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Abstract: In this paper, we generalize two new statistical distributions, to improve the ability to
model failure rates with non-monotonic, monotonic, and mainly bathtub curve behaviors. We call
these distributions Generalized Powered Uniform Distribution and MOE-Powered Uniform. The
proposed distributions’ approach is based on incorporating a parameter k in the power of the values
of the random variables, which is associated with the Probability Density Function and includes an
operator called the Powered Mean. Various statistical and mathematical features focused on reliability
analysis are presented and discussed, to make the models attractive to reliability engineering or
medicine specialists. We employed the Maximum Likelihood Estimator method to estimate the
model parameters and we analyzed its performance through a Monte Carlo simulation study. To
demonstrate the flexibility of the proposed approach, a comparative analysis was carried out on
four case studies with the proposed MOE-Powered Uniform distribution, which can model failure
times as a bathtub curve. The results showed that this new model is more flexible and useful for
performing reliability analysis.

Keywords: Marshall–Olkin distributions; generalized uniform distribution; maximum likelihood
estimation; Monte Carlo simulation; reliability analysis
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1. Introduction

Probability distributions are an essential topic in probability theory, due to their rele-
vance in almost all sciences [1]. The application of probability distributions in engineering,
econometrics, finance, medicine, agriculture, demography, and actuarial science, to name a
few disciplines, has significantly impacted data analysis [1,2]. Using classical distributions
to model and analyze real-life data is an ancient practice. However, most standard or
common probability distributions need to be more flexible, to model the emerging events
of the fourth industrial revolution, as modern data are diverse and complex [3]. This
deficiency has allowed many researchers to develop new models to better fit real-life data,
since the new distributions are considered to overcome the limitations of other existing
distributions and can extract all the information from the data [4].

An essential feature of new distributions is that researchers add one or more parame-
ters to known or commonly used distributions, to incorporate location, scale, and shape
characteristics. The above allows us to more flexibly model behaviors related to survival
analysis, for example, to analyze the useful life of a computer or human mortality, to ana-
lyze the failure rate of devices subject to use and deterioration, or to explain and forecast a
variety of real-world events.
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From an engineering point of view, reliability analysis has gained increasing impor-
tance among industries and manufacturers of various types of products, to model failure
rates. However, one of the main problems with the distributions commonly used for this
type of analysis is that they fail to faithfully represent the behavior of a bathtub curve, since
its shape or graph resembles a “V”, “J”, or “U” [5]. In this sense, the need arises to explore
alternatives with new models that allow behaviors closer to real life to be established for
the assumptions of a bathtub curve.

For example, Méndez-González et al. [6] proposed a new distribution called Alpha
Exponentiated Perks Distribution (AEXP) for reliability analysis applied to electronic
devices to model bathtub curve-shaped failure times. Akarawak et al. [1] developed
the Inverted Gompertz–Fréchet (IGoFre) distribution to model data with non-monotonic
failure rates and to model both positively and negatively skewed data with increasing
and decreasing risk ratios. Sindhu et al. [7] proposed the LE-Inverse Exponential (LE-
IE) distribution to model increasing, bathtub-shaped, increasing–decreasing–constant,
decreasing, and upside-down bathtub-shaped (or unimodal) failure rates. The authors
applied their model to the failure times of mechanical components; the data analyzed was
related to the times between failures that occurred in an air conditioning unit of a Boeing
720-4 airplane.

Other authors, such as El-Bar and Lima [8], have developed a general family of
distributions called the Exponentiated Odd Lindley-X (EOL-X) family. The proposed
model aims to incorporate the most important forms of the Hazard Function—increasing,
decreasing, and bathtub—to model data in reliability engineering and medical data. The
authors fitted their model to three real data sets: turbocharger failure times, survival times
in breast cancer patients, and survival times in AIDS patients.

Other distributions developed for the reliability analysis or hazard rate are the Unit
Generalized Exponential distribution [9], the Novel Alpha Power Fréchet distribution [10],
the Marshall–Olkin Exponentiated Dagum distribution [11], the Bivariate Extended Chen
distribution [12], the Marshall–Olkin Alpha Power family [13], the Lehmann Type-II
(Kum–MSBL–II) distribution [14], the Odd Log–Logistic Lindley–Weibull distribution [15],
the type II exponentiated half-logistic Topp–Leone–Marshall–Olkin-G family of distribu-
tions [16], and the new extended Kumaraswamy generated family of distributions [17].

Therefore, this article proposes a new family of the usual uniform distribution called
Generalized Powered Uniform Distribution (GPUD); subsequently, we use the GPUD
approach to generalize the Marshall–Olkin Extended Uniform distribution from Jose and
Krishna [18], which we call MOE-Powered Uniform (MOE-PU) distribution. The main
motivations for these new distributions lie in the following:

• We present an approach in which we incorporate a parameter k associated with the
power of the X values of the continuous random variable in the Probability Density
Function. This allows us to generalize two new distributions.

• The new GPUD distribution is presented as an alternative to the Continuous Uniform
Distribution for modeling data with a uniform trend.

• We present the new generalized MOE-PU distribution as an alternative for reliability
analysis applications that can describe non-monotonic behaviors, such as those shown
by the bathtub curve.

• The MOE-PU distribution is significantly flexible and competitive with other distribu-
tions existing in the literature that can model bathtub curve behaviors.

• We establish an attractive distribution (MOE-PU) so that engineers in the reliability
area can carry out different analyses or studies, considering the benefits that modeling
provides from an actuarial perspective.

Finally, the structure of the paper presents the following order. In Section 2, the
general conditions of the GPUD distribution, as well as some of its properties, are defined
and discussed. In Section 3, the GPUD approach is used to generalize the work of Jose
and Krishna [18], allowing us to generate another family of distributions (MOE-PU) for
reliability analysis applications. Section 4 presents a Monte Carlo simulation study to
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analyze the performance of the Maximum Likelihood Estimator method. In Section 5, the
case studies of the article are presented. Section 6 provides concluding comments.

2. A New Family of the Uniform Distribution Function

This paper follows the approach presented in the seminal article by Marshall and
Olkin [19] and the approach by Rondero-Guerrero et al. [20]. We introduce a new parameter
(k) in the power of the random variables’ values, which is associated with the Probability
Density Function. Our objective is to introduce a new generalization of three parameters
of the usual Continuous Uniform Distribution that we call Generalized Powered Uniform
Distribution, in such a way that the Probability Density Function (PDF) is defined as

fXk (x) =


xk

(b−a)Mk(a,b) , a ≤ x ≤ b; k = 0, 1, 2, . . . , n.

0, x < a; x > b
(1)

where a is a location parameter, b is a scale parameter, and k is a shape parameter. The
operator Mk(a, b), here called the Powered Mean, is defined as follows:

Mk(a, b) =
∑k

j=0 ak−jbj

k + 1
. (2)

The Cumulative Distribution Function (CDF) corresponding to Equation (1) is given as

FXk (x) = P(X ≤ x) =



0, x < a

xk+1−ak+1

bk+1−ak+1 , a ≤ x ≤ b; k = 0, 1, 2, . . . , n.

1, x > b

(3)

When k = 0, M0(a, b) = 1, the classical model of the Continuous Uniform Distri-
bution is obtained; that is, we obtain the PDF

(
f (x) = 1

b−a

)
and its corresponding CDF(

F(x) = x−a
b−a

)
.

This new GPUD includes a family of polynomial functions corresponding to the PDF
and CDF, respectively. Obviously, F′

Xk (x) = fXk (x) is satisfied.
When we set the random variable X in the interval [0, 1], the following is obtained:

FXk (x) = xk+1, for k = 0, 1, 2, . . . , n. (4)

Thus, the Survival Function is expressed as

F̄Xk (x) = 1 − FXk (x) = 1 − xk+1. (5)

Concerning the Powered Mean operator, some relevant properties can be mentioned,
such as Mk(0, 1) = 1

k+1 and Mk(0, b) = bk

k+1 , among others.
Figure 1 shows the graphs of the PDF and the CDF of the GPUD distribution; these

graphs are presented for values of a = 2, b = 5, and different values of the parameter k.
When k = 0, the same graph (FDP and CDF) or behavior as the usual uniform distribution is
obtained. However, for values of k > 0, the PDF form presents an increasing behavior; that
is, the parameter k allows modeling data with an increasing uniform trend. It is important
to remember that the CDF is represented by points on the curve (line) and not the area
under the curve, which allows us to search for a probability associated with a given value
of x. In this sense, for the CDF of the GPUD model, the higher the value of k, the lower the
accumulated probability for a given value of x.
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Figure 1. Plots for the PDF and CDF of the GPUD for a = 2, b = 5, and k = 0, 1, 2, 3, 4.

2.1. Reliability Measures of GPUD

As is known, the hazard rate and survival functions are essential in various engi-
neering, health, and finance applications. From the GPUD perspective, both functions are
shown below.

The Hazard Function (HF) can be written as

hXk (x) =
f (x)

F̄Xk (x)
=

xk

(b − a)Mk(a, b)
· 1

1 −
(

xk+1−ak+1

bk+1−ak+1

) . (6)

When working with the Hazard Function, reliability researchers or engineers are inter-
ested in the shapes or properties of the graphs, as they help identify whether the distribution
can model a monotonically increasing, decreasing, constant, or bathtub failure rate.

From the actual application context, if the lifetime of a device presents a decreasing
Hazard Function, it is less likely to fail as it ages. In other words, a decreasing Hazard
Function indicates that failure generally occurs in the initial period of a product’s useful
life. If hXk (x) is constant, the elements fail constantly. That is, a constant Hazard Function
indicates that failure generally occurs during the “lifetime” of a product when failures
occur randomly. On the other hand, if hXk (x) is increasing, items or devices are more
likely to fail or age as time passes. An increasing hazard rate usually occurs in the later
stages of the useful life of a product or device, such as in the case of wear and tear. Finally,
if hXk (x) has a bathtub shape, the Hazard Function is a mixture of early-decreasing and
late-increasing risks. The most risky period of a device’s useful life is the initial period of a
product’s useful life. However, as the parts of the device or product gradually wear out,
the short-term risk increases again.

Now, consider X a continuous random variable whose CDF is FXk (x). Its Survival
Function (SF) SXk (x), also known as its reliability function, is described below by the
following equation:

SXk (x) = 1 −
(

xk+1 − ak+1

bk+1 − ak+1

)
. (7)

Figure 2 shows the shape of the HF and SF for different values of k in the interval [2, 5].
In the case of the HF, the graph indicates a pattern of increasing risk, and the probability
of failure becomes vertically asymptotic when the value of x approaches the parameter b.
In the context of reliability engineering, elements are more likely to fail over time. On the
other hand, the SF graph illustrates that each time the value of the parameter k increases,
the probability that an element survives longer increases.
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Figure 2. Plots for HF and SF of the GPUD for a = 2, b = 5, and k = 0, 1, 2, 3, 4.

2.2. General Properties of GPUD

This section discusses some statistical properties and functions of the GPUD distribution.

2.2.1. Moments

If we have a random variable that we refer to as X ∼ that follows the GPUD(a, b, k)
then the rth ordinary moment (µr

k) of X can be calculated as follows:

µr
x = Ek[xr] =

∫ ∞

−∞
xr fXk (x)dx =

Mk+r(a, b)
Mk(a, b)

. (8)

In the case of the usual uniform distribution k = 0, when a = 0 and b = 1, the rth
moment is expressed as

µr
x(0, 1) =

Mk+r(0, 1)
Mk(0, 1)

=
k + 1

k + r + 1
. (9)

For the general case, in the interval [a, b],

µr
x(a, b) =

bk+r+1 − ak+r+1

(b − a)Mk(a, b)(k + r + 1)
. (10)

The average and corresponding variance can be calculated by considering the previous
result (Equation (10)):

µr
x(0, 1) = Ek[xr] =

Mk+r(a, b)
Mk(a, b)

. (11)

σ2
k (a, b) = µ2

k(a, b)− [µk(a, b)]2 =
Mk+2(a, b)

Mk(a, b)
−
[

Mk+1(a, b)
Mk(a, b)

]2

. (12)

Similarly, the skewness and kurtosis coefficients are expressed through Equations (13) and (14),
respectively:

γ3k (a, b) = Ek

[(
x−µ

σ

)3
]
=

1
σ3

k

[
Ek(x3)− 3[Ek(x)]Ek(x2) + 2(Ek(x))3]. (13)

γ4k (a, b) = Ek

[(
x−µ

σ

)4
]
=

1
σ4

k

[
Ek(x4)− 4[Ek(x)]Ek(x3) + 6[Ek(x)]3Ek(x2)− 3[Ek(x)]4

]
.

(14)
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Table 1 shows the corresponding calculations for the mean (µk), variance (σ2
k ), skewness

(γ3k ), and kurtosis (γ4k ) for a = 2, b = 5, and different values of k. In the case of the mean,
each time the value of k increases, the µk approaches the value of parameter b. On the
other hand, the variance decreases as the value of k increases; that is, the data becomes
increasingly centered around the mean. Another aspect that can be observed with the
data in Table 1 is the asymmetry compartment: when k = 0, it can be said that the
GPUD distribution is symmetric; however, when the value of k increases, the asymmetry
coefficient turns out to be negative, which indicates that the distribution is skewed to the
right. Likewise, the GPUD has a very low (negative) kurtosis for a value of k = 0, which
means that it has thin tails and produces fewer outliers. But, when the value of k increases,
the kurtosis coefficient tends to be positive, indicating that the GPUD tends to have a
relatively high distribution or show a higher peak.

Table 1. Mean, variance, coefficients of skewness, and kurtosis for GPUD.

(a, b, k) µk σ2
k γ3k γ4k

(2, 5, 0) 3.5 0.75 0 −1.2
(2, 5, 1) 3.71 0.70 −0.29 −1.05
(2, 5, 2) 3.90 0.62 −0.55 −0.70
(2, 5, 3) 4.06 0.52 −0.79 −0.21
(2, 5, 4) 4.19 0.43 −0.98 0.34
(2, 5, 5) 4.29 0.35 −1.14 0.92

2.2.2. Quantile Function and Random Number Generation

In probability and statistics, the Quantile Function (QF) has several uses, both in theory
and in applications; in addition, the QF is associated with the CDF. In this sense, the Quantile
Function of the GPUD is obtained by inverting Equation (3). First, a random number q is
generated from the uniform distribution in the interval (0, 1), i.e., from q ∼ U(0, 1). Sec-
ond, the generalized inverse of the CDF (Equation (3)) is solved—that is, F−1

Xk (q). Finally,
xq = F−1

Xk (q) is calculated; this random variable xq has a behavior like the GPUD distribution—
that is, FXk :

xq = (ak+1 + (bk+1 − ak+1)q)1/(k+1). (15)

By setting q = 0.25, 0.5, and 0.75 in Equation (15), the first, second, and third quartiles
of the GPUD distribution can be obtained. Table 2 presents the calculations of the median
of the GPUD distribution for a = 2, b = 5, and different values of k. As seen in the table,
when the value of parameter k increases, the value of the median tends to approach the
value of parameter b. For example, when k = 0, the median coincides with the value of µk.
However, when k ≥ 1, the central value of the data shifts to the right.

Table 2. Median GPUD distribution.

a b k Median

2 5 0 3.5
2 5 1 3.80
2 5 2 4.05
2 5 3 4.23
2 5 4 4.36
2 5 5 4.45

3. Generalization of the Distribution of Jose and Krishna Using the GPUD Approach

To show the flexibility of the GPUD approach to modeling different statistical ap-
plications and performing data analysis, we generalized the model obtained by Jose and
Krishna [18], called the Marshall–Olkin Extended Uniform (MOEU) distribution. The
authors introduced a parameter θ > 0 into their model in the uniform distribution, now
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expressed as U(0, θ), where they considered the Survival Function as F̄(x) = 1 − (x/θ),
which is associated with a new distribution denoted as MOEU(α, θ).

So, the Survival Function of Jose and Krishna is expressed as

Ḡ(x; α, θ) =
α(θ − x)

αθ + (1 − α)x
, 0 < x < θ, α > 0, (16)

where α is a shape parameter, θ is a scale parameter, and the Survival Function
Ḡ = 1 − G. Therefore, the CDF corresponding to the MOEU is

G(x; α, θ) =
x

αθ + (1 − α)x
, 0 < x < θ, α > 0. (17)

In turn, the PDF of the corresponding MOEU is given by

g(x; α, θ) =
αθ

[αθ + (1 − α)x]2
0 < x < θ, α > 0. (18)

We have previously carried out the generalization of the model of Jayakumar and
Sankaran [21] based on our GPUD approach; we show the corresponding generalization
of Jose and Krishna [18] under the starting consideration that F̄Xk (x) = 1 − xk, where
k = 1, 2, . . . , n. So, now we propose the Survival Function as F̄Xk (x) = 1 − (x/θ)k, where
the CDF is FXk (x) = (x/θ)k, with 0 < x < θ, and where the new PDF is fXk = F

′

Xk (x) =
k
θk xk−1, with θ > k. It is essential to mention that changing the variable from (x/θ) to
(x/θ)k expands the distribution family, allowing the modeling of different applications by
introducing a new parameter.

Thus, our generalization is now expressed as an MOE-Powered Uniform distribu-
tion (MOE-PU), depending on the variables (α, θ, k). Now, the new Survival Function is
expressed as

Ḡ(x; α, θ, k) =
α(θk − xk)

αθk + (1 − α)xk , θ > k, 0 < α, k = 1, 2, . . . , n, (19)

where 0 < x < θ; the corresponding CDF is

G(x; α, θ, k) =
xk

αθk + (1 − α)xk , (20)

in such a way that the PDF is given by

g(x; α, θ, k) =
kαθkxk−1[

αθk + (1 − α)xk
]2 . (21)

It is essential to emphasize the nature of the decreasing function of the PDF of the
MOE-PU. When α ∈ (0, 1), the form of the PDF is a decreasing function on the interval
(0, θ); if k = 1 is considered, we will arrive at the same result as Jose and Krishna [18], with
g(0, α, θ) = 1/(αθ) and g(θ, α, θ) = α/θ. On the other hand, if α > 1 then the PDF of the
MOE-PU is an increasing function in (0, θ), with g(0, α, θ) = 1/(αθ) and g(θ, α, θ) = α/θ
(see Figure 3a).

From our generalization of the MOE-PU, when k ≥ 2, we have g(0, α, θ, k) = 1/(αθ)
and g(θ, α, θ, k) = kα/θ, so that the PDF is not necessarily monotonic for α ∈ (0, 1) but is
still increasing for α > 1 (see Figure 3b).

Figure 4a shows the CDF plot of the MOE-PU distribution for different values of
k, considering a fixed value for α and θ. In Figure 4b, the values of α change and the
parameters k and θ remain fixed.

Figures 3 and 4 show that the MOE-PU distribution has excellent advantages, since it
can take several forms, allowing different data behaviors to be modeled.
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Figure 3. Plots for PDF of the MOE-PU for different values of the parameters.
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3.1. Survival Function and Hazard Function of the MOE-PU

Let X be a continuous random variable whose CDF is G(x; α, θ, k), Equation (20). Thus,
the Survival Function (reliability function) of the MOE-PU distribution is described by

S(x; α, θ, k) = 1 − xk

αθk + (1 − α)xk . (22)

The shape of the Survival Function of the MOE-PU is shown in Figure 5. In the context
of reliability engineering, Figure 5a tells us that each time the value of parameter k increases,
the probability that an element survives longer increases. On the other hand, Figure 5b
shows that increasing the value of the shape parameter α increases the probability that a
component survives longer. Furthermore, it can be inferred that at small values of k and α,
there is little reliability that an element will survive over time.

On the other hand, the Hazard Function, often called the failure rate, can be considered
a random variable, in terms of time. For example, in reliability engineering, the HF describes
the probability that a failure will occur in a component or system at time t, given that the
failure did not occur until that moment. In this sense, the HF of the MOE-PU is described as

h(x; α, θ, k) =
g(x; α, θ, k)
S(x; α, θ, k)

, (23)
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using Equations (21) and (22) in Equation (23). The HF of the MOE-PU can be expressed as

h(x; α, θ, k) =
kxk−1θk[

αθk + (1 − α)xk
]
(θk − xk)

, (24)
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Figure 5. Plots for the SF of the MOE-PU for different values of the parameters.

When k = 1, the result reported in the model was obtained by Jose and Krishna [18]:

h(x; α, θ, 1) =
θ

[αθ + (1 − α)x](θ − x)
.

Figure 6 presents the shape of the HF of the MOE-PU for different parameter values. As
shown in Figure 6, the MOE-PU distribution can model failure times where the behavior can
be monotonic or non-monotonic, like those of a bathtub curve. For example, in Figure 6a,
when k = 0, the shape of the failure function is typical of a bathtub, where the flat line at
the bottom represents the service life. The longer that flat line is, the longer the lifetime
the MOE-PU distribution can model. The proposed approach of incorporating the shape
parameter k allows for the flexibility of modeling the failure times of both bathtub curves
and unimodal failure curves, as shown in Figure 6a,b:
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Figure 6. Plots for HF of the MOE-PU for different values of the parameters.
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3.2. Quantile Function of the MOE-PU

In the case of the MOE-PU distribution, its Quantile Function can be obtained by
inverting the CDF in Equation (20), which takes the form:

Xq = k

√
αθkq

1 − (1 − α)q
, (25)

where q follows a uniform distribution (0, 1) to generate random numbers; the MOE-PU
distribution’s first, second, and third quantiles can be calculated by substituting q = 0.25,
0.5, and 0.75, respectively, into Equation (25).

Furthermore, we can derive the skewness and kurtosis measures of the MOE-PU
distribution from Equation (25), considering the following two models:

SK(α, θ, k) =
Q(3/4) + Q(1/4)− 2Q(1/2)

Q(3/4)− Q(1/4)
, (26)

KU(α, θ, k) =
Q(7/8) + Q(3/8)− Q(5/8)− Q(1/8)

Q(6/8)− Q(2/8)
. (27)

To investigate and analyze the skewness and kurtosis compartment of the MOE-PU
distribution when k = 1 and the parameters α and θ take different values, Figure 7 is
shown in 3D. The analysis of the graphs shows that the two parameters are effective in the
variation of skewness and kurtosis. In the case of the asymmetry coefficient, both negative
and positive values are obtained; that is, the MOE-PU distribution can be skewed to the
right and the left, in addition to being symmetric in some combination of the parameters
α and θ. For the kurtosis coefficient, the MOE-PU distribution presents positive values
when k = 1, which means that the distribution will present heavier tails and a more
pronounced peak.

al
ph
a

2

4

6

8

10

theta

2

4

6

8

10

S
kew

ness

-0.4

-0.2

0.0

0.2

0.4

al
ph
a

2

4

6

8

10

theta

2

4

6

8

10

K
urtosis

0.8

1.0

1.2

1.4

1.6

Figure 7. 3D Plots of skewness and kurtosis for MOE-PU distribution for different values of α and θ

with k = 1.

3.3. Maximum Likelihood Estimators of the MOE-PU

The Maximum Likelihood Estimator method is the most-used method in statistical
inference for parameter estimation, since it provides complete information about the
unknown parameters of a distribution. Suppose that x1, x2, . . . , xn is a random sample of
size n of the MOE-PU distribution with the PDF (Equation (21)), such that the log-likelihood
function is specified by

L(x; α, θ, k) =
n

∏
i=1

g(xi; α, θ, k). (28)

From our proposal, the log-likelihood function is expressed as



Mathematics 2024, 12, 2328 11 of 26

log L(x; α, θ, k) = log
n

∏
i=1

g(xi; α, θ, k) =
n

∑
i=1

log

[
kαθkxk−1

i(
αθk + (1 − α)xk

)2

]
. (29)

The maximum likelihood function can be estimated as

log L(x; α, θ, k) = n log(k) + n log(α) + nk log(θ)+

(k − 1)
n
∑

i=1
log(xi)− 2

n
∑

i=1
log
[
αθk + (1 − α)xk

i

]
. (30)

To calculate the estimators of the unknown parameters, as well as obtaining the
covariance matrix I−1(β), the partial derivations of the log-likelihood function must be
calculated, which are

∂ log L
∂α

=
n
α
− 2

n

∑
i=1

θk − xk
i

αθk + (1 − α)xk
i

, (31)

∂ log L
∂θ

=
kn
θ

− 2
n

∑
i=1

αkθk−1

αθk + (1 − α)xk
i

, (32)

∂ log L
∂k

=
n
k
+ n log(θ) +

n

∑
i=1

log(xi)− 2
n

∑
i=1

αθk log(θ) + xk
i log(xi)(1 − α)

αθk + (1 − α)xk
i

. (33)

Furthermore, the second partial derivatives of the MOE-PU distribution concerning
the parameters α, θ, and k are expressed as

∂2 log L
∂α2 = − n

α2 + 2
n

∑
i=1

(
θk − xk

i

)2

[
αθk + (1 − α)xk

i
]2 , (34)

∂2 log L
∂θ2 = − kn

θ2 − 2
n

∑
i=1

αk(k − 1)θk−2
[
αθk + (1 − α)xk

i

]
− α2k2θ2k−2[

αθk + (1 − α)xk
i
]2 , (35)

∂2 log L
∂k2 = − n

k2 − 2
n

∑
i=1

A
[(

αθk + (1 − α)xk
i

)
−
(

xk
i (1 − α) log(xi)

)]
[
αθk + (1 − α)xk

i
]2 , (36)

A =
[
α(log(θ))2θk + (1 − α)xk

i (log(xi))
2
]
,

∂2 log L
∂α ∂θ

= −2
n

∑
i=1

xk
i kθk−2[

αθk − xk
i (−1 + α)

]2 , (37)

∂2 log L
∂α ∂k

=
n

∑
i=1

−2θkxk
i (log(θ)− log(xi))[

αθk + (1 − α)xk
i
]2 , (38)

∂2 log L
∂θ ∂k

=
n

∑
i=1

2αθk−1
(
−αθk + (−1 + α)(k(log(θ)− log(xi)) + 1)xk

i

)
[
αθk − xk

i (−1 + α)
]2

+
n
θ

. (39)

4. MOE-PU Monte Carlo Simulation Study

This section addresses a Monte Carlo simulation study to evaluate the performance
of the Maximum Likelihood Estimator (MLE) method, considering different values of
the parameters of the MOE-PU model and different sample sizes n. The simulation was
replicated 1000 times with four different sample sizes, n = 50, 100, 150, and 200, and four
alternative scenarios were considered, whose parameter combinations were as follows: I:
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α = 0.009, θ = 10, k = 2; II: α = 0.004, θ = 6, k = 3; III: α = 3.5, θ = 56, k = 1; IV: α = 0.1,
θ = 25, k = 4. To generate the random sample of the MOE-PU, Equation (25) was used. It
should be remembered that q is a uniform random number (0,1). In order to analyze the
performance of the Maximum Likelihood Estimator, the following statistics were calculated:
the Average Values of Estimates (AVE), the associated average Mean Squared Error (MSE),
the average Mean Relative Estimates (MREs), and the average values of absolute bias (Bias).
These statistics were defined for a specific parameter ϕ, which was estimated by ϕ̂, as
shown below:

AVE =
1
N

N

∑
i=1

ϕ̂i, MSE =
1
N

N

∑
i=1

(
ϕ̂i − ϕ

)2,

MREs =
1
N

N

∑
i=1

∣∣ϕ̂i − ϕ
∣∣

ϕ
, Bias =

1
N

N

∑
i=1

∣∣ϕ̂i − ϕ
∣∣,

where ϕ = α, θ or k and ϕ̂i(i = 1, 2, . . . , N) were simulated estimates of ϕ. The Monte Carlo
simulation algorithm is presented below:

Step 1 First, the values of the parameters α, θ, and k are defined for each simulation. The
sample size n = 50, 100, 150, and 200 is also defined, as well as the number of
simulations N = 1000;

Step 2 Generate a random sample q following the uniform distribution (0, 1) of size
n = 50, 100, 150, and 200, respectively;

Step 3 Generate a random sample Xq following the MOE-PU distribution from Equa-
tion (25) for n = 50, 100, 150, and 200, respectively;

Step 4 Each random sample from Step 3 is simulated N times, and the estimate of the
parameters α, θ, and k, as well as the values of the AVE, MSE, MREs, and Bias,
are calculated;

Step 5 The required results are obtained, based on the different combinations of the model
parameters, which are shown in Tables 3–6;

Step 6 Analyzing Tables 3–6 reveals that there is a gradual decrease in Bias with increasing
sample size.

Considering the previous algorithm, Tables 3–6 show the results of estimating the
parameters of the MOE-PU model obtained in the simulation. The AVE, MSE, MREs,
and Bias calculations are also included. These findings indicate that the estimates are
reliable and very precise for the values of the genuine parameters; that is, the calculations
obtained in the Maximum Likelihood Estimator method are reliable (Equations (30)–(39)).
Furthermore, the MSE and Bias decreased in all scenarios as the sample size increased.

Table 3. Monte Carlo simulation results for (α = 0.009, θ = 10, k = 2).

n Parameter AVE MSE MREs Bias

50 α 0.0092 5.068 × 10−6 0.1961 0.0017
θ 9.9883 3.842 × 10−8 1.169 × 10−6 1.169 × 10−6

k 1.9937 9.715 × 10−6 8.065 × 10−5 0.0001

100 α 0.0091 2.623 × 10−6 0.1403 0.0012
θ 10.010 8.049 × 10−8 1.622 × 10−6 1.622 × 10−6

k 2.0004 3.614 × 10−6 6.689 × 10−5 0.0001

150 α 0.0091 1.843 × 10−6 0.1150 0.0010
θ 10.006 2.128 × 10−9 5.215 × 10−7 5.215 × 10−7

k 2.0002 1.843 × 10−7 2.703 × 10−5 5.406 × 10−5

200 α 0.0091 1.447 × 10−6 0.1025 0.0009
θ 10.002 1.125 × 10−7 4.168 × 10−7 4.168 × 10−6

k 2.0003 4.165 × 10−7 2.408 × 10−5 4.807 × 10−5
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Table 4. Monte Carlo simulation results for (α = 0.004, θ = 6, k = 3).

n Parameter AVE MSE MREs Bias

50 α 0.0077 1.825 × 10−5 0.9597 0.0038
θ 5.8000 0.0399 0.0333 0.1999
k 2.7000 0.0899 0.0999 0.2999

100 α 0.0053 2.801 × 10−6 0.3530 0.0014
θ 5.8000 0.0399 0.0333 0.1999
k 2.9000 0.0099 0.0333 0.0999

150 α 0.0054 2.605 × 10−6 0.3596 0.0014
θ 5.8000 0.0399 0.0333 0.1999
k 2.9000 0.0099 0.0333 0.0999

200 α 0.0041 2.150 × 10−7 0.0892 0.0003
θ 5.9999 1.634 × 10−8 1.313 × 10−6 7.878 × 10−6

k 2.9999 3.041 × 10−7 1.043 × 10−5 3.131 × 10−5

Table 5. Monte Carlo simulation results for (α = 3.5, θ = 56, k = 1).

n Parameter AVE MSE MREs Bias

50 α 3.3775 0.0191 0.0351 0.1229
θ 56.963 0.9445 0.0172 0.9686
k 0.9510 0.0351 0.1491 0.1491

100 α 3.4142 0.0111 0.0245 0.0858
θ 56.941 0.9008 0.0168 0.9435
k 0.9207 0.0218 0.1217 0.1217

150 α 3.4404 0.0063 0.0170 0.0598
θ 56.924 0.8730 0.0165 0.9279
k 0.9081 0.0187 0.1154 0.1154

200 α 3.5152 0.0014 0.0066 0.0233
θ 56.002 0.0044 0.0003 0.0207
k 1.0025 0.0099 0.0784 0.0784

Table 6. Monte Carlo simulation results for (α = 0.1, θ = 25, k = 4).

n Parameter AVE MSE MREs Bias

50 α 0.1254 0.0018 0.3180 0.0318
θ 24.001 0.9977 0.0399 0.9987
k 3.9958 0.0029 0.0015 0.0061

100 α 0.1119 0.0005 0.1845 0.0184
θ 24.499 0.2500 0.0200 0.5001
k 3.9983 0.0009 0.0006 0.0027

150 α 0.1043 0.0002 0.1197 0.1197
θ 24.799 0.0400 0.0080 0.2000
k 3.9995 1.739 × 10−6 0.0002 0.0009

200 α 0.1009 0.0001 0.0999 0.0099
θ 25.000 1.053 × 10−6 9.522 × 10−6 0.0002
k 3.9997 0.0001 0.0002 0.0011

5. Application to Real Data

In this Section, three case studies dedicated to reliability analysis are presented, where
the MOE-PU was tested and compared with other distributions. For this, the following
was considered:

1. The distributions considered were developed from the approach of Marshall and
Olkin [19], as follows: Marshall–Olkin Exponential (MOE); Marshall–Olkin–Frechet



Mathematics 2024, 12, 2328 14 of 26

(MOF); Marshall–Olkin–Weibull (MOW); Marshall–Olkin–Lomax (MOL); Marshall–
Olkin–Burr XII (MOB); and Marshall–Olkin–Gamma (MOG). For more details of the
distributions mentioned above, see Nadarajah and Rocha [22]. Table 7 shows the
density functions of the models used to analyze and compare the performance of the
MOE-PU distribution against those models.

2. To estimate the parameters of the distributions used in the comparative analysis, the
open-source software “R” (version R-4.4.1) was used with the MaxLik library (version
1.5-2.1). It is worth mentioning that “R” is one of the environments most used by
the scientific community for statistical analysis. The code used in R to estimate the
parameters of the MOE-PU distribution is attached in Appendix A.

3. In the three study cases, uncensored data were considered; all the information (all
measurements) of the study variable was known.

Table 7. PDF of the models used for the case studies.

Statistical Distribution g(x)

MOE
βλe−λx

(1−(1−β)e−λx)
2

MOF
β

(
θ
(

1
γ

)
e−(x/γ)−θ

(
x
γ

)−θ−1
)

β+(1−β)e−(x/γ)−θ

MOW
β
(
( α

λ )(
x
λ )

α−1
e−(x/λ)α

)
(β+(1−β)(1−e−(x/λ)α ))

2

MOL
β

(
θγ

(1+θx)γ+1

)
(β+(1−β)(1−(1+θx)−γ)

2

MOB
β
(

δθ(1+xδ)
−θ−1

xδ−1
)

(
β+(1−β)

(
1−(1+xδ)

−θ
))2

MOG
β
(

1
δθ Γ(θ)

xθ−1e−x/δ
)

(
β+(1−β)

(
1

Γ(θ) γ(θ,δx)
))2

5.1. Case Study 1: Reliability Analysis for Fatigue Times for 6061-T6 Aluminum Coupons

Reliability analysis applied to engineering is one of the most-used tools to determine
the useful life of a material, product, or device, since this tool is the means to anticipate
failures and know the probability that these will occur. In this sense, the first case study
analyzed the fatigue times of 100 6061-T6 aluminum coupons cut parallel to the rolling
direction and oscillated at 18 cycles per second. Fatigue testing allowed us to determine
the useful life expected from a material subjected to cyclic loading. Fatigue times were
reported by Birnbaum and Saunders [23], which are presented in Table 8:

Table 8. Lifetimes in cycles × 10−3 for 100 specimens at maximum stress per cycle of 31,000 psi.

Lifetimes

70 90 96 97 99 100 103 104 104 105
107 108 108 108 109 109 112 112 113 114
114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130
130 130 131 131 131 131 131 132 132 132
133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142
142 142 144 144 145 146 148 148 149 151
151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196
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In order to apply reliability engineering in this case study, the behavior of the data
presented in Table 8 was first empirically verified. For this case, a TTT graph was used to
analyze the shape of the failure function, as shown in Figure 8. It is important to remember
that the primary purpose of this graph was to distinguish between an increasing Hazard
Function, a decreasing Hazard Function, or a Hazard Function in the form of a bathtub
curve. The dotted line was obtained in the following way: i/n, where i = 1, 2, 3, . . . , n;
i represents the failure number; in the case of Figure 8, n = 100. The blue curve was

constructed in the following way: T(i/n) =
∑i

j=1 T(j:n)+(n−i)T(i:n)
∑n

j=1 T(j:n)
, where i = 1, 2, 3, . . . , n, and

T(1:n) = 1, 2, 3, . . . , n. T represents the failure time. Concerning Figure 8, the graph results
suggest that the data presented an increasing Hazard Function; that is, the aluminum
coupons were likely to fail or deteriorate over time.
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Figure 8. TTT plot for the data presented in Table 8.

Table 9 shows the comparative analysis results for each distribution. To compare
the performance of the MOE-PU distribution with the other distributions, in terms of
goodness of fit, we used six tests or measures of goodness of fit, such as the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC), Crammer-von Mises
(W*), Anderson–Darling (A*), Kolmogorov–Smirnov (K-S), and the p-value (p) of K-S.
Additionally, the table provides the MLEs, and the estimated maximum likelihood function
(log L) was calculated. Generally, the model that presents the lowest goodness-of-fit
statistics will be the distribution that best fits the data’s behavior. In this sense, the data in
Table 9 show that the MOE-PU distribution presented the best results compared to the other
distributions. It is worth mentioning that the MOW and MOG distributions presented
the lowest values in W* and A*. However, there was no significant difference, since the
MOE-PU distribution had the highest p-value. That is, the MOE-PU distribution better
modeled the behavior of the data, so this model can be used to make decisions in reliability
engineering studies.

Our reliability analysis, conducted with a comprehensive graphical approach, visu-
alized the performance of the MOE-PU distribution in relation to the data presented in
Table 8. For this analysis, the following graphs were used: PDF, Hazard Function, Cumula-
tive Hazard Plot, and Reliability Plot, as shown in Figure 9; these graphs were meticulously
obtained or calculated based on the parameter estimates reported in Table 9. This thorough
analysis allows us to clearly see the performance of each of the distributions used for the
reliability analysis.

First, our study focused on analyzing how each of the PDFs of the distributions
used fitted the histogram of the data (fatigue times) (see Figure 9a). The graph results
show that the proposed model (MOE-PU) offered a very competitive fit relating to the
histogram, so it can be inferred that the new distribution more accurately exposes the
actual behavior of fatigue times. This finding underscores a critical aspect for reliability
engineering professionals, who play a decisive role in minimizing bias or loss of information
in the analyzed data. Subsequently, the behavior of the data lifetimes was analyzed from
the perspective of a reliability graph (see Figure 9b). The graph shows that the MOE-
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PU distribution was associated with more points regarding the empirical reliability of
Kaplan–Meier compared to the other distributions analyzed.

Table 9. Parameter estimates and goodness-of-fit statistics for case study 1.

Model MLEs logL AIC BIC W* A* K-S p-Value

MOE-PU α̂ = 0.0153 −446.21 898.42 906.23 0.0484 0.4135 0.0588 0.8788
θ̂ = 196.005
k̂ = 10.7003

MOE β̂ = 4.9611 −545.08 1094.16 1099.37 0.0513 0.3042 0.4439 7.77 × 10−16

λ̂ = 0.0173

MOF β̂ = 35.056 −459.81 925.62 933.44 0.1120 0.6530 0.1622 0.0103
θ̂ = 7.1004
γ̂ = 76.881

MOW β̂ = 29.984 −499.90 1005.81 1013.62 0.0449 0.2730 0.3623 7.88 × 10−12

α̂ = 1.0708
λ̂ = 35.466

MOL β̂ = 2.8187 −582.36 1170.72 1178.53 0.0708 0.4107 0.4267 3.33 × 10−16

θ̂ = 0.0039
γ̂ = 3.7093

MOB β̂ = 28.663 −653.78 1313.57 1321.39 0.1017 0.5829 0.5264 0.02 × 10−17

θ̂ = 0.1854
δ̂ = 4.2177

MOG β̂ = 21.913 −457.11 920.22 928.04 0.0379 0.2552 0.1383 0.0435
θ̂ = 7.3868
δ̂ = 0.0976
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Figure 9. Reliability plots for case study 1.

Figure 9c shows how the failures or fatigue of 6061-T6 aluminum behaves in the
different distributions; in other words, the figure shows the lifetimes. The results show
that the MOE-PU represents an increasing hazard rate; the 6061-T6 aluminum coupons
will present a failure or fatigue as time passes. Figure 9d shows a cumulative hazard plot,
which confirms the coherence between the proposed model (MOE-PU) and the lifetimes
established in this case. In conclusion, the MOE-PU distribution can be a good option for
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materials science engineers to determine reliability evaluation and analysis techniques
that allow them to minimize the durability and reliability problems of materials due to
their properties.

5.2. Case Study 2: Reliability Analysis for Bladder Cancer Data

In this second case, a reliability study was carried out related to remission times (in
months) of patients with bladder cancer. The data used for the analysis were reported
by Shakhatreh [24], where 128 data were considered. Table 10 shows the behavior of the
remission times of the patients who were under study.

Table 10. Remission times of patients with bladder cancer for case study 2.

Lifetimes

0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26
1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26
2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02
3.25 3.31 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82
3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87
4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49
5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09
7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87 7.93
8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06

10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07
12.63 13.11 13.29 13.80 14.24 14.76 14.77 14.83 15.96 16.62
17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74
25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05

Preliminary analysis of the cancer data shows that they came from a positively skewed
distribution. Taking into account the same criteria as the previous case study, we began by
empirically analyzing the behavior of the data in Table 10. A TTT graph was considered,
to study the shape of the failure function, as shown in Figure 10. The plot shows that the
empirical hazard rate function was unimodal (blue curve). That is, the data presented an
upside-down bathtub Hazard Function. This meant that the riskiest period in the remission
stage was in the initial period. But gradually, the remission stage stabilized as time passed;
however, the short-term risk increased again.
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Figure 10. TTT plot for the data presented in Table 10.

Table 11 shows the results of parameter estimation for each distribution. Like case
study 1, the MOE-PU distribution presented the best results compared to the other dis-
tributions; only the value of A* in the MOB distribution was lower than the MOE-PU
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model. However, there was no significant difference, since the MOE-PU distribution had
the highest p-value. The above suggests that the MOE-PU distribution can be used in
medicine, so that specialist doctors can obtain important conclusions or results about the
treatment applied to patients with bladder cancer.

Table 11. Parameter estimates and goodness-of-fit statistics for the remission time of case study 2.

Model MLEs logL AIC BIC W* A* K-S p-Value

MOE-PU α̂ = 0.0087 −410.46 826.92 835.47 0.0310 0.2441 0.0451 0.9565
θ̂ = 104.5
k̂ = 1.662

MOE β̂ = 1.0711 −414.32 832.65 838.36 0.1268 0.7591 0.0793 0.3955
λ̂ = 0.1101

MOF β̂ = 15.357 −425.48 856.97 865.52 0.2463 1.6384 0.1168 0.0607
θ̂ = 1.2248
γ̂ = 0.5530

MOW β̂ = 1.0221 −414.24 834.49 843.04 0.1339 0.8011 0.0771 0.4309
α̂ = 1.0389
λ̂ = 9.0471

MOL β̂ = 4.3565 −410.62 827.25 835.81 0.0577 0.3311 0.0497 0.9092
θ̂ = 0.0816
γ̂ = 3.9400

MOB β̂ = 23.397 −410.80 827.79 836.15 0.0310 0.2260 0.0527 0.8687
θ̂ = 1.2172
δ̂ = 1.4371

MOG β̂ = 19.417 −424.44 854.71 863.27 0.4146 2.4478 0.0855 0.3065
θ̂ = 0.1815
δ̂ = 0.1353

In this second case study, as in the first, the new MOE-PU distribution provided a more
accurate description of the cancer data behavior. This conclusion is drawn from the results of
Table 11, where the MOE-PU model shows the lowest AIC and BIC. Furthermore, the W*, A*,
and K-S statistics presented highly competitive values compared to the other distributions.
Importantly, the p-value of K-S of the MOE-PU distribution was the highest among the
distributions under analysis, reaffirming the reliability of our analysis. Furthermore, this
statement can be directly supported with the behavior graphs shown in Figure 11.

For example, in Figure 11a, the PDF of each of the distributions used to compare the
performance of the proposed model was plotted. As can be seen in the histogram, a good fit
of the MOE-PU distribution to the data set was confirmed, which guarantees the precision
of the model for analyzing and obtaining valid conclusions about the remission times of
patients with bladder cancer. On the other hand, a reliability plot helps us analyze the
probability of survival as time passes, as seen in Figure 11b. In this case, the MOE-PU
distribution aligned perfectly with the Kaplan–Meier empirical reliability line, further
reinforcing our model’s reliability.

Figure 11c represents the lifetime of remission times; that is, the times when the signs
and symptoms of cancer decrease or disappear. The figure shows an upside-down bathtub
Hazard Function for the remission time data, which agrees with Figure 10. Furthermore,
Figure 11d presents cumulative hazard behavior during cancer patient remission. The
distributions used for the comparative analysis reflected competitive results. However,
the MOE-PU distribution fitted more points on the non-parametric curve. For this reason,
based on the graphic and statistical evidence for this second case study, we can conclude
that the MOE-PU distribution can be an excellent alternative for carrying out studies or
reliability analyses in medicine.
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5.3. Case Study 3: Reliability Analysis for Failure-Time Data

This case study used data reported by Aarset [25]. The reliability study analyzed the
failure times of 50 devices subjected to a life test at time 0. Table 12 provides information
on the failure times.
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Figure 11. Reliability plots for case study 2.

Table 12. Lifetimes of 50 devices.

Lifetimes

0.1 0.2 1 1 1 1 1 2 3 6
7 11 12 18 18 18 18 18 21 32
36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

In the first instance, the data’s behavior was analyzed empirically, using a TTT graph
to determine the shape of the failure function, as shown in Figure 12. The graph’s results
(blue curve) indicate that the failure function showed a shape or behavior similar to that
of a bathtub curve. In the first stage, the devices had a greater probability of failure at
the beginning of operations (at time 0). Subsequently, in the second stage, the devices
functioned as intended, and the probability of failure was dominated by random failures.
Finally, a third stage of the bathtub curve corresponded to the end-of-life period of the
device, where failures due to wear may predominate.

For the analysis of the data reported by Aarset, it can be observed that the MOE-PU
distribution best described the behavior of these data. This conjecture is based on the
behavior of the statistics presented in Table 13, where it can be seen that the MOE-PU
showed the lowest AIC and BIC compared to the other distributions. Furthermore, the
statistics of W*, A*, and K-S and the respective p-value were competitive, concerning the
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distributions used in the analysis. Only the value of A* in the MOG distribution was
lower than in the MOE-PU model. However, there was no significant difference, since
the MOE-PU distribution had the highest p-value. These statistics are directly reflected in
the behavior graphs shown in Figure 13. In conclusion, the MOE-PU distribution better
modeled the failure time behavior of the 50 devices tested, so it can be used in reliability
engineering for decision making.
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Figure 12. TTT plot for the data presented in Table 12.

Table 13. Parameter estimates and goodness-of-fit statistics for failure-time data.

Model MLEs logL AIC BIC W* A* K-S p-Value

MOE-PU α̂ = 6.8736 −213.56 433.12 438.85 0.2641 2.2680 0.1622 0.1437
θ̂ = 86.936
k̂ = 0.2675

MOE β̂ = 2.9157 −239.59 483.18 487.00 0.3945 2.4587 0.1687 0.1161
λ̂ = 0.0345

MOF β̂ = 17.084 −255.08 516.16 521.89 0.8121 4.5126 0.2556 0.0029
θ̂ = 0.7931
γ̂ = 0.6162

MOW β̂ = 7.2615 −240.21 486.42 492.16 0.4647 2.8406 0.2038 0.0313
α̂ = 0.4934
λ̂ = 6.2525

MOL β̂ = 3.8822 −242.21 490.43 496.17 0.4537 2.7755 0.1694 0.1131
θ̂ = 0.0097
γ̂ = 4.9400

MOB β̂ = 22.170 −251.48 508.96 514.70 0.7053 4.0855 0.2277 0.0111
θ̂ = 1.2063
δ̂ = 0.8000

MOG β̂ = 20.196 −235.08 476.16 481.90 0.3478 2.2178 0.1643 0.1340
θ̂ = 0.2256
δ̂ = 0.0273

In order to analyze the data in Table 12 from a graphical approach, the behavior of
the PDF was analyzed for each distribution under analysis. As shown in Figure 13a, the
MOE-PU distribution offered an excellent fit to the behavior of the histogram. On the
other hand, in Figure 13b, we can analyze the reliability of the 50 devices from a graphical
approach; that is, we can visualize the probability that the devices would not fail or survive
as time passed. Like the previous case, the MOE-PU distribution aligned perfectly with
the Kaplan–Meier empirical reliability line, indicating that our model is very competitive
with others.
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Also, in Figure 13c, we can observe the useful life of the 50 devices working correctly;
in this graph, professionals in the discipline of reliability engineering can see that the
MOE-PU describes a behavior similar to a bathtub curve. This conjecture agrees with
Figure 12, since failure times presented a mixture of early-decreasing and late-increasing
risks. Furthermore, the MOE-PU distribution best fits the non-parametric fault line. Finally,
in Figure 13d, it can be seen how the cumulative failures behaved during the useful life of
the devices. It should be noted that the MOE-PU distribution presents a better fit to the
points of the non-parametric curve than the other distributions.

Based on this study’s results, the MOE-PU distribution can be considered a viable
option for conducting reliability engineering studies. The MOE-PU achieved an excellent
fit with the curve non-parametric Hazard Function, suggesting that there would be no bias
in the information obtained by the MOE-PU distribution.
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Figure 13. Reliability plots for case study 3.

5.4. Case Study 4: Reliability Analysis for Productivity Performance in a Textile Industry

Manual labor and many manual processes are required in the textile industry. Meeting the
global demand for textile products depends mainly on production performance and employee
efforts. Therefore, decision makers in the apparel industry need to track, analyze, and
predict factory productivity performance. For this case study, data related to the production
times (in minutes) used to perform a task were analyzed, where 717 times ranging from
5.13 to 54.56 min were considered. The data are open access, reported by the UCI Machine
Learning Repository [26] on the following web page: https://archive.ics.uci.edu/dataset/59
7/productivity+prediction+of+garment+employees (accessed on 20 June 2024).

Considering the same methodology as in the three previous cases, the behavior of the
data (production times to perform a task) was first empirically verified, using a TTT graph
to analyze what the shape of the failure function would be. As shown in Figure 14, the blue

https://archive.ics.uci.edu/dataset/597/productivity+prediction+of+garment+employees
https://archive.ics.uci.edu/dataset/597/productivity+prediction+of+garment+employees
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curve has a concave shape; this indicates that the risk will increase: that is, there will be a
greater probability that the times required to perform a task will increase.
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Figure 14. TTT plot for the production times.

According to the results shown in Table 14, the MOE-PU distribution best described
the behavior of the data (production times). This assumption can be observed in the AIC,
BIC, W*, A*, and K-S goodness-of-fit statistics of the MOE-PU model; these statistics were
the lowest compared to the other distributions. Furthermore, the p-value was the highest.
These statistics can be directly contrasted with the behavior graphs shown in Figure 15. In
this sense, the MOE-PU distribution could better model the behavior of the 717 production
times used to perform a task. In this sense, this new distribution is an alternative, to be
used in engineering, to predict and increase productivity.

Table 14. Parameter estimates and goodness-of-fit statistics for the production times.

Model MLEs logL AIC BIC W* A* K-S p-Value

MOE-PU α̂ = 0.0085 −2392.61 4791.22 4804.94 0.997 7.709 0.076 0.0089
θ̂ = 55.56
k̂ = 5.5976

MOE β̂ = 16.333 −2562.83 5129.67 5138.82 1.999 12.852 0.2066 4.85 × 10−9

λ̂ = 0.138

MOF β̂ = 50.146 −2573.76 5153.53 5167.26 5.321 30.961 0.1801 7.26 × 10−7

θ̂ = 3.6167
γ̂ = 7.1135

MOW β̂ = 18.523 −2452.942 4911.88 4925.60 1.1219 8.3981 0.1066 1.65 × 10−3

α̂ = 1.6718
λ̂ = 11.894

MOL β̂ = 6.3275 −2757.98 5521.96 5535.69 3.149 18.903 0.3137 2.51 × 10−10

θ̂ = 0.0196
γ̂ = 6.8082

MOB β̂ = 33.385 −3058.43 6122.87 6136.60 5.582 32.086 0.3457 6.39 × 10−12

θ̂ = 0.4171
δ̂ = 3.0602

MOG β̂ = 21.146 −2451.04 4908.09 4921.82 1.4129 9.6821 0.1085 9.04 × 10−4

θ̂ = 3.6129
δ̂ = 0.3225

In this last case study, as in the other cases, the MOE-PU distribution accurately
described the behavior of the production time data. These results reaffirmed the reliability
of the analysis carried out for this data set. Furthermore, the behavioral graphs shown in
Figure 15 directly support this claim.
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For instance, in Figure 15a the PDF was plotted for each of the distributions that were
used to compare the performance of the MOE-PU model. It can be confirmed that the MOE-
PU distribution presented an excellent fit to the data set, as shown in the histogram, which
guarantees the precision of the model to be able to analyze and obtain valid conclusions
about production times. On the other hand, a reliability plot helps us explore the probability
of survival as time passes. In this case, the term survival would not apply in this analysis;
it can be interpreted by saying that the probability that the production time is less than
10 min decreases, as can be seen in Figure 15b. In this case, the MOE-PU distribution
aligned perfectly with the Kaplan–Meier empirical reliability line, further reinforcing our
model’s reliability.

In Figure 15c, we can see the failure function, which represents an increasing function;
that is, it indicates that the probability of more production times exceeding 20 min will
increase, which agrees with Figure 14. Furthermore, Figure 15d presents the behavior of
cumulative failures (times) during production time. The models used for the comparative
analysis reflected competitive results. However, the MOE-PU distribution fitted more
points on the non-parametric curve. Based on this last case study’s graphic and statistical
evidence, the MOE-PU distribution could be an excellent alternative for carrying out studies
or analyses related to predicting and increasing productivity.
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Figure 15. Reliability plots for case study 4.

On the other hand, the performance of each of the distributions used in the comparative
analysis in the four case studies can vary or change significantly depending on the nature
and amount of the data. For example, data can be analyzed using different behaviors, such
as monotonic increasing or decreasing. It is worth mentioning that this article placed more
emphasis on describing failures that presented behaviors in the form of a bathtub curve.

However, developing new distributions is broader than just a few application areas.
For instance, in the results of the bibliometric study carried out by González-Hernández
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et al. [4] on the development of new distributions, it was identified that the latest models
have been applied to data relating to failure times of mechanical or electrical components,
remission times in cancer patients, survival times in cancer patients, survival times due to
tuberculosis infection, length-of-relief times of patients who received an analgesic, number
of deaths from vehicle accidents, average maximum daily rainfall for 30 years, waiting
times in banks, GDP growth (% per year), monthly tax income, sports, call times, strength
tests for glass fibers, average annual growth rate of carbon dioxide, maximum annual flood
discharges, assessing the risks associated with earthquakes that occur near a nuclear power
plant (distances, in miles, to the nuclear power plant and the epicenter of the earthquake),
fatigue times of 6061 T6 aluminum coupons, nicotine measurements, marital status and
divorce rates, equipment or device failure rate, lifespan (in km) of front-disk brake pads
on randomly selected cars, tension at break of carbon fibers, fatigue fracture, wind speed
measured at 20 m height, and vehicular traffic.

In this context, the flexibility of the MOE-PU distribution allows this model to be
applied to different areas, including medicine, industry, hydrology, agriculture, veterinary
medicine, sports, and actuarial sciences.

Finally, it is hoped that in the future the proposed distribution will explore other
parameter estimation methods, such as Least Squares Estimation or Bayes Estimation, and
perform a comparative analysis with other distributions that present a different methodol-
ogy than that of Marshall and Olkin or with hybrid distributions.

6. Conclusions

This paper presents two new distributions; the first is a generalization of the Continu-
ous Uniform Distribution, which we call GPUD. The second is a generalization of the model
proposed by Jose and Krishna [18], which is called MOE-PU. The proposed distributions are
based on the methodology of Marshall and Olkin [19], while we incorporated a parameter
k in the power of the continuous random variable X values in the PDF. The above allowed
us to establish a Survival Function of the F̄Xk (x) = 1 − xk form, to develop the two new
models. This article was mainly motivated by the MOE-PU model, which, through its
usefulness, reveals certain similarities between the behavior of some actuarial systems,
reliability engineering, and medicine. One of the main characteristics of the MOE-PU distri-
bution is its ability to model or characterize failure times in a non-monotonous manner;
that is, it can model failure times or life cycles in the shape of a bathtub curve, which can
be attractive to professionals in reliability engineering and medicine.

In order to show the usefulness of the MOE-PU distribution, it was tested in three
case studies, focusing on data related to engineering and health. Furthermore, data whose
lifetimes could be non-monotonic were considered in two cases. In each of the studies,
the MOE-PU was contrasted with six statistical distributions derived from the approach
of Marshall and Olkin. It is essential to mention that the models used to compare the
performance of the MOE-PU can model failure times as a bathtub curve. In this sense,
the MOE-PU distribution’s performance in the three case studies demonstrated that it is a
competitive model, so it is reiterated that reliability professionals can take this distribution
into account when carrying out reliability studies.

Finally, given the properties of MOE-PU, this new distribution can explore a wide
range of applications in various areas, to predict the performance of a product, process,
industrial system, or biological system.
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Appendix A

Below is a general description of the code used in R to estimate the parameters of the
MOE-PU distribution. This code was used for the Monte Carlo simulation and to calculate
the parameters of the MOE-PU distribution in the four case studies. For more details,
see [27]. It is worth mentioning that their corresponding models must be entered for the
other distributions.

library(maxLik)
x<- (place the data set, that is, the failure times)
n<- length(x)
loglik <- function(param)
{

alpha <- param[1]
theta <- param[2]
k <- param[3]
ll <- (assign Equation (30))
return(ll)

}
loglikGrad<- function(param)
{

alpha <- param[1]
theta <- param[2]
k <- param[3]
loglikGradValues<- numeric(3)
loglikGradValues[1] <- (assign Equation (31))
loglikGradValues[2] <- (assign Equation (32))
loglikGradValues[3] <- (assign Equation (33))
return(loglikGradValues)

}
loglikHess<- function(param)
{ alpha <- param[1]

theta <- param[2]
k <- param[3]
loglikHessValues <- matrix(0, nrow=3, ncol=3)
loglikHessValues[1,1]<- (assign Equation (34))
loglikHessValues[1,2]<- (assign Equation (37))
loglikHessValues[1,3]<- (assign Equation (38))
loglikHessValues[2,1]<- (assign Equation (37))
loglikHessValues[2,2]<- (assign Equation (35))
loglikHessValues[2,3]<- (assign Equation (39))
loglikHessValues[3,1]<- (assign Equation (38))
loglikHessValues[3,2]<- (assign Equation (39))
loglikHessValues[3,3]<- (assign Equation (36))
return(loglikHessValues)

}
est<- maxLik(loglik,loglikGrad,loglikHess,start=c(alpha=(assign an initial value),

theta=(assign an initial value), k=(assign an initial value)), method=(select method),
control=list(tol=-1,reltol=1e-12, gradtol=1e-12), iterlim=10000)

summary(est)
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