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Abstract: Background: Efficient inventory management is critical for sustainability in supply chains.
However, maintaining adequate inventory levels becomes challenging in the face of unpredictable
demand patterns. Furthermore, the need to disseminate demand-related information throughout a
company often relies on cloud services. However, this method sometimes encounters issues such as
limited bandwidth and increased latency. Methods: To address these challenges, our study introduces
a system that incorporates a machine learning algorithm to address inventory-related uncertainties
arising from demand fluctuations. Our approach involves the use of an attention mechanism for
accurate demand prediction. We combine it with the Newsvendor model to determine optimal
inventory levels. The system is integrated with fog computing to facilitate the rapid dissemination of
information throughout the company. Results: In experiments, we compare the proposed system with
the conventional demand estimation approach based on historical data and observe that the proposed
system consistently outperformed the conventional approach. Conclusions: This research introduces
an inventory management system based on a novel deep learning architecture that integrates the
attention mechanism with cloud computing to address the Newsvendor problem. Experiments
demonstrate the better accuracy of this system in comparison to existing methods. More studies
should be conducted to explore its applicability to other demand modeling scenarios.

Keywords: attention mechanism; Gated Recurrent Unit; Industry 4.0; Newsvendor model; fog
computing; inventory management

1. Introduction

The Newsvendor model, also known as the single-period model, is of significant
importance in supply chain management [1]. In its classical form, this model addresses
the challenge of managing one or more perishable items during a single sales period. The
items face uncertain demand governed by a known distribution [2]. However, practical
scenarios rarely provide insight into the actual demand distribution, and the techniques
used to determine it are complex and prone to computational errors [3].

Previous studies have highlighted that the demand value is influenced by a range
of factors recognized in the existing literature as external variables. These variables are
called attributes of the demand data [4]. Among these attributes, elements such as local
weather conditions, day of the week, month of the year, interest rates, and discounts play
a role, in addition to various other local factors [2]. Furthermore, some researchers also
account for broader attributes at the regional and global levels, including inflation, factors
that affect competition, and the consumer price index [5]. In particular, neural networks
exhibit particular proficiency in processing and analyzing this type of data [2].
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To enhance the effectiveness of existing cutting-edge models for order allocation, our
research focuses on using the attention mechanism [6] and recurrent neural networks
(RNNs), more specifically a Gated Recurrent Unit (GRU) [7], to capture and represent the
trend of demand. Our rationale is that the attention mechanism can effectively identify
relevant and significant information related to the demand while disregarding irrelevant
and noisy data. In addition, we propose integrating this distribution with the Newsvendor
model, allowing us to establish an optimal stocking policy. In addition, we harness the
power of fog computing to facilitate the sharing of predictions, ensuring that stakeholders
and the entire supply chain are equipped with accurate and timely information. In this
research, we introduced a conceptual system for inventory management that uses fog
computing, incorporates deep learning techniques, and is based on the Newsvendor model.
Thus, this study brings three key contributions:

• Introducing a novel deep learning architecture that combines RNNs and the atten-
tion mechanism to effectively model demand. By leveraging these techniques, we
aim to capture intricate patterns and dependencies within demand data, ultimately
improving the accuracy of our predictions.

• Developing an integration framework that combines the deep learning architecture
with the Newsvendor model. This integration enables us to derive an optimal stocking
policy, which takes into account both the demand trend and other relevant factors,
ensuring efficient allocation of resources and minimizing costs.

• Using fog computing as a means of communication across various processes within the
supply chain, specifically for data acquisition purposes. By leveraging fog computing,
we establish a decentralized network that enables efficient and seamless sharing of
prediction results. This ensures that stakeholders throughout the supply chain have
access to up-to-date demand predictions, allowing them to make informed decisions
regarding stocking and resource allocation.

2. Literature Review

In this section, we aim to explore some necessary concepts and pertinent literature
surrounding Industry 4.0, Industrial Internt of Things (IIoT) and fog computing. These top-
ics provide important insights into the technological landscape that support our research.
The accelerated and frequent advances in technology have led to significant updates in
the industrial sector [8]. These progressions cover a spectrum from automating manu-
facturing processes to self-regulating procedures that operate independently of human
involvement [9]. This industrial paradigm demands comprehensive monitoring of the
status of the system, together with the creation of responses by the control system to ensure
effective operations [8].

The Industrial Internet of Things refers to the integration of industrial processes and
their physical components into the Internet. When this concept is applied primarily to the
manufacturing industry, it gives rise to the concept of Industry 4.0, which, in turn, is a
subset of the larger notion of the Internet of Things [9]. Within IIoT and Industry 4.0, sensor
networks observe system conditions, actuators execute control system responses, while
operators, analysts, robots, business processes, and connected electrical devices contribute.
This industrial approach generates substantial volumes of data [10] that can be stored
and processed in the cloud. However, some processes require rapid response times that
cloud processing is unable to deliver, leading to inefficiencies, sub-par product quality, and
compromised operational security [11].

For addressing the requirements of IIoT with the cloud infrastructure, in some cases
the adoption of an intermediary infrastructure, known as middleware, positioned be-
tween industrial processes and web services. This middleware, known as fog computing,
embraces a distributed processing methodology in which IIoT devices proximate to the
information source employ their installed capabilities. These devices possess fewer features
but offer considerable computing power [12]. In essence, fog computing is characterized
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by limited storage and processing capacities, but sufficient power to maintain stable and
efficient operation [9].

There exists several cases of the use of integration of industrial processing, IIoT,
machine learning, and cloud and fog infrastructures, for example in [13] an hybrid method
using convolutional neural network and GRUs with the attention mechanism to extract
the temporal correlation features was proposed for time series workload prediction of
host machines in cloud data centers this helps to predicts the workload for the next few
steps. Also, in [14], it is introduced a biobjective model for optimizing a green supply
chain, incorporating learning effects across suppliers, manufacturers, distribution centers,
and retailers with varying capacities. Their model aims to minimize the costs associated
with inventory, manpower, fixed, and variable expenses while reducing carbon dioxide
emissions. For achieving this they try to optimize vehicle allocation, considering diverse
scenarios, using Nondominated Sorting Genetic Algorithm-II as a optimization tool. while
in [15] it is proposed a model for the vehicle routing problem in industrial environments.
They try to optimize vehicle capacity and energy consumption by, simultaneously, reducing
costs and waiting time for customers. For this end, a particle swarm optimization and
Non-dominated Sorting Genetic Algorithm-II are employed. In [16] a defensive mechanism
based on fog computing is proposed to secure communication in IIoT. The framework
uses deep learning layers to help secure communication, in this case a a bidirectional long
short-term memory and a GRU.

Although some authors distinguish between fog computing and edge computing
based on hardware positioning and location of the computing center [12,17], this paper
will use the terms interchangeably, referring to this middleware as fog computing. Fog
computing can improve inventory management costs by the following means [18]:

• Real-time processing and data analysis of inventory levels to prevent excess.
• Predictive maintenance facilitated by IIoT devices, offering insight into machine and

equipment status, mitigating unscheduled downtime.
• Inventory optimization involves the execution of algorithms to analyze various data

sources such as sales, inventory levels, shipment dates and quantities, and demand
data characteristics [2].

• Enhanced supply chain visibility emerges by linking IIoT devices to cloud processing
through fog processing, providing real-time insight into supply chain operations.

The standard design of the architecture for fog computing is commonly conceptu-
alized as comprising three distinct layers, with the fog layer serving as an expansion of
cloud services toward the network edge [19]. These layers consist of the cloud layer, the
intermediary fog layer, and the IoT or sensor/device layer, shown in Figure 1.

Figure 1. Structure of fog computing.

The fog layer encompasses the fog nodes, a crucial element in the fog computing
architecture [20]. A fog node consists of two layers: a hardware layer that houses physical
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resources such as CPU, memory, and network interfaces, and a system layer essential for
hardware abstraction and application execution [20,21].

This research proposes enhancing the system layer of a fog node to acquire demand
information from various equipment or sensors for predictive analysis using a deep learning
algorithm. Subsequently, the Newsvendor model is used to suggest optimal batch sizes.
This information is then transferred to the cloud for further analysis and distribution
to stakeholders.

3. Materials and Methods

In this section, we present the proposed inventory management system, which uses
fog computing and deep learning (DL) techniques. We examine the Newsvendor problem
concerning the modeling of demand time series within a DL architecture. To achieve
this, we propose merging the Newsvendor objective equation with the DL architecture.
Subsequently, we integrate this combined approach into a fog node. This fog node serves as
a communication hub, allowing interaction with various processes within the supply chain
to predict demand and establish an optimal stocking policy. In the subsequent discussion,
we provide a detailed overview of the key components comprising the fog node, namely
the DL network and its integration with the Newsvendor model.

3.1. Demand Prediction with GRU and Attention Mechanism

Here we describe the proposed DL architecture for demand prediction. We make the
assumption that the customer demand is stochastic, characterized by a random variable xn
at time n, following a specific probability density function p(xn). Therefore, predicting the
demand for any future time t + k by looking ahead over the next k days involves finding
a sequence xn+1, xn+2, . . . , xn+k that maximizes the conditional probability given the past
history xn−l , . . . , xn−1, xn of l + 1 samples in the past. In other words, we aim to determine

arg max
xn+1,...,xn+k

p(xn+1, . . . , xn+k|xn−l , . . . , xn−1, xn) (1)

In this research, we employ a deep learning network that incorporates gated recurrent
units (GRUs) and attention mechanisms to construct a parameterized model. The primary
objective of this model is to maximize the conditional probability by training it on historical
demand data, allowing for accurate predictions. In addition, our goal is to model the
distribution of the predictions. To simplify the analysis without sacrificing generality, we
assume a prediction horizon of k = 1, focusing on a single step prediction.

For the analysis and prediction of future trends, we employ a Recurrent Neural
Network (RNN), which is a specific type of artificial neural network designed to handle
sequences or time series data. This is achieved by determining a hidden representation,
commonly referred to as a hidden state, of the input sequence. They are commonly used
in deep learning architectures for tasks involving temporal dependencies, such as natural
language processing and speech recognition. Among the RNN variants, the GRU has
demonstrated superior performance compared to other popular implementations such as
the LSTM. We also decide to use the GRU mainly because GRUs have a simpler architecture
compared to LSTMs, by combining its forget and input gates into a single update gate,
reduces the number of parameters to be learned, this in turn reduces its training speed
and requires fewer computational resources compared to LSTMs. Additionally, GRUs
tend to be less prone to overfitting than LSTMs, especially when the data set is small. The
fewer parameters in GRUs can act as a form of regularization, preventing the model from
memorizing noise in the data [22].

In general, a RNN maintains at each time step an internal hidden state tensor
hn = (h1, . . . , hl+1) ∈ R(l+1)×Nh and produces an output y(hn) that depends on the
hidden state; note that Nh is the dimension of the hidden state components and is related
to the number of neurons in the RNN. The hidden state is updated at each step n with an
input sequence xn = (xn−l , . . . , xn−1, xn) ∈ Rl+1, represented as a vector, according to
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hn = f (xn, hn−1), (2)

where the function f (·) varies based on the specific RNN type. For GRUs, f (·) consists
of multiple gates, and the output y(hn) can either be the complete hidden state hn for
sequence-to-sequence modeling or the last component of the tensor for a summary rep-
resentation of the entire input sequence. Here, we employ the former representation. In
GRUs, the hidden state hn is updated according to [7]:

hn = z ⊙ hn−1 + (1 − z)⊙ h̃n, (3)

which involves element-wise (Hadamard) multiplication ⊙, an update gate z, and a state h̃
determined by a reset gate r as shown in

h̃n = tanh(Wxxn + Ux(r ⊙ hn−1)). (4)

The gates z and r are given by

z = σ(Wzxn + Uzhn−1), (5)

r = σ(Wrxn + Urhn−1), (6)

which model the input data and are determined by weight matrices Wz, Wr, Uz, and Ur
that are learned based on the demand patterns, and σ(·) is the sigmoid activation function.
In particular, when the reset gate r approaches zero, Equation (4) indicates that the state is
based only on the input demand xn, effectively resetting the state. Furthermore, Equation (3)
illustrates how the update gate controls the extent to which information from the previous
hidden state influences the current hidden state.

In this work, we proposed a new representation of the demand sequence in terms of
features, which is obtained automatically by the network. For this, a bank of convolutional
layers (conv1D), each of these layers processes the input extracting different features
because they have different filter sizes and activation functions, Figure 2. The output
of the three convolutional layers is concatenated to obtain an enriched sequence with
enhanced features fn = ( fn−l , . . . , fn−1, fn) ∈ R(l+1)×Nh , where Nh is the dimension of
the components of the feature sequence and is related to the number of filters in the
convolutional layers. In this work, the number of filters is selected to match the dimension
of the GRU components.

Figure 2. Structure of the proposed deep learning network. Here, the inputs of the attention layer are
identified with standard names: query, key, and value.

To enhance the model’s ability to assign higher importance to more relevant samples,
we incorporate the Bahdanau attention mechanism block [6] into the GRU units. This
attention block takes as input the hidden-state output from GRU and a new representation
of the demand sequence. The Bahdanau attention mechanism is mainly used for sequential
data because it enhances the model’s ability to understand long-range dependencies within
input and output sequences. This is achieved by calculating attention weights that deter-
mine the importance of different components in the input data for the given task. These
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weights are computed for each element in the input sequence on the basis of its relevance to
the current output element being generated. As a result, the model can selectively prioritize
different parts of the input sequence during the prediction process, resulting in improved
forecast quality.

For the case of the proposed model, the attention layer basically computes the scores
considering both the input fn and the state hn of the GRU. These scores are then used to
calculate weights that indicate the importance of different components in the prediction
of demand. In essence, these weights allow the model to perform a weighted average of
the state hn, placing more emphasis on the most relevant components of hn during the
prediction process.

The energy scores within the attention mechanism are computed using a compatibility
function. This function serves the purpose of comparing two tensors: a key and a query, to
produce similarity values, which are expressed as energy scores [23]:

en = wT
imtanh(W1hn + W2 fn + b). (7)

here, W1, W2, wim, and b are trainable parameters. The purpose is to capture the similarity
between the key, which in our case is the output of the GRU, hn, and a query. This query
is ideally a value related to the sample to predict xn+1, so in our case we used the nth

component of fn = ( fn−l , . . . , fn−1, fn).
One crucial aspect of attention mechanisms is the distribution that maps energy scores

to attention weights. This distribution is calculated over the scores using a softmax function,
resulting in the calculation of the attention weights ααα = (α1, . . . , αl+1) as:

αi =
exp(ei)

∑l+1
j=1 exp(ej)

. (8)

Finally, a context vector is generated, which is a linear combination of the components
of fn. The context vector cn ∈ RNh captures the relevant information required for the task
at hand and is calculated as:

cn =
l+1

∑
i=1

αi fn−l−1+i. (9)

The fundamental concept behind attention mechanisms is to enhance the model’s
learning process by identifying where to focus and extract meaningful information, this
information being encoded in the context vector cn. By doing so, the model can concentrate
on the pertinent parts of the input while disregarding noisy or irrelevant data.

The final component of the proposed architecture focuses on predicting future demand
values and estimating the associated probability distribution. In this study, the time
series distribution, p(xn+1|xn−l , . . . , xn−1, xn), is modeled as a Gaussian distribution. It is
worth noting that alternative distributions could also be considered. To train the network
architecture, our objective is to approximate the time series distribution using the alternative
proxy Q(xn+1|c) = N (µ, σ), where µ and σ represent the mean and variance, respectively,
of the normal distribution. The proposed network architecture accomplishes this by placing
the distribution parameters in a scheme similar to [24]. The mean parameter, µ, is obtained
through a dense layer. Since it is assumed that the demand is positive in this case, a
Rectified Linear Unit (ReLU) activation function is employed as follows:

µ = ReLU(WµID1), (10)

where Wµ is a matrix of weights of the dense output layer and ID1 is the output of a
previous dense layer (Figure 2). Similarly, the standard deviation is approximated by
another dense layer with ReLU activation, as in:

σ = ReLU(WσID1), (11)
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where Wσ is a matrix of weights of the dense output layer; note that it uses the same input
ID1 as in the µ-layer. Both layers are supplied with input from dense layers, which are,
in turn, fed by the attention block described earlier. Finally, the prediction output, xn+1,
corresponding to the next demand value, is calculated as the mean µ of the estimated
distribution. If the mean has a decimal value, it is rounded to the nearest integer. In the
following, we describe the Newsvendor inventory model and explain how the integration
will be with the proposed deep learning architecture.

3.2. DL Architecture Integration with the Newsvendor Model

The objective function of the Newsvendor model, which involves a one-period or-
der quantity y under demand D, can be represented as the expected cost described in
Equation (12),

E{C(y)} = Ch

∫ y

0
(y − x) fD(x)dx + Cs

∫ ∞

y
(x − y) fD(x)dx. (12)

The components of this equation include: E{·} the expectation operator, C(y) the total
cost, Cs the penalty cost per shortage unit during the period, Ch the holding cost per unit
in the period, and fD(·) the pdf of the demand. It is worth noting that there are other
extensions and equivalent forms for Equation (12). In this context, we operate under the
assumption that demand occurs immediately at the beginning of the period and that there
are no associated setup costs.

In Section 3.1 of our development, we obtained a robust forecasting method to model
the demand trend using an attention mechanism. Furthermore, we derived a proxy proba-
bility distribution Q to estimate the demand distribution. This distribution was tailored to
match the statistical properties of the available demand data, and its approximation was
achieved with a Multi-Layer Perceptron (MLP). By integrating this distribution into the
Newsvendor model, we can derive a concise expression for the solution of the model.

In this work, we proposed to model the demand distribution, fD(·) by the proposed
deep learning architecture, that is,

fD(x) = Q(x|c) = N (µ, σ), (13)

where c contains information about the demand extracted from the GRU and the attention
mechanism.

The distribution of the demand, of the proposed model is given as

E{C(y)} = Ch

∫ y

0
(y − x)Q(x)dx + Cs

∫ ∞

y
(x − y)Q(x)dx (14)

where the density fD in (12) is replaced by probability distribution Q in (13).
The optimal value, denoted as y∗, which maximizes the expected profit, is now the

critical fractile in Qacc, and is given by

y∗ = Q−1
acc

(
Cs

Cs + Ch

)
, (15)

where Qacc is the cumulative distribution function corresponding to Q, with Q−1
acc denoting

its inverse. In this way we expect to endow the model with the ability to look for possible
trends in the demand, thus obtaining a more accurate model in the estimation of y.

3.3. Design and Integration of Fog Computing

In this section, we present the design of our proposed system, based on fog computing.
We also detail on the integration process of the Newsvendor inventory model and our
proposed deep learning architecture into the system’s modules, describing their interactions
with other components of the fog node. The diagram in Figure 3 illustrates the proposed
fog node along with the entire fog computing system. This fog node has the versatility



Logistics 2024, 8, 56 8 of 14

to serve both manufacturers and retailers; its primary responsibility involves seamlessly
incorporating demand data into various levels of supply chain operation, working in
collaboration with the cloud. In addition, the fog node is equipped to react to trends
changes and provide insight for tasks such as design, manufacturing, and product delivery.
This responsiveness is achieved by enabling direct and rapid communication between the
fog node and the manufacturing locations. This communication setup establishes a flexible
pathway between production and management, facilitating the implementation of last-
minute changes on production lines. Next, a more detailed breakdown of the constituent
stages of the proposed fog computing-based system is presented.

Figure 3. Structure of the proposed system based on fog computing.

The IoT layer comprises communication devices utilized by information providers.
These sources include a variety of entities, such as manufacturing sites, wholesalers, point-
of-sale centers, and end-customers. The tools that facilitate communication between the fog
node and these information sources include various devices. For example, mobile phones
serve as communication tools for end customers, RF tags are used on production lines, and
inventory and product orders are managed through systems employed in industries and
point-of-sale centers.

The fog layer contains fog nodes, each equipped with communication channels to
accommodate various sources of information. Consequently, fog nodes have the ability to
transmit data using various protocols, such as Wi-Fi, Bluetooth, Zigbee, Z-Wave, and RFID.
This facilitates the acquisition of relevant data required for demand estimation, including
factors such as market trends, ongoing demand, supplier status, and insight from other
partners. In this study’s simulations, we focused exclusively on the Wi-Fi protocol. This
protocol is compatible with most personal computers and is integrated in the packaging of
many popular microcontrollers. The acquired information is then channeled into a machine
learning module (MLM) composed of a GRU (Gated Recurrent Unit) and an attention
mechanism. The MLM produces an estimate of the demand and its distribution. Following
this, the Newsvendor model is used to determine optimal inventory levels. These newly
derived insights are subsequently relayed to both the IoT and cloud layers for further
processing and decision-making purposes.

Finally, the cloud layer, the framework within the cloud computing layer, presents a
scalable method for the system to efficiently oversee different aspects related to shipping,
restocking, and acquisitions. Furthermore, the cloud layer includes functions such as the
allocation of storage for devices, setting up security protocols, performing data analysis,
and handling specific processing tasks. Furthermore, by extending the availability of ample
computing prowess and large storage capacities, this layer empowers IoT devices to take
advantage of considerable computational potential.
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4. Results

In this section, we present the results of various tests conducted to assess the effective-
ness of various aspects of the proposed system. We compared the results achieved by the
proposed method in this context with those obtained by assuming a uniform distribution
and estimating its mean and variance based on historical data. We call this approach
Historic Estimation Method (HEM) [25], additionally we compared with the best method
of [26], in this case using Extreme Learning Machines (ELM).

Module for Demand Estimation

The DL model within this module was evaluated using simulated data. To replicate
the demand, we adopted a Brownian motion model as described in [27]. For the simulation
process, the Brownian motion parameters were configured as follows: a volatility of
0.25 and a drift set at 0.1. The DL model was trained using 2400 data samples, employing
mean square error as the loss function, with five percent of this data reserved for validation
purposes. The training optimization method used was adaptive moments (adam).

Figure 4a illustrates the performance curves as the number of epochs increases. Mean-
while, in Figure 4b, we provide a closer view of the curve focusing on epochs. This allows
for a clearer visualization of the point at which the model achieves the lowest loss, which
occurs at approximately epoch 60.

(a) (b)

Figure 4. (a) Loss decaying curve during training phase, (b) a zoom of the loss decaying curve during
training phase.

In Figure 5, the curve representing the simulated demand for periods 20–100, as well
as the estimates generated by the HEM, ELM and our proposed method, can be observed.
These curves highlight that the proposed method is closely aligned with the actual demand
curve compared to the HEM and ELM methods.

In Figure 6, scatter plots are displayed to visually assess the performance of the
different methods in demand estimation. Specifically, Figure 6a–c depict the different
methods individually, while Figure 6c presents both the HEM and the ELM methods
simultaneously against the proposed method. It is evident that the proposed method
exhibits a stronger positive correlation between observed demand values and predicted
values compared to the HEM and ELM methods.

Now, the results of a specific demand scenario are presented to assess the corre-
sponding inventory levels. In this particular scenario, the evaluations are carried out over
20 periods; the results are shown in Figure 7. The figure illustrates that, when considering
the proposed model, the quantity of inventory exhibits fewer instances of excessive surplus
and fewer instances of being out of stock compared to the HEM and ELM methods.
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Figure 5. Performance for demand estimation, in this case the demand follows a Brownian motion.
Performance is measured using Mean Absolute Error (MAE) and Mean Squared Error (MSE).

(a) (b)

(c) (d)

Figure 6. (a) scatter plot of real demand versus HEM prediction, (b) scatter plot of real demand
versus ELM method, (c) scatter plot of real demand versus proposed method, and (d) comparison of
scatter plots.

Figure 7a shows the excess inventory for the HEM method, demonstrating that it
consistently has more surplus inventory than the proposed method during the same
periods, as indicated in Figure 7c. The same happens with the ELM method, as seen in
Figure 7b, having more surplus inventory than the proposed method. All methods exhibit
a peak in excess inventory around the fifth period, with the HEM method’s peak being
notably higher, approximately double that of the ELM and proposed method. Regarding
instances of being out of stock, the ELM present up to four units of inventory shortage. The
HEM and proposed methods rarely exceed two units of inventory shortage, but the HEM
method experiences more such instances than the proposed method.
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For a summary of inventory behavior across all methods, refer to Figure 8. The box
plot provides a general overview, revealing that, on average, the proposed method saves
1.5 units of inventory compared to the HEM method and 0.3 units with respect to ELM.
However, HEM and ELM present higher variance with respect to the proposed method.

(a) (b)

(c)

Figure 7. Excess inventory and out of stock of (a) HEM , (b) ELM, and (c) proposed.

Figure 8. Box plots of the inventory behavior with the different methods.

5. Discussion

While the proposed study presents a system aimed at enhancing inventory efficiency,
it is essential to recognize the potential limitations inherent in the research, for example,
the quality and quantity of data, since the effectiveness of the proposed DL architecture
is heavily based on the quality and quantity of the data used for training. Limitations
in the availability or quality of historical inventory and demand data could impact the
accuracy of predictions. Furthermore, since the complexity and interpretability of the
model are inherent in all DL models, this could present challenges in understanding and
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explaining the decision-making process to stakeholders, which can hinder adoption and
implementation. And finally, while fog computing offers benefits such as real-time data
processing and reduced latency, its implementation may require significant infrastructure
investment and technical expertise. Limitations in the availability or reliability of fog
computing infrastructure could affect the system’s performance and scalability. However,
we believe that the proposed system for efficient inventory management still offers several
potential contributions: Such as an enhanced accuracy in demand prediction, the incor-
poration of an attention mechanism within the proposed architecture provides improved
accuracy in demand prediction, as was assessed in the results. Furthermore, by combining
machine learning techniques with the Newsvendor inventory model, the proposed system
offers a more comprehensive approach to inventory management compared to works using
prediction only, such as [28]. Although machine learning algorithms excel at capturing com-
plex patterns in data, the Newsvendor model provides a well-established framework for
optimizing inventory levels under uncertainty. Additionally, Real-Time Decision-Making
with fog Computing enables rapid dissemination of information and facilitates improve
decision-making throughout the company. Compared to centralized cloud computing
approaches, such as [13], fog computing reduces latency and enhances responsiveness by
processing data closer to the source. This capability is particularly advantageous in dy-
namic inventory management scenarios where timely information dissemination is crucial
to effective decision making.

6. Conclusions

In this study, we have introduced a comprehensive inventory management system
that harnesses the power of cloud computing while seamlessly integrating a deep learning
architecture and the Newsvendor model.

Our novel deep learning architecture is based on the attention mechanism for better
demand prediction. Through rigorous experimentation involving a simulated demand
scenario, we have observed that our approach closely tracks the actual demand curve,
demonstrating its superior accuracy compared to alternative methods.

Furthermore, we have assessed the integration of this deep learning architecture with
the Newsvendor model. The results of these experiments highlight the remarkable benefits
of this combination. Specifically, our approach substantially reduces instances of excessive
surplus and out-of-stock situations.

The implications of adopting our method to determine the level of inventory are
substantial within the industrial landscape. First, it offers enhanced flexibility in monitoring
inventory control systems due to its predictive capabilities. This results in better short-
term and medium-term projections, subsequently leading to reductions in both inventory
quantities and associated storage costs. Furthermore, our use of fog computing facilitates
the rapid dissemination of demand-related information across the entire company with
minimal latency.

In future work, research is planned to simulate other demand modeling processes to
accommodate simulation with various products.
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