanding which
image contains newer data about the working cell state. First
received image I1 is stored in the buffer together with its
timestamp ts(I1). Timestamp ts(IK ) of new image IK that
arrives to the buffer is compared with ts(I1): if ts(IK ) ≤
ts(I1) than image IK is considered to be outdated relatively
to I1 and is deleted from the buffer; otherwise, the first image
I1 is replaced with IK . Finally, only image I1 (with the most
relevant timestamp) is classified by the trained model.

The optimization eliminated an undesirable behavior of
the algorithm when in the interval between receiving a next
camera image and successfully classifying a previous image,
the algorithm managed to classify other images in the buffer
that had been already outdated, which caused a slowdown
of the entire safety system. The relevant images’ selection
from the top-view and side-view cameras allowed achieving
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a minimum delay between an action performed by a human
in the work cell and processing a frame of this action by the
system; the delay is defined by an image capturing speed
(fps) of the camera.

The proposed optimization significantly increased the
safety system speed achieving the average response time
(which is required for the robot to adjust its velocity when
a human enters the increased attention or danger zones) of
52.8ms.

Experimental protocol

The experiments aimed to validate the developed system
by comparing its assessments with those of human experts.
We engaged specialists with several years of experience in
robotics and industrial manipulator safety, who are familiar
with the current safety standards in collaborative robotics and
intelligent manufacturing. In our case, using expert assess-
ment as a starting point was convenient for several reasons.
Firstly, with properly trained experts, the expert assessment
aggregates the requirements of the current standards and
allows for a quick detection of dangerous situations. Sec-
ondly, by observing the collaborative assembly process, an
expert could identify requiring attention aspects that are not
covered by the standards due to particular features of the
manufacturing process. It should be noted that the experts,
which assessed the safety system, did not communicate with
the experts that had annotated the images for the system train-
ing.

Before conducting the experiment, an operator received
necessary instructions and underwent training, which
included:

• Instructions on all stages of the assembly process,
• Instructions on all work operations and types of operator
actions,

• Instructions on the relevant types of operations performed
by the robot,

• Instructions on the specification of the chronological
sequence of all types of actions,

• Safety training,
• Knowledge assessment.

The experiment comprised two stages. In the first stage,
the operator (who had previously undergone the training)
executed the task for 8min. All operator’s actions during this
period were recorded using side and top cameras. Concur-
rently, our developed safety system conducted continuous
monitoring and control of the work area. In the second stage,
the safety level assessments of the side and top cameras’
videos were independently conducted by two experts. Each

Table 4 Number of safe sequences, attention-requiring situations and
dangerous situations identified by the safety system and experts

Danger level Safety system Expert 1 Expert 2

Safe 257 250 273

Attention 25 40 50

Danger 202 194 160

expert was asked to review the recordings and indicate time
codes corresponding to the following situations:

• The operator is near the robot to an extent where a robot’s
high velocity poses a potential risk;

• The operator is dangerously close to the robot, posing a
high risk of a mechanical injury.

The experts were provided with video recordings that
displayed views from both the top and side cameras simul-
taneously (Fig. 3). The experts were not limited in time and
could pause the videos at any frame, scroll through to any
frame, repeat multiple times, slow down and speed up the
videos. The assessments were independent and the experts
did not communicate with each other.

Experimental results

Table 4 describes numbers of safe sequences, attention-
requiring situations (where the robot’s velocity should be
reduced) and dangerous situations (where the robot should be
stopped) identified by the safety system and the experts. Dur-
ing the first stage of the experiment, the safety system identi-
fied 257 safe sequences, 25 cases requiring increased control
and 202 dangerous situations. During the second stage of the
experiment, the first expert identified 250 situations requiring
increased attention and 40 dangerous situations. Meanwhile,
the second expert identified 73 situations requiring increased
attention and 50 dangerous situations.

Figure 9 shows examples of frames with safety system
evaluations obtained during the first stage of the experiment.
Figure9a–c demonstrate successful identification of the dan-
ger level in accordance with Tables 1 and 2. Table 5 presents
outcomes of images processing shown in Fig. 9a–c.

Figure 10a–c illustrate a timeline diagram of safety level
assessments obtained from the system and two experts during
the experiment. The vertical axis distinguish the three levels
of a danger: a safe sequence (0), an attention-requiring situ-
ation (1) and a dangerous situation (2). The horizontal axis
presents time of the experiment.

It should be noted that throughout the experiment, there
were no actual collisions between the operator and the mov-
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Fig. 9 Examples of 2-cameras
combined frames with safety
system evaluations obtained
during the first stage of the
experiment. a The operator is in
the safe zone. b The operator is
in the increased attention zone. c
The operator is in the danger
zone

Table 5 Outcomes of the image processing presented in Fig. 9

Estimation Danger level

Low Medium High

ptop [0.996986,0.002992, 0.000021] [0.001931, 0.99408, 0.003989] [0, 0.000002, 0.999998]

pside [0.9948, 0.001328, 0.003871] [0.803264, 0.08751, 0.109225] [0.000012, 0.00036, 0.999628]

p [0.999984, 0.004317, 0.003892] [0.803644, 0.994598, 0.112779] [0.000012, 0.000361, 0.999999]
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Fig. 10 Timeline diagram of safety level assessments obtained from the system and the two experts during the experiment. a Safety system
evaluations. b Evaluations of the first expert. c Evaluations of the second expert

ing robot. The system slowed down the robot when the
operator approached it, and stopped the robot if the oper-
ator approached the robot too closely. In addition, one of the
authors continuously controlled the emergency stop button
during the experiments.

Discussion

As a statistical measure of agreement between the evalua-
tions from the safety system and the experts we used Cohen’s
kappa metric (Vieira et al., 2010). It measures a degree of
agreement between two experts’ assessments taking into
account a chance agreement that could occur if the experts
were giving assessments randomly. The Cohen’s kappa coef-
ficient is calculated as follows:

κ = Po − Pe

1 − Pe

, where Po is a relative observed agreement among the
experts, calculated as a ratio of a number of matching ratings
to a total number of ratings, Pe is a hypothetical probability
of a chance agreement. In our case, Pe = 1

3 because with a
random selection, the assessment would be chosen randomly
from three possible danger levels: “Safe”, “Attention”, and
“Danger”.

Table 6 presents results of calculating the Cohen’s kappa
coefficient of comparing the safety system’s ratings with
those of each expert and comparing the ratings of the experts
with each other. The safety system’s vs. the first expert rat-
ings achieved κ =0.78616; the safety system’s vs. the second
expert ratings demonstrated κ = 0.77996. These values of
the Cohen’s kappa coefficient indicate a very good agree-
ment between the safety system’s ratings and the experts’
ratings. However, when comparing the experts’ own ratings,
a slightly lower value of κ = 0.72727 was obtained, which
still signifies a good agreement between the experts’ ratings.
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Table 6 The values of the
Cohen’s kappa coefficient for
evaluations obtained from the
safety system and experts during
the experiment

Evaluations Safety system, Expert 1 Safety system, Expert 2 Expert 1, Expert 2

Value of κ 0.78616 0.77996 0.72727

Level of agreement Good Good Good

These discrepancies arose from situations, which the
experts did not consider to require the increased control,
whereas the safety system classified them as such. This is
clearly visible in the diagrams presented in Fig. 10a–c. The
observed discrepancies in the ratings are partially explained
by peculiarities of the implemented algorithm: the danger
level evaluation may be excessive in doubtful cases as the
algorithm makes a choice in favor of the worst prediction.

The experiments have shown a potential applicability of
the approach based on the joint use of convolutional neural
networks for image classification in monitoring and pre-
venting dangerous situations in the robotic cell’s workspace
during collaborative assembly.Anadvantage of this approach
is its speed and ease of setup. Training twopre-trainedmodels
requires relatively small datasets, and a process of annotating
such datasets takes significantly less time compared to anno-
tating datasets for object detection, image segmentation, or
human pose estimation with a keypoint indication.

To collect a dataset for our system, it is sufficient to capture
video sequences in three types of situations:

• Situations where an operator is located in the safe zone;
• Situations where the operator is located in the heightened
control zone that requires the robot reducing speed to
avoid a collision;

• Situations where the operator is located too close to the
robot, posing a high risk of injury.

When collecting images of hazardous situations, there is
no need to expose the operator to a real danger. Instead, the
industrial robot is positioned in various configurations, and
videos of the operator approaching the stationary robot are
captured. Due to the simplicity of the dataset collection pro-
cess and a relatively short time required for model retraining,
our proposed approach can be quickly tailored to specific
production cases of intelligent manufacturing.

While exploring existing solutions, which could serve as
alternatives to the proposed safety system, we noticed that
often providedby authors data are rather brief andpiece-wise.
Therefore, for a comparative analysis in terms of practical
applications, we selected only three computer vision-based
systems designed to facilitate safe collaboration between a
human and a robot; these three are most closely aligned
with our development. The first system by Amaya-Mejía
et al. (2022) utilized a single Kinect camera to monitor a
UR3 robot and humans within a shared workspace. The sec-

ond system by Forlini et al. (2024) employed three Intel
RealSense D455 RGB-D cameras to observe a UR3 robot
and a human. The third system by Katsampiris-Salgado et al.
(2024a) was based on two Azure Kinect depth cameras and
was specifically designed for industrial high payload collabo-
rative robots. Most important characteristics of such systems
primarily include accuracy, response time, cost and system
setup; it should be noted that often improving one of these
characteristics can lead to a deterioration of others.

System accuracy directly depends on a number and a
type of employed sensors. The single Kinect camera system
in Amaya-Mejía et al. (2022) demonstrated detection accu-
racy varying from 97% in a danger zone to 57.4% in a safe
zone; the authors explained this discrepancy by a disparity
effect of the Kinect, which reduces an effective field of view.
Due to the employed RGB cameras, our system did not suffer
from this effect and succeeded providing consistent accuracy
across all zones.

As it was noted in Sect. 2.4, human detection based meth-
ods carry the risks of false negatives, when a vision system
fails detecting an operator despite their actual presence in
a danger zone. This is particularly true for human skeleton
detection based methods, which were used in Amaya-Mejía
et al. (2022) and Forlini et al. (2024). Moreover, these meth-
ods significantly increase the system’s response time as a
number of people in a frame increases. As shown in Amaya-
Mejía et al. (2022), the time required for the robot to stop
increased on average by 12.5ms when two people appeared
in a scene instead of a single human. At the same time, while
image classification methods can also lead to increased pro-
cessing time as a scene becomes more complex, they are
generally less affected by a number of objects compared to
methods that focus on detecting specific objects. As a part of
our future work, we plan to conduct a thorough analysis of
our system’s sensitivity to a number of people in a frame.

An important advantage of our method is the relatively
short time (52.8ms in average) required for the robot to
adjust its speed when a human enters the zone of increased
attention or the danger zone. Moreover, this value includes
both the time needed to detect a human in the danger zone
and the time required to stop (or slow down) the robot. For
a comparison, Amaya-Mejía et al. (2022) reported that the
time required for the robot to stop moving after the system
sends information about a human detection in a high-risk
zone averaged 63.7ms for one person in the scene. In study
Forlini et al. (2024), coordinates of human joints obtained
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from the skeleton detection system were sent to the obsta-
cle avoidance algorithm at a frequency of 18Hz, which hints
that the time to send a signal to the robot could be around
55.56ms, not including the time for processing images from
the cameras. In study Katsampiris-Salgado et al. (2024a), it
was stated that the estimated time for both communication
and prediction was about 65ms.

From the perspective of setup time, our proposed system
may require more time for dataset preparation and model
training compared to pre-trained solutions based on Medi-
aPipe (Amaya-Mejía et al., 2022) and Azure Kinect Body
Tracking SDK (Katsampiris-Salgado et al., 2024a). How-
ever, by utilizing a pre-trained YOLOv8 model and a simple
automated annotation process, this time was significantly
reduced. Like all machine learning-based methods, our algo-
rithm requires updating the dataset annotation in the case
of significant changes in the assembly process technology
and/or robotic cell operating conditions. When collecting a
dataset, it is essential to consider a variety of environmen-
tal factors, such as changes in lighting throughout a day
and under different weather conditions, as well as a pres-
ence of permissible objects and people in a frame. It is
important to note that updating the dataset in response to
significant changes in a scene is a necessary requirement for
most machine learning methods.

Like any computer vision based method, our system may
face a number of typical challenges in real-world industrial
settings that could be negotiated by further extensions of the
proposed solution; potential extensions are briefly discussed
in the next paragraph and provide a fruitful source for our
future work. RGB cameras can be sensitive to changes in
lighting conditions depending on the time of day, weather
conditions, and fluctuations in artificial lighting (Ceccarelli
& Secci, 2022; Atif et al., 2023). RGB cameras based meth-
ods may suffer from a loss of details in high-contrast scenes.
Glare from reflective surfaces or bright light sources could
create artifacts that degrade image quality. Vibrations from
heavy machinery could cause image blurriness and lead to
camera misalignment. Additionally, electronic components
of RGB cameras could be sensitive to interference caused by
increased electromagnetic radiation (Li et al., 2017; Wu et
al., 2019).

To enhance our method reliability in real-world indus-
trial conditions, adaptive image processing algorithms [e.g.,
(Wang et al., 2024; Shi & He, 2022)], stabilizing devices and
polarizing filters [e.g., (Rodriguez et al., 2022b)] could be
additionally employed. However, a need for such measures
would be determined by specifics of a particular production
process and environmental conditions. In our future work,
we plan to test the proposed system in typical production
environments and develop recommendations that would help
mitigating the aforementioned negative factors.

In conclusion to the discussion section, we emphasize sev-
eral key aspects that set our vision-based safety system apart
within the landscape of existing collaborative assembly tech-
nologies. First and foremost, we developed an original risk
assessment algorithm that utilizes data from two RGB cam-
eras and does not require additional depth sensors. Currently,
the overall cost of our system is comparable to that of depth
camera based systems due to the employed high-qualityRGB
cameras; yet, we believe that our approach can be adapted for
less expensive cameras, which is a part of our future work.
Furthermore, our approach is based on simple image classi-
fication methods using the YOLOv8-cls model (Ultralytics,
2024b), which (unlike other methods that rely on human
recognition) provides faster data processing. Finally, the pro-
posed vision-based safety system is seamlessly integrated
with the contactless robot control system through gestures,
which is another unique aspect of the proposed solution.

Conclusions

The study introduces a novel visual control system designed
to ensure safe collaborative assembly processes for intel-
ligent manufacturing. Unlike many existing systems, this
setup relies solely on data from two RGB cameras with-
out additional depth information from other sensors. The
cameras capture top and side projections of the collabora-
tive workspace. The safety system evaluates a current danger
level using twoYOLOv8-cls neural networkmodels, initially
pre-trained on the ImageNet dataset and further fine-tuned on
our data. Upon detecting potential hazards, the system trig-
gers decisions to slow down or halt the robot based on the
proposed algorithm. To facilitate assembly process manage-
ment the system is integrated with a visual control system,
which is governed by operator gestures.

Our validation experiments revealed good consistency
between the danger level assessments in collaborative assem-
bly obtained by the system and those provided by the human
experts. These results underline a power of the proposed
approach in managing hazardous situations that occur during
collaborative assembly and preventing operator injuries. The
proposed system stands out for its accessibility for intelligent
manufacturing (due to 2D cameras) and could be employed
by small and medium-sized enterprises seeking to enhance
safety of production processes that involve industrial robots
in collaborative assembly.
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