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Abstract: A significant number of alloyed metals applied for different purposes are currently available
in industry. The hardness of a piece is an important parameter to consider. The tempering process
is widely used to change a metal’s hardness, which is obtained using a hardness test. Once the
response is obtained, a way to evaluate the system is by performing an analysis of variance to verify
the significance of terms and obtain a regression equation to improve the response. The aim of this
work is to illustrate the implementation of an experimental approach based on the steepest ascent
method and stopping rules for optimization purposes by considering the hardening process of the
steel alloy 4140. The regression coefficients obtained from an experimental design were used to
build the steepest path of improvement. The Myers and Khuri stopping rule and the enhanced
parabolic stopping rule were applied to determine the best value while individual experimentation is
developed. The obtained results, discussion, and a conclusive analysis are disclosed in this document.

Keywords: tempering; steel alloy 4140; hardness test; steepest path; optimization
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1. Introduction

Metal alloys are widely studied for a variety of applications due to their different prop-
erties. For instance, Zhang et al. [1] explained several recent developments of antibacterial
alloys for biomedical materials and the antibacterial mechanisms of alloys for biomedical
implants. Additionally, Hoang et al. [2] analyzed the corrosion behavior of alloys in diesel
engines due to the biodiesel used. Furthermore, Liu et al. [3] illustrated the characteristics,
intrinsic properties, and analytic mechanism of metal-oxide-based nanozymes and their recent
applications in biological analysis, relieving inflammation, providing antibacterial therapy,
and even improving cancer therapy. Moreover, Feti¢ [4] studied the effect of the temperature
of heat treatment on the microhardness and corrosion behavior of a metallic glass. Similarly,
Gloria et al. [5] argued that, recently, a new generation of metals for aeronautics has grown
in importance. Additionally, Luo [6] revealed that advanced light metal alloys are widely
used in the automotive industry for weight reduction. In addition, Zeng et al. [7] found that
magnesium (Mg) alloys have lightweight structural properties and benefits in terms of extrud-
ability, mechanical properties, and microstructural characteristics, resulting in conveniently
high performance when applied. It is of great importance to mention that the production
process of metal alloys also plays a crucial role in influencing their material properties. For
instance, the centrifugal casting process has several effects on the structural stability of metal
alloys. He et al. [8] explained that anisotropic behavior was observed in ductile iron pipes due
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to the centrifugal casting process, during which the cooling rate is typically faster at the outer
surface compared to the inner surface. The authors conducted experiments to investigate the
mechanical properties of centrifugal casting ductile iron pipes, emphasizing how sampling
orientation, location, preparation, and testing methods affect results. The findings reveal that
the mechanical properties of the pipe varied with the wall thickness, being weaker in the
internal section and stronger in the middle and external sections. This weaker layer was prone
to cracking, which could then propagate outward. They concluded that this inhomogeneity
significantly degraded the overall mechanical performance compared to the middle material.
Fractographic and metallographic analyses identified casting defects, such as porosity and
agglomerated graphite in the internal section, as the main contributors to material inhomo-
geneity. All in all, the final intention is to reduce costs by expanding the productive life of
components. It is crucial to study the most useful metallic alloys, including aluminum, tita-
nium, magnesium, and, of course, steel alloys, that consider recent advancements to effectively
reach different objectives.

Particularly, AISI 4140 alloy steel is currently known as one of the most relevant alloys
for different specific purposes. Ozdemir et al. [9] found that AISI 4140 alloy steel has
high abrasion resistance, toughness, torsional strength, and fatigue strength. For example,
Glrbiiz et al. [10] conducted a study on the effects of different rates and cutting parameters
on surface roughness with a significant focus on the machinability criteria and formation
of AISI 4140. At the end of the experiments, there was no significant effect on the surface
roughness due to these alloy properties. Murwamadala and Rao [11] studied the tribological
properties of the AISI 4140 alloy through three tests conducted per sample: rotating, scratch,
and reciprocation tests with a lower observed coefficient of friction. Similarly, Borchers
et al. [12] compared seven different manufacturing processes (grinding, turning, deep
rolling, laser processing, inductive heat treatment, electrical discharge machining, and
electrochemical machining) on this alloy inspected by highly specialized examination
techniques to evaluate its surface modification (this alloy has a high fatigue strength,
toughness, torsional strength, and abrasion resistance).

In addition to these previously mentioned processes, AISI 4140 alloy steel is also
widely used for tempering purposes. As is well known, steels are tempered to increase
their toughness [13], and they are commonly used in different industrial applications.
For instance, Sarag and Altan-Ozbek [14] investigated the effects of tempering temperature
on the mechanical properties of AISI 4340 and AISI4140. These steels are normally subjected
to hardening processes. Hardness measurements are performed to analyze their mechanical
properties and microstructural composition.

There are certain cases where the intention is to look for a maximum or minimum
value in the response (hardness) which is obtained by a test measured by the Brinell,
Vicker’s, or Rockwell scales, determined by the tempering conditions applied. For example,
Hu [15] developed a strategy to accurately forecast Vicker’s hardness of austenitic steels
given certain experimental conditions. This development produced an excellent generaliza-
tion ability through a validated model to predict the mechanical properties governed by
microstructures. Other specialized techniques are currently widely applied to analyze and
evaluate response variables such as the hardness of a piece.

Several great tools to evaluate responses are the design of experiments (DOE) and the
analysis of variance (ANOVA). This last tool measures the variability of the systems and
significance of factors for optimization purposes. For instance, Ali et al. [16] presented the
optimization of the key process parameters in electrohydrodynamic atomization through
a full factorial DOE for the assessment of various parameters such as voltage, deposition
distance, and flow rate. Those results show a significant modification in the morphol-
ogy of resultant structures with the potential to develop personalized medical devices.
Similarly, Smith and Larson [17] described some statistical approaches for the analysis
of metal surface in the finishing stage such as full and fractional factorial design of DOE,
central composite design, response surface methodology (RSM), and Taguchi methods.
Additionally, Moradi et al. [18] optimized a direct laser metal deposition technique in
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additive manufacturing using a full factorial design, where the process variables included
the laser scanning speed, powder feed rate, and scanning strategies, while the process
responses were the geometrical dimensions, standard deviation of microhardness, and the
stability of additively manufactured walls. Optimization was achieved and the desired
conditions for the additive manufacturing process were applied.

One of the most important stages of a DOE design is the optimization of variables in a
process. According to Rao [19], optimization activities focus on obtaining the best possible
result under given circumstances to either minimize the effort required or to maximize the
desired benefit. The purpose is to find the conditions that give the maximum or minimum
value of a function. In the case of metal alloys, such as the steel AISI 4140, optimization
activities have been documented with successful results. For instance, Natrayan et al. [20]
optimized the tungsten inert gas process parameters using techniques related to DOE. The ten-
sile strength of an AISI 4140 stainless steel welded joint was explored. Different welding
process parameters and a regression model were used to establish the correlation between
welding input parameters and the penetration of tungsten inert gas welding of AISI 4140
stainless steel plates. The optimal process parameters for tensile strength were successfully
reached. Similarly, Ozdemir et al. [9] tested AISI 4140 steel specimens using a DOE to find the
most effective parameters on its cutting force and surface roughness, with effective results.
Moreover, Glirbtiz and Emre [21] studied the effects on machinability of AISI 4140 steel by
applying different cutting parameters. Furthermore, there was an optimization strategy of
cutting conditions through analyses of variance and regression analysis.

The intention of conducting this type of analysis and procedures in several types of
industries relies on the importance of finding the maximum possible observed response
by using specific statistical methods. In this case, the purpose of this work is to present a
study of a hardening process of the steel alloy 4140 for maximization purposes. This alloy is
frequently used for many purposes; finding a maximum response in its hardness constitutes
a task of high importance when the final product requires such property.

The distribution of this work is divided into seven sections. This first section, the
introduction, mentions a brief overview of metal alloys (including the steel alloy 4140)
and examples of tempering processes and their analysis through a statistical approach.
The second section concerns the steepest ascent or descent methodology (SADM). The third
section describes the method, the materials, and the characteristics of the experiment
developed. Section 4 shows the results of the analysis. Section 5 presents a brief discussion
of the findings. Finally, Section 6 presents a conclusion of the entire document.

2. The SADM and Its SRs

SADM is used as the base to reach a response area where an optimization is feasible.
According to Myers et. al. [22], SADM constitutes an experimental design, model-building
procedure, and sequential experimentation scheme in the search for a region of improved
response. This is achieved by sequential increments of the factors from one region to
another in more than one experiment. Nevertheless, the number of individual experiments
applied to make an improvement might be not accurate and the cost of the resources
used may be high and not affordable. For this reason, researchers commonly use proper
procedures to stop experimentation, with mathematical justification to prevent a waste of
experimentation resources. These procedures are known as stopping rules (SRs).

On the one hand, Myers and Khuri [23] first proposed the Myers and Khuri stopping
rule (MKSR). This rule assumes that the behavior of the observed response y(t) is normally
distributed such that y(t) ~ mnormal (1(t),0?). It applies a significance test using a
confidence interval, the solution for the limits of the interval is given by a and b; then, the
next consideration is followed:

Experimentation continues if y(n;) —y(n; — 1) > bory(n;) —y(n; —1) <b > a.
Experimentation stops if y(n;) —y(n; — 1) < a < 0.
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In this case, y(#n;) is the present value of the response variable at the n; step in the
SADM improvement path, y(n; — 1) is a previous response in the improvement path, and
a is an interval limit for the test of significance. Then, a solution for a2 and b limits is
established witha = —b = ¢! (%)(Ug) (v/2), where a and b are the interval limits of the
significance test, ® is a cumulative distribution function of the normal, « is an assumption
of the number of individual experiments to run to reach an improvement, and o is the
square root of the adjusted mean square of the ANOVA in the factorial analysis. It is part of
the procedure to return to t* such that Y (tx) = max;—y _{Y(I)}.

On the other hand, Mir6-Quesada and Del Castillo [24] proposed the enhanced re-
cursive parabolic stopping rule (ERPSR), which poses an improvement of its predecessor
recursive parabolic stopping rule (RPSR) [25]. The enhanced rule recursively fits the second-
order term to assume a quadratic behavior in the response, but it also fits the first-order
terms to make it less sensitive to a quadratic behavior and more robust to a possible linear
behavior in the observed response in y(t) = 17(t) + & = 0y + 01t + 021> + &4

This procedure is summarized in five main steps:

1.  The procedure increases its robustness by fitting the response to also assume non-
quadratic behavior. It is performed by specifying a maximum number of individual
experiments in the recursive least squares algorithm used in this SR. A concept called
“window” must be applied to locally fit the parabolic model along the search direction
to make it less sensitive to a large amount of scaled deviation from quadratic behavior.
The window size (N) is determined using an indicator called the signal-to-noise ratio

(SNR). This is estimated by the equation SNR= Hbv‘ | , where o is the standard deviation
of the central points of the experiment. The variable [|b]| is estimated using the next

equation, given as |[b|| = [|B|| = 1/Z¥_,b?. Consecutively, it is necessary to identify
N in a table of values given by [24] with the window sizes for all t < N — 1, so it
becomes possible to identify Nx1, the vector by, and the scalar /vy.

2. Aninitial guess is proposed about the number of individual experiments believed to

be needed to reach the optimum. Additionally, a parameter estimation when ¢t = 0
is computed using 6p(”) = Y(0), 6;®) = ||p||, and 6,*) = — thlp(zzr. The notation Y (0)
represents the arithmetic mean of the responses obtained by the center points of the

experiment. The notation ||b|| represents the square root of the sum of the squares of
the regression coefficients of the linear model of the experiment.

0"
3.  The algorithm makes use of the defined matrix a: 8) = |¢,(®) |, matrix b: ¢y = | ¢ |,
0,(t) t2
0 10 0
matrix c: ddizf =d; = |1|,and matrixd: Py = {0 1 0| for updating param-
2t 0 0 10

eters 6y, 1, and 6. Matrix Py works as the identity matrix; the value of 10 given
in the position of its third column and third row makes the procedure more ro-
bust against possible discrepancies between t,,;,, and t*, providing “adjustment”

capacity to the variable curvature. Then, for the recursive calculation of (), the

equation 0() = g(t=1) ¢ % + % (Y(t) — cp’t()(t*l)) is updated and, to update

P, Py = Var(6W) /o2 = (I — %(I)’J P,_; is calculated.

4.  The decision rule d';6(t) < —1.6450,\/d’;P/d; is applied fort < N —1.

5. When the decision rule is satisfied, the experiment stops, and that response is consid-
ered to be the best. If a better response is identified earlier, that value becomes the
best new response. It means that we return to t* such that Y (tx) = max;_; _{Y(I)}.

As previously said, the MKSR assumes that the behavior of the observed response
y(t) is normally distributed; this means that it considers that the response will have a linear
behavior, while the ERPSR assumes that the response is quadratic, but it fits the first-order
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term of its model to make it less sensitive to a quadratic behavior and more robust to a
possible linear behavior. This means that it has the capability to assume that the response
can have both quadratic and linear behavior. Nevertheless, an innovative way to improve
the response of this study case and offer a new perspective on the problem of optimizing
steel tempering processes is by adapting the analysis to the response variable of the study
case without the need to assume its behavior to be linear or quadratic. This optimization
strategy is related to a stopping rule called the adaptive sequential stopping rule (ASSR) [26].
This rule is based on the Wiener process; it considers the drift parameter as a component of
adaptability to any behavior that an experimental response may build. Also, the drift is
well described as the rate of change or variation between stochastic trajectories. Moreover,
if a rate function is capable to characterize the nature of the behavior of the trajectory, it
will efficiently determine a maximum desired response in the process. It uses a Bayesian
inference modeling scheme to sequentially estimate the parameters involved. Also, it is
based on the definition of a confidence interval for a future observation estimation using the
same rate function previously mentioned in search of an optimal response. This adaptive
stopping rule has ten general steps:

1.  Perform an experiment on t, j=1,2,..,n to obtain the observation y (t]-).

2. Obtain Ay(t;) = y(t;) — y(tj—1) starting from the second individual experiment.

3. Consider a sample size of m = 5 for AY®) ().

4. Assume that AY(®) (1)) is described by a Wiener process.

5. Incorporate the Hjorth rate and its parameters g, §, and 6 to the Wiener process.

6.  Model the experimentation scheme with Bayesian inference using the software Open-
BUGS version 3.2.3 rev. 1012 to estimate the parameters (6,6, 8, ) for each AY*) (tj).

7. Obtain the parameter set (S(k), 6k), gk, ﬁ(k)) for each AY(®) (t).

Characterize the shape of the trajectory for each set AY (¥) (tj) according to (3 (k), 9, B(k)> .

Calculate the upper limit of a confidence interval to estimate the maximum future in-

. @ g(k) A
crement using UL(AY<k>(tj)|6,6,ﬁ,a\/B) =Y+ ((S(k) + M) (tjr1) + 1.965(%) (tir1)-

10.  Decide when to continue or when to stop experimenting using the following decision rules:
. . . A(k) é(k) ~ (k) .
Experimentation stops if Yo + { 6 + m (tj+1) +1.966 (ti+1) < 0OwhenYqis
+

negative, or Yy + (S(k) + (13_(;2,{))> (1) + 1.966F) (ti11) = Yo when Yy is positive.

A detailed description and explanation of the method is presented by Garcia-Nava
and Rodriguez-Picon [26].

For this paper, the MKSR is used because of its assumption of linearity in the ex-
perimental response, the ERPSR is used because of its assumption of both quadratic and
linearity in the experimental response, and, finally, the ASSR is used because of its capabil-
ity of adaptation to the experimental response. At the end of this analysis, the outcome will
determine which SR performs better under the same circumstances.

3. Materials and Methods

This document presents a case study related to a steel tempering process. The method
used is described in this section. The motivation that a professional may have when
developing this kind of analysis comes from the need to optimize resources. This means
working in optimal conditions by systematically varying factors to determine the best
settings to achieve desired outcomes. In this case, the experiment is carried out to maximize
the hardness (response) of the material (steel alloy 4140). Maximizing the hardness of
this steel alloy is important, particularly in applications where high strength and wear
resistance are critical. Hardness is important because it improves the alloy’s resistance to
wear and abrasion, the material’s lifespan can be extended, it helps in maintaining precise
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dimensions and tolerances, and it can contribute to better performance characteristics.
This paper first develops a screening experiment using DOE to apply the RSM and build a
path of improvement. Finally, the objective is to maximize the response.

The method is shown in Figure 1. Different factors and levels were used in this
tempering experiment to build a 2 factorial design. The mathematical model was fitted
to build a path of improvement using SADM and optimize the response (the hardness
of the alloy). Finally, the SRs mentioned were applied to determine the moment to stop
individual experimentation over the steepest direction.

Design of the factorial
arrangement.

v

Development of the
tempering process.

v

Fitting of the mathematical
model.

v

Determination of the steepest
direction using the SADM.

v

Application of MKSR and
ERPSR.

Figure 1. Proposed method for the analysis of the case study.

3.1. Design of the Factorial Arrangement

The experiment is a full factorial design that includes 2 factors with 2 levels for each
factor, so it is explained by a design of 22 = 4 runs. The design has 2 replicates, 2 blocks,
and 2 center points per block. As seen in Table 1, the total of applied runs is 12.

Table 1. Full factorial design summary.

Summary of Design

Factors: 2 Base Design: 2,4
Runs: 12 Replicates: 2
Blocks: 2 Center pts (total): 4

A common tempering process consists of heating a piece and suddenly cooling it. It al-
lows an increase in the hardness of the metal. The two factors considered for this tempering
process were the temperature of the furnace and the exposition time for cooling. The blocks
involved are related to two types of cooling environment: oil and water. The level of the
temperature ranges from 825 to 880 °C and center points of 852.5 °C. The levels of the
exposition time for cooling ranges from 5 to 95 s and center points of 50 s.

3.2. Development of the Tempering Process

The pieces were first cleaned and sanded. The device shown in Figure 2 was used to
polish pieces. Once pieces were polished, the tempering process could be properly developed.

After this, pieces entered the furnace (Figure 3) according to temperatures from
factorial design. Special equipment must be used in the laboratory because the furnace
manages excessive temperatures in the process.
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Figure 2. Device used to sand pieces.

Figure 3. Furnace used in operation.

Then, the pieces were introduced in oil and water, as shown in Figure 4, according to
the blocks of the factorial arrangement.
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Figure 4. Cooling environment used.

After the pieces were cooled under specific cooling conditions, they were subjected to a
hardness test. This value is used as the response variable of the factorial design. The device
used for this test is the one shown in Figure 5. Rockwell HRB and Rockwell HRC were the
scales used for measurements; later, all values were converted into Vickers (HV) to manage
only one type of scale, and so that the data could be analyzed.

Figure 5. Metal alloy 4140 Metrolab hardness tester.

A total of five test points per piece were applied, as shown in Figure 6. The arithmetic
mean of the values was used in each piece for the data analysis.
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Figure 6. Hardness test points applied to the specimen.

The microstructure and hardness of the steel alloy 4140 are significantly influenced
by temperature and time. On the one hand, the temperature is crucial: the way the
specimen is heated and cooled transforms the microstructure. For example, carbon atoms
can dissolve more readily in iron (Fe), leading to a complete changing of structure. Rapid
cooling transforms the material into a very hard structure. On the other hand, time is also
important: the time the steel is held at high temperature affects the transformation. For
instance, if there is insufficient time, not all the microstructure may change, but if there
is an excessive time of exposure, it can lead to grain growth, reducing the hardness and
strength of the material due to thicker microstructure.

Other parameters are related to the tempering process of the alloy 4140. It contains
carbon, chromium, and molybdenum, which increase the ability of transformation of the
specimen. Higher content typically results in higher hardness after the tempering process.
The parameters considered for this experiment were properly referenced and selected for
the scope and intention of this paper.

In order to make the impact of this paper clear for real-world applications, an industry
benchmark is presented. According to Khani et al. [27], the material microstructure and
mechanical properties of steels have been of interest in metallurgy. It is well known
that quenching and tempering are expected to improve both strength and toughness of
specimens. Iranian Alloy Steel Co. (Yazd, Iran) developed an AISI 4140 steel by melting
steel refined by various methods to reduce the level of impurities such as sulfur and
phosphorous. The chemical composition of their AISI 4140 steel is shown in Table 2.

Table 2. Chemical composition of AISI 4140 from Iranian Alloy Steel Co.

%C %Si %Mn %P %S %Cr %Mo %Fe
0.42 0.2 0.79 0.014 0.023 1.07 0.185 Balance

The experiment developed by [27] using steel alloy 4140 represents a benchmark for
the experiment presented in this paper in three different ways:

1.  Both experiments considered heating temperatures, time in the furnace, cooling rate,
and cooling medium. On the one hand, the heating temperatures on both experiments
range from 860 to 880 °C and the time in the furnace ranges from 60 to 120 min. On the
other hand, the cooling rates are in a range of seconds, and the cooling medium in
water and oil causes a thermal shock that benefits the physical change of the piece.

2. Khani et al. [27] mentioned that sudden cooling in the heat treatment process resulted
in a significant improvement of properties related to hardness performance. This sup-
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ports the cooling time and cooling environment stated in this paper. The alloying
elements of the material would not constitute a variable because they are fixed.

3. Optical metallography of the specimen helps us to visualize the grain distribution of
the steel alloy 4140. The metallography used in both experiments is similar.

After the development of the tempering process and obtaining the statistical informa-
tion, we fit the mathematical model.

3.3. Fitting of the Mathematical Model

The fitting of the model is explained by the coded coefficient table from the statistical
analysis shown in the Results section. Once the equation is built, it is known as regression
equation of coded units (RECU). The form of the mathematical model is shown in Equation (1).

§ = bo + b1x1 + byxp + b3x1x2. 1)

where

7 = estimated response;

by = constant or intercept;

b; = coefficient of term;

x; = variable or term.

The Results section shows the way this equation was obtained from the coded coeffi-
cient table and the way it was used for the rest of the improvement procedure.

3.4. Determination of the Steepest Direction Using the SADM
The SADM consists of three steps:

1. First, a step size is chosen in one of the process variables to be used as the main Ax;.
Typically, the most known variable is selected, or the variable that has the largest
absolute magnitude in its regression coefficient |b;| is selected.

2. The step size for the ascent or descent path for the other variable is calculated using
Equation (2).

pxj— U
x] o bi/Axi

;forj=1,2, ..., k and wheni #j. 2)

where
Axj= coded step size for factor Xj;
Ax; = coded step size for factor x;;
b; = regression coefficient of the considered factor x;;
b; = regression coefficient of the selected factor x;.

3. Finally, Ax; from coded variables is converted into natural units.

It is important to set an appropriate value for Ax;. Therefore, it will be possible to
build a better path of improvement and a proper sequential increment of levels.
3.5. Application of MKSR, ERPSR, and ASSR

As previously said, the MKSR applies a significance test using a confidence interval,
and the solution for the limits of the interval (a,b) is givenby a = —b = ¢! (%)Ug V2.
This interval constitutes a range of the difference between two individual observations.
Correspondingly, ¢! is the standard inverse cumulative function of the normal distri-
bution, « is a guess of the number of individual experimentation runs to arrive to the

improvement, and o is the square root of the adjusted mean square or the experimental
error. The significance test (3) is presented as follows:

y(n;) —y(ni—1) <a<0. 3)

In this case, y(n;) represents the present response value in the path of improvement and
y(n;_1) is the previous response value in the steepest direction. If Equation (3) is fulfilled,
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experimentation stops and the response § returns to t* such that y(t*) = max(_;,._ny(l).
Otherwise, experimentation continues if y(n;) —y(n; —1) > bory(n;) —y(n; —1) < b > a.

Now, the ERPSR fits the second-order term in y(t) = 1(t) + &; = 6 + 01t + 0212 + & to
assume a quadratic behavior in the response of individual experimentation obtained from
the steepest ascent path. It applies a concept known as “window” to only fit a portion of
the quadratic model along the steepest search to make it less sensitive to parabolic behavior.

(t)

Then, it recursively fits the estimation of the different parameters 6; ’ to apply the decision
rule (4) fort < N — 1.
d/tg(t) < —1.6450.+/d' Pd;. (4)

If Equation (4) is fulfilled, experimentation stops and the response ¥ returns to t* such
that y(*) = max(_ ‘_,t)y(l).

’”

4. Results

The full factorial design illustrates the two blocks applied as the cooling environment
of the piece (water and oil), the factor x; (the furnace temperature in °C), and the factor
x; (the exposition time for cooling in seconds). It includes the responses shown in HV
hardness units. The validity and reliability of the experiment is explained by the formal 2
design used that additionally incorporates two replicates, two blocks, and two center points
per block. The scope of this experiment is explained in the framework of these 12 runs
offered within the levels and factors experimented. Factorial design and hardness values
expressed in the HV scale are shown in Table 3 according to the factorial design.

Table 3. Full factorial design with hardness values.

Blocks Run Furnace Temperature (°C) Cooling Time (s) Vickers (HV)

Hardness
2 1 880 5 402
2 2 852.5 50 454
2 3 825 95 479
Water
2 4 880 95 483
2 5 852.5 50 454
2 6 825 5 398
1 7 852.5 50 452
1 8 825 95 475
1 9 880 5 397
Oil
1 10 852.5 50 453
1 11 880 95 480
1 12 825 5 395

This experiment not only offers the combination of levels of the factors in each of
the two blocks, but it also illustrates the response variable of the experiment (hardness).
The factors selected and the ranges of the levels from both factors (furnace temperature
and cooling time) constitute the current scope of this experiment.

The contour plot of the experiment is illustrated in Figure 7. The contour lines help to
visualize the way the variable changes across a two-dimensional space. Each contour line
represents a specific level of response. The spacing between lines indicates the gradient;
closely spaced lines suggest steep changes, while widely spaced lines indicate gentle slopes.
Specifically, it can be noted that the highest response can be found at the upper right corner,
where the highest levels from both factors define this response.
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Contour Plot of Y vs Time, Temperature

Time

830 840 850 860 870 880
Temperature

Figure 7. Contour plot of the experiment.

The developed tempering process includes metallography. The illustrations of the
pieces that explain the center points of the experiment in both blocks are shown in Table 4.
Metallography and Microstructures Metals Handbook [28] clearly presents the composi-
tions of AISI carbon and alloy steels. In the case of the steel alloy 4140, the composition
is given by 0.38-0.43 of C, 0.75-1.00 of Mn, a P maximum of 0.035, a S maximum of 0.040,
0.20-0.35 of Si, 0.80-1.10 of Cr, and 0.15-0.25 of Mo.

Table 4. Metallography (2% nital, 500x) that explains the center points of the experiment, 1 h at
852.5 °C (1566.5 °F) with water and oil cooling.

Blocks Run Metallography

2 2
Water
2 5
1 7
Oil
1 10

The analysis presents the ANOVA shown in Table 5. The last column of this table
shows the p - value. The confidence level managed in this experiment is 95%. Therefore,
the factors are significant to the response variable when the p - value < 0.05. In such case,
temperature and time are certainly significant to the hardness of the piece. On the contrary,
the interaction “Temperature X Time” is not significant to the response. It is possible
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to visualize the level of significance of each factor through the coded coefficients table
explained below.

Table 5. ANOVA of the experiment and significance of factors.

Source DF Adj SS Adj MS F-Value p-Value
Model 5 13,829.7 2765.9 3161.09 0.000
Blocks 1 27.0 27.0 30.86 0.001
Linear 2 13,231.3 6615.6 7560.71 0.000
Temperature 1 28.1 28.1 32.14 0.001
Time 1 13,203.1 13,203.1 15,089.29 0.000
2-Way Interactions 1 1.1 1.1 1.29 0.300
Temperature*Time 1 1.1 1.1 1.29 0.300
Curvature 1 570.4 570.4 651.86 0.000
Error 6 52 0.9
Lack-of-Fit 4 4.7 12 4.75 0.181
Pure Error 2 0.5 0.3
Total 11 13,835.0

The residual plots of the response (including the normal probability plot) and the test
for homogeneity of variance validate the model’s assumptions, shown in Figure 8.

Residual Plots for Y

Normal Probability Plot Versus Fits
99 -
~ .
. 10 .
9 P
e
- »” = 05 .
£ o ]
g s 2 3 .
5 g g 00 e .o
& o > -4
10 s -05 %
& .
) -~ 10| e
2 1 o i 2 400 420 410 460 480
Residual Fitted Value
Histogram Versus Order
4 .
10 ¢
3
o5 .

Frequency
Residual
/
»

S0 05 00 05 10 15 12 3 4 5 6 7 8 9 10 m 12

Residual Observation Order
Figure 8. The residual plots of the response.

The homogeneity of variance test is shown in Figure 9. It shows evidence of its homo-
geneity since it has a py,,, = 0.649, which is higher than the significance level of « = 0.05.

Test for Equal Variances: Hardness vs Temperature, Time

Temperatura  tiempo

Bartlett's Test

825.0 5/ P-Value 0649
95 o
8525 50 ¢
880.0 5 &
95 >~
0 500 1000 1500 2000 2500 3000

99% Bonferroni Confidence Intervals for StDevs

Figure 9. Tests for homogeneity of variance of the response hardness.
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The mathematical model of this experiment is obtained from Table 6. It is defined by Equation (5).

7 = 438.625 + 1.875 * Temp + 40.625 * Time )

Table 6. Coded coefficients table.

Table Effect Coefficient SE Coefficient t-Value
Constant 438.625 0.331 1326.28
Blocks
1 —1.500 0.270 —5.55
Temperature 3.750 1.875 0.331 5.67
Time 81.250 40.625 0.331 122.84
Temperature x Time 0.750 0.375 0.331 1.13
CtPt 14.625 0.573 25.53

For each unit of change in the temperature, there will be a change in the response
variable of 1.875 if the “time” remains constant. Similarly, for the other factor, for each
unit of change in time, there will be a change in the response variable of 40.625 if the
“temperature” remains constant. After obtaining and analyzing this mathematical model,
the steepest path can now be built in an ascending direction considering only significant
and individual terms.

The main factor that is selected as the step size Ax; is “time” because it has the highest
absolute regression coefficient in the model. Table 7 shows the step size of factors in natural units.

Table 7. The step size of the system from coded to natural units.

Temperature (°C) Time (s)

Coded Natural Natural
-1 825 5
0 852.5 50
1 880 95

In the case of the factor “temperature”, it is necessary to compute Equation (2) to build
the path, as shown in Table 8. The steepest ascent path is the one in which the temperature
increases Ax; = 0.0282 and the time increases in a single natural step Ay, = 1, as proposed.

Table 8. Computations to establish the step size Ax; of factors in the steepest path.

Step Size
Axy for Temperature Ay, for Time
Natural 0.0282 1.0000
Coded 0.0010 0.0222
Time

Coded Natural

1 45

0.0222 1

It is possible to visualize the sequential increments of factors from one region to
another through individual experimentation in each step. The block “water” was the
cooling environment used to build the steepest path since it is the best level of the block.

The steepest path and the responses are illustrated in Table 9. As previously mentioned,
the steepest path is built using the regression model of the designed experiment. In this
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case, the path of the steepest direction is intended to find the maximum response from the
regression function of the experiment by using an adequate step size to properly change
the level of the factors to obtain the proper responses. The moment to stop is determined
by the three applied SRs: the MKSR, the ERPSR, and the ASSR.

Table 9. Steepest ascent path with individual experiments.

Step A Temperature A Time Y;
0 852.50 50.00 455.00
1 852.53 51.00 456.00
2 852.56 52.00 455.00
3 852.58 53.00 458.00
4 852.61 54.00 457.00
5 852.64 55.00 460.00
6 852.67 56.00 461.00
7 852.70 57.00 458.00

The application of the MKSR is illustrated in Table 10. The limits of the confidence
interval are a = —b = —2.207. The calculation of these limits was made witha x = 10 and a
0 = 0.9. Therefore, individual experimentation all along the steepest direction stops when
Equation (3) is fulfilled. In other words, experiments stops when y(n;) — y(n;_1) < —2.207.
This happens in step number 7, so the response returns to t* = 6 when §, .. = 461 units.

Table 10. Steepest ascent path with individual experiments and the MKSR.

Step A Temperature A Time Y; y(n;) —y(n;_1)  Significance Test Decision
0 852.50 50.00 455.00 - - Starts
1 852.53 51.00 456.00 1.00 a<1l<b Continues
2 852.56 52.00 455.00 —1.00 a<-1<b Continues
3 852.58 53.00 458.00 3.00 b<3 Continues
4 852.61 54.00 457.00 —1.00 a<-1<b Continues
5 852.64 55.00 460.00 3.00 b<3 Continues
6 852.67 56.00 461.00 1.00 a<1<b Continues
7 852.70 57.00 458.00 —3.00 —3<a Stops

The graph of responses Y; is shown in Figure 10.

464.00
462.00
460.00

. 458.00

e
456.00
454.00
452.00

450.00
1 2 3 4 5 6 7
Step

Figure 10. Hardness test responses applied to the specimen.

Next, the ERPSR is applied. Recursive estimation is shown in Table 11. The recursive
(t)

estimation of 6;’ requires an estimation of the number of individual experiments needed
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to reach the improvement, similar to what happens in the MKSR with k. The estimation
needed in this ERPSR is known as f,;,,. The number used in this case was tp,jo, = 10.

Experimentation stops when d’ 10() < —1.6450.+/d"; Pid; and the response Jj returns to t*

.....

Table 11. Computations for the enhanced rule (ERPR) for steps t < N — 1.

t y(® ol Y o Py die® o2 d Py _1.6450 e \/d 1Pd; Decision
1 0 0

0 455.00 453.250 40.668 ~2.033 0 1 0 40.6682 0.6875 ~1.3640 Starts
0 0 10

1 456.00 45049 37.91 —29.64 09 —0.1 -0.8 —21.3664 48654 —3.6285 Stops

In t* = 1, experimentation stops because —21.3664 < —3.6285 and the improved
response goes to 1,z = 456 units.

Finally, the ASSR is applied. After performing experiments on ti,j=12,..,nto obtain
the observations y(t;), deltas Ay (t;) = y(t;) —y(tj—1) are as obtained, as seen in Table 12.

Table 12. Steepest ascent path with individual experiments and the ASSR.

Step Temperature Time Y;
0 852.50 50.00 455.00
1 852.53 51.00 456.00
2 852.56 52.00 455.00
3 852.58 53.00 458.00
4 852.61 54.00 457.00
5 852.64 55.00 460.00
6 852.67 56.00 461.00

After that, a sample size of m = 5 for AY(¥) (t;) is considered:

AY@) (1) = [Ay(h), dy(ta)] = [1, 1]

)
AYO) () = [Ay(h), Dy(ta), Ay(ts)] = [1,-1,3]
AYW (1) = [Ay(t), By(ta), Ay(ts), Ay (ts)] = [1,—1,3, 1]
AYO) (1)) = [Ay(t), By(ta), Ay(ts), Ay(ts), Ay(ts)] = [1,-1,3,-1,3]
AY©) (1)) = [Ay(ta), Ay(ts), Ay(ts), Ay(ts), Ay (te)] = [-1,3,-1,3,1]

It is important to assume that AY (¥) (t;) is described by a Wiener process to incorporate
Hjorth ’s rate and its parameters j, §, and 6.
After this procedure, the experimentation scheme with Bayesian inference using the

software OpenBUGS is modeled to estimate the parameters (5 (k),6(), gk, ?7(")) for each
AY® (t;) and to characterize the shape of the trajectory for each set AY¥) (t;) according to
(S(k), 9(k), B(k>> , as shown in Table 13.
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Table 13. Sequences and rate types of AYK) (tj> for parameter computations.

Sequence k =1, y(t) = 456

Sequence k =2, y(t) = 455

sy () = [dy(t)] [ Y@ (1) = [By(t), Ay(ha)] 1,1
Set of parameters Value Set of parameters Value
B 427 B 0.28
) 1.04 ) 0.07
o 91.57 og 1.96
0 38.55 0 0.03
b 164.72 Bxd 0.01
Parameter condition Trajectory type Parameter condition Trajectory type

0< 80 < é(k),B Bathtub-shaped trajectory

5k > 4t k) Increasing trajectory

Sequence k = 3, y(t) = 458

Sequence k =4, y(tp) = 457

sYD () = [By(t)] 1,-13] aY®) (1) = [By(t), Ay(h)] [1,-1,3,-1]
Set of parameters Value Set of parameters Value
B 0.01 B 0.41
) 0.37 ) 0.00
o 0.52 og 0.50
0 0.17 0 0.02
Bxd 0.00 Bxd 0.01
Parameter condition Trajectory type Parameter condition Trajectory type

5k > gk) glk) Increasing trajectory

0<é6k <hlp Bathtub-shaped trajectory

Sequence k =5, y(t) = 460

Sequence k = 6, y(t;) = 461

MY (1) = [Ay(t)] 1,-13,-13] 8Y®) (1) = [Ay(h), by (k)] -1,3,-1,3,1]
Set of parameters Value Set of parameters Value
B 0.51 B 1.91
) 0.94 ) 0.00
log 0.40 o 0.03
0 0.03 0 0.00
Bxd 0.02 Bxo 0.00
Parameter condition Trajectory type Parameter condition Trajectory type

5K > gk) gk) Increasing trajectory

0<é6k <hbp Bathtub-shaped trajectory

Next, the upper limit of a confidence interval estimates the maximum future increment

. 2 o(k) A .
using UL 5y )60V = Yo+ ((5(k) + azw) (ti41) +19660) /(t;41). Computations are
. . . . A o(k) ~
shown in Table 14. Experimentation stops if Y + (5(k> + (15_7[3(,())) (t]-+1) +1.965) (tj+1) =Y.
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Table 14. Upper limit of a confidence interval calculated for each sequence.

C N (e Y 19T M e

1 456.00 455.00 6.1 253.8 715 Continues

2 455.00 455.00 0.2 6.7 462 Continues

3 458.00 455.00 1.7 2.0 459 Continues

4 457.00 455.00 0.0 2.2 457 Continues

5 460.00 455.00 5.6 1.9 463 Continues

6 461.00 455.00 0.0 0.2 455 Stops

The search stops at UL(AYU‘)(t]-)\é,e,/%,m/B) = 455. At this point, UL(Ay(k>(tj)|5,9,ﬁ,am)
for (AY(k) (tj)

in future values. This is the case of the response y(t]') = 461.

6,0,B8,0V At) may approximate to Y, so there is no expectation of increase

5. Discussion

The current study is related to a hardness process of the steel alloy 4140 for opti-
mization purposes. The optimization strategy started with the design of the factorial
arrangement with the combination of factors and levels of the experiment. The considered
variables in this procedure were the temperature of the furnace and the exposition time
to a cooling environment, to subsequently measure the hardness of each specimen. A sta-
tistical analysis was developed to obtain significance of terms and regression coefficients.
The regression coefficients were used to build the RECU. This equation was used to apply
the SADM and visualize the steepest path of improvement. It is particularly relevant to
detect the proper moment to stop all along this steepest direction.

In this way, the MKSR, the ERPSR, and the ASSR were applied to properly perform
individual experimentation all along the path of improvement. Table 15 shows the perfor-
mance of each of the applied SRs.

Table 15. Performance of each of the applied SRs.

Name of the Procedure Stopping Rule Steps Needed Hardness
Myers and Khuri Stopping Rule MKSR 7 461 HV
Enhanced Recursive Parabolic Stopping Rule ERPSR 1 456 HV
Adaptive Sequential Stopping Rule ASSR 6 461 HV

On the one hand, the MKSR assumes that the observed response will have a linear
behavior, while the ERPSR is designed to assume both linear and quadratic behavior.
Nevertheless, the ASSR has the capability to adapt to the behavior of the response without
the need to make assumptions beforehand. In Table 15, it is easy to see that the ERPSR had
a poor performance, reaching 456 HV. On the contrary, the MKSR and the ASSR both had
a good performance of 461 HV, and the MKSR also had a good performance because the
trajectory or behavior of the response tends to be approximately linear, as seen in Figure 7.
Nevertheless, the ASSR achieved that performance using fewer steps than the MKSR. The
fact that ASSR has a better performance is explained due to its capability of adaptation to
any behavior of the experimental response. It does not matter whether the response tends
to be linear or quadratic.

6. Conclusions

The application of this paper ‘s method maximized the hardness of the steel alloy
considered. After applying the DOE and obtaining significance of factors, the regres-
sion equation was obtained to build the path of improvement for the maximization of
the response through the SRs applied. In this case, the MKSR reached a maximum re-
sponse of §;usx = 461 units in seven steps, while the ERPSR reached a maximum value of
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Jmax = 456 units in one step. Finally, the ASSR reached a maximum number of 5, = 461
units in six steps. This last rule attained a better performance, as shown in Figure 11.

462 8
461 7
460 \ 6
459 /

5
458

4
457

3
456
455 2
454 1
453 0

MKSR ERPSR ASSR

[ Response (453 to 462)  =—@=Steps (0 to 8)

Figure 11. Response (hardness) vs. steps needed (to reach that response).

For these types of cases in which a tempering process is related, the recommendation
is to use the ASSR along the path of improvement of the steepest ascent if the maximization
of the response is the goal. Future research may be feasible using various levels of the
factors, different cooling environments, different metal alloys, or even other rules to stop
along the improvement.

Overall, these mathematical and statistical methods are essential in industrial appli-
cations to analyze data for leading the improvement of efficiency, increasing productivity,
pushing performance, and conducting profitability. Its applicability includes the optimiza-
tion of processes and the enhancement of decision making. The procedures applied in this
paper carry broader implications that may include inferential analysis, hypothesis testing,
regression analysis, correlation analysis, and Bayesian statistics, among others.
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