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EMG model calibration and trajectory tracking of rehabilitation exoskeleton by 
asynchronous tele-training
Ubaldo Castro Jiménez and Edgar A. Martínez-García

Laboratorio de Robótica, Instuto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Juárez, Mexico

ABSTRACT
This study presents a novel kinematic tracking model, designed for a networked exoskeleton system that 
is asynchronously taught by a remote therapist. The therapist’s rehabilitation exercises are quantitatively 
assessed using a monocular vision system. The resultant metrics are then transmitted asynchronously 
over the network to patients equipped with exoskeletons. The exoskeleton utilises these metrics as 
reference paths for exercises, complemented by electromyography (EMG) feedback. This work introduces 
a calibration approach aimed at estimating angular positions by utilising EMG observations. The calibra-
tion model establishes real-time correlations between polynomial reference positions. We further explore 
redundant kinematics, incorporating an EMG observer for linear, time-variant rehabilitation tracking 
control. Our methodology is validated using vision-based metric data and experimental EMG measure-
ments including shoulder flexion, elbow flexion, and rowing-like movements. Computer simulations 
demonstrate the system’s ability to reliably, robustly, and effectively follow desired trajectories. This 
research offers a promising approach for remote personalized rehabilitation.
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1. Introduction

From time to time, mankind has had to confront global infec-
tious diseases with deadly impact, as has recently been the case 
with the Coronavirus, COVID-19. Family members have been 
compelled to take on in-home responsibilities due to quaran-
tine, including patients following medical treatments. 
Pandemic-related robotic systematised solutions have been 
described for multiple scenarios (Magid et al. 2021). Similarly, 
telesystems, communication networks, intelligent machines, 
and information technologies provide support for easy post- 
pandemic scenarios (Haider et al. 2020; Yang et al. 2020) by 
keeping us away from contagious scenarios (Touil et al. 2020; 
Wu et al. 2020).

The current technological market has provided a spectrum 
of modern communication technology such as distributed net-
worked equipment, Internet-based telesystems, telepresence 
devices, either synchronous or asynchronous modalities (Barr 
et al. 2020). Telesystems applications have evolved into Internet 
shopping, remote academic/job meetings, virtual scholarly 
classes, and healthcare support, such as tele-rehabilitation 
therapies.

An exoskeleton is a wearable robot fitted on a human’s 
body, designed to enhance biomechanical functions, with the 
human serving as the controller (Yang et al. 2008; Pons 2008). 
To be effective, an exoskeleton must provide a sense of light-
ness and agility, akin to the human bone structure. The advan-
tages of exoskeleton technology extend to enhancing 
biomechanical capabilities, addressing diverse needs such as 

the substitution of body parts’ mobility, providing locomotion 
assistance (Samadi et al. 2015; Li et al. 2019), and aiding in 
rehabilitation (Díez et al. 2016; Buongiorno et al. 2018; Pu 
et al. 2020; Charafeddine 2019). Rehabilitation is particularly 
crucial in cases of post-corrective surgeries, where constant 
therapy is required to expedite recovery. Demand for exoske-
letons spans various sectors, including athletics, sports, manual 
labour, and the military, where common surgeries involve con-
ditions like rotator cuff injuries, acromioclavicular articulation 
injuries, elbow dislocations, hip dislocations, reconstruction of 
injured anterior cruciate ligaments, knee arthroscopy, and total 
knee replacement. Prolonged post-surgery rehabilitation plays 
a critical role in recovery, as prolonged limb immobilisation can 
lead to a significant reduction in muscle strength and mobility. 
Additionally, various studies have explored control algorithms 
for lower-limb wearable robot systems (Jiménez and Verlinden  
2011), as well as for upper limbs (Bauer and Pan 2020), to 
provide power assistance (Li et al. 2014). Wearable robotic 
hands have been developed for purposes such as haptic feed-
back, assistive functions, and rehabilitation (Sarac et al. 2019). 
These devices also find applications in tasks like grasping 
(Gandolla et al. 2016), the development of multimodal rehabi-
litation exoskeletons (Li et al. 2017; Sun et al. 2020), and walking 
assistance (Aguirre-Ollinger et al. 2011).

The work by (He et al. 2015) introduced an adaptive neural 
control system for rehabilitating lower limbs with unknown 
model dynamics, focusing on adapting to the complex 
dynamics of human-exoskeleton interactions. In this study, we 
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propose a feedback kinematic tracking model for a networked 
exoskeleton, which is taught asynchronously by a remote 
therapist (Figure 1a-c). The therapist’s rehabilitation exercises 
are visually assessed and transformed into analytical polyno-
mial Cartesian functions through a least-square fitting 
approach. A noteworthy innovation presented in this work is 
the transmission of a concise stream of polynomial coefficients, 
as opposed to the entire set of Cartesian data. On the patient’s 
side, these Cartesian polynomials are employed to recreate the 
therapist’s experimental data with higher resolution. 
Additionally, by introducing a constant time period, denoted 
as T , we achieve the reconstruction of Cartesian components, x 
and y, as periodic functions of time using Fourier series. The 
integration of Cartesian and electromyography (EMG) data as 
feedback, similar to the approach in Kang et al. (2019), repre-
sents another significant contribution of this work. Notably, our 
model is designed to infer the posture of Cartesian limbs from 
EMG signals, allowing for recalibration during new exercises. 
This feature offers a generalised approach, enabling the control 
law to adapt to the structure of different exoskeletons simply 
by readjusting their Jacobian matrices. Furthermore, a linear 
trajectory smoother model is introduced in cases where 
patients have biomechanical movement constraints. These 
smoothing functions facilitate a gradual convergence towards 
the desired reference trajectory shape. To evaluate the efficacy 
of the proposed exoskeleton, we conducted extensive simula-
tions involving hundreds of tracking control rehabilitation 
exercises.

This study introduces a distinctive approach to remote ther-
apy within the realm of tele-rehabilitation. Specifically, it pro-
poses a feedback kinematic tracking model for a networked 
exoskeleton that undergoes asynchronous visual instruction 
from a remote therapist. The emphasis lies in transmitting 
concise streams of polynomial coefficients instead of the entire 
set of Cartesian data, subsequently transformed into analytical 
polynomial Cartesian functions. Additionally, the study under-
scores the integration of Cartesian and electromyography 
(EMG) data as feedback, facilitating the inference of limb pos-
ture from EMG signals and recalibration during new exercises. 
In the existing literature various approaches within closely 
related fields of study, including works by (Bouteraa and 
Abdallah 2016; Zhang et al. 2019; Akbari et al. 2021; Liu et al.  
2022; Kim et al. 2022; Cisnal et al. 2023), partially intersect with 
the themes presented in this work. However, the authors 
remain uncertain as to whether fully analogous studies have 
been previously published.

The proposed solution specifically focuses on tele-rehabili-
tation, where a therapist’s exercises are visually assessed and 
transmitted to the patient’s exoskeleton. The key innovation of 
the proposed solution lies in the transmission of concise 
streams of polynomial coefficients, rather than transmitting 
the entire set of Cartesian data. This approach provides flex-
ibility in tracking and control, making the rehabilitation process 
highly accurate and efficient. Overall, the proposed solution 
offers a generalised approach to tele-rehabilitation, making it 
more accessible and accommodating to a wide range of patient 
needs. It combines clinical precision with technological sophis-
tication, providing an effective and efficient means of rehabili-
tation. The proposed feedback kinematic tracking model for a 
networked exoskeleton taught asynchronously by a remote 
therapist is required to ensure accurate, personalised, and effi-
cient rehabilitation for patients, regardless of their location or 
access to specialised facilities. In addition, it provides: Accuracy 
and Precision: A feedback kinematic tracking model allows for 
precise tracking of the patient’s movements during rehabilita-
tion exercises. It ensures that the exoskeleton accurately fol-
lows the desired trajectory and provides the necessary 
assistance or resistance. This level of accuracy is crucial for 
effective rehabilitation. Adaptability and Customization: The 
feedback model allows for real-time adjustments and adapta-
tions based on the patient’s specific needs and progress. The 
integration of electromyography (EMG) data as feedback allows 
for the inference of Cartesian posture from EMG signals, 
enabling recalibration during new exercises and adapting to 
different exoskeleton structures. Remote Guidance and 
Supervision: Asynchronous teaching by a remote therapist 
enables patients to receive guidance and supervision from 
experts regardless of their location. This is particularly benefi-
cial for patients who may not have access to specialised reha-
bilitation facilities or therapists in their vicinity. Flexibility and 
Convenience: Asynchronous teaching allows patients to per-
form rehabilitation exercises at their own convenience, without 
the need for simultaneous network connections. They can 
follow the prescribed exercises and receive feedback from the 
therapist at a time that suits them best. Efficiency and Cost- 
effectiveness: By utilising a networked exoskeleton and asyn-
chronous teaching, the rehabilitation process becomes more 
efficient and cost-effective. Patients can save time and 
resources by avoiding frequent visits to rehabilitation centres, 
while still receiving expert guidance and support.

This paper is structured as follows: Section 2 delves into the 
therapist-side tele-rehabilitation, elucidating the teaching 

Figure 1. Tele-training rehabilitation exercises. a)-b) elbow, knee flexion-extension. c) shoulder sagittal rotation. d) telesystem architecture.

2 U. CASTRO JIMÉNEZ AND E. A. MARTÍNEZ-GARCÍA



process facilitated by a vision system. In Section 3, we unveil 
the proposed EMG calibration and observation measurement 
models. Following this, Section 4 delves into the exoskeleton’s 
motion constraints and its kinematic control law. A compre-
hensive summary of the research’s results is provided in 
Section. Finally, Section 6 offers a set of conclusions drawn 
from this study.

2. Human therapist remote visual teaching

The proposed networked distributed system is structured as an 
asynchronous tele-system architecture, with the therapist’s side 
and the patients constituting the client side. The server plays a 
pivotal role by providing geometric data acquired visually from 
the therapist’s exercise sessions in front of a camera, trans-
mitted over the network. An artificial vision system captures 
the data related to the training trajectories taught by the 
therapist (Figure 1d, left side).

Notably, the interaction session between the therapist and 
the patient occurs asynchronously, eliminating the need for 
simultaneous network connections. This approach stands in 
contrast to traditional tele-operation methods (Lanini et al.  
2015). The exoskeleton has the flexibility to connect at any 
given date and time, allowing the download of therapy exer-
cises in the form of analytic trajectories, represented by coeffi-
cients (Figure 1d, right side). The server’s computer is equipped 
with a monocular vision system that accurately measures the 
angles and positions of coloured landmarks strategically placed 
at the therapist’s limb joints (Figure 3a,b-left). Remarkably, the 
therapist does not require any specialised equipment during 
the exercise sessions.

In light of the evident benefits of rehabilitation exoskeletons 
(Fisahn et al. 2016), we selected commonly practiced exercises 
from a recognised exercise program (Athwal 2017) to serve as 
the basis for our study. These exercises, whether post-injury or 
post-surgery, were adopted as trajectories (Figure 1a-c). For 
example, exercises such as the rotator cuff, shoulder and elbow 
flexion exercises were employed to teach various motions 

(Figure 1a,c). Similarly, we incorporated exercises like knee 
extensions (Figure 1b) and the stand-up paddle exercise with 
an elastic band (Figure 1c) to broaden the scope of our research.

The proposed tele-system was crafted on standard-capabil-
ity computers running the Linux Gentoo operating system, 
version 4.4. The entire codebase was developed using the 
GNU C/C++ compiler, making extensive use of multiple open- 
source libraries, including openCV, Armadillo C++, the Open 
Dynamics Engine (ODE), and Gazebo. Communication between 
components was facilitated using the TCP/IP protocol via sock-
ets. The vision sensor employed was a cost-effective USB cam-
era (see Table 1). For the acquisition of EMG biosignals, we 
utilised the gMOBIlab+ device with two EMG channels. To 
bring our vision to life, we implemented a virtual exoskeleton 
prototype with original design mechanisms. This virtual exos-
keleton operates under the control of human EMG signals, 
functioning as a master-slave system.

This work places some emphasis on vision-based teaching. 
To streamline the measurement process, we strategically posi-
tion coloured landmarks at the joints of the therapist’s limbs, as 
depicted in Figure 3. These landmarks serve as the key refer-
ence points for measuring angles and positions during exercise 
sessions. Our approach to measuring the metric trajectories of 
exercises involves a two-step process. First, we segment the 
joints’ landmarks based on their RGB colour. Subsequently, we 
employ a nominal resolution geometric model to track the 
centroid positions of these metric landmarks. In this approach, 
we establish the reference coordinate system at the location of 
the visual sensor. In line with the extrinsic parameters outlined 
in Figure 2, we define an RGB image as a cubic matrix 
I 2 R m�n�3 , comprising the union of the three primary color 
channels: red IR, green IG, and blue IB. To extract the shoulder’s 
landmark, we apply a threshold ζS to the red channel IR and 
incorporate a zeros matrix 0 2 R m�n. This process yields a 
binary segmented image denoted as IS and is achieved through 
the following Boolean equation: 

Table 1. Experimental visual sensor’s intrinsic/extrinsic parametersa.

Resolution 640� 480 height 1:1024982 m
Focal lenght 1.5 m width 1:4849993 m
Frames/s 30 z (distance) 2.0 m
φhorizontal 52:6708o φvertical 40:3567o

H. resol fh 1.10249 m V. resol. fv 1.48499 m
aLogitech USB 2.0 camera, views of Figure 3.

Figure 2. Monocular vision-based geometrical model on the therapist’s side.
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Similarly, the isolation of the elbow’s joint landmark is achieved 
through the utilisation of a binary image denoted as IE . The 
effectiveness of this process hinges on the presence of a critical 
threshold denoted as ζE , which assumes a pivotal role in the 
Boolean criterion: 

In a similar manner, the identification of the wrist landmark is 
carried out through the utilisation of a binary image repre-
sented as IW The determination of this landmark relies on the 
precise specification of a threshold value denoted as ζW which 
is an integral part of the following criterion: 

For each segmented region in the images IR, IG, and IB, the 
position of the landmarks in spatial coordinates is determined 
by their centroids, denoted as column pc and row pr , as 
expressed by: 

In this context, the spatial coordinates ci and ri, where both ci 

and ri belong to a segmented region R, represent the pixels 
within the region. We will now proceed to offer a comprehen-
sive description of the geometric visual model, as depicted in 
Figure 2.

Geometrically, the equality for the vertical field of view ((5)) 
is valid. 

Here, h represents the height of the object of interest, and z 
denotes the metric depth of the human therapist from the 
camera. Thus, building upon the previous expression, we can 
determine φr , which represents the vertical camera angle quan-
tised in terms of image rows. 

With respect to (w.r.t.) the horizontal field of view, 

then, dropping off the angle along image’s columns φc 

We estimate the vertical metric resolution factor, denoted as fh, 
as well as the horizontal metric resolution factor, denoted 
as fw ,1 

Subsequently, we determine the vertical metric position �r and 
the horizontal metric position �c of the centre pixel ðpr; pcÞ of a 
landmark. 

Next, in the therapist’s side, the superior limb kinematic 
motion model in 3D space is provided by the expression 

where depth is affected by the yaw angle ϕ0 and double pitch 
joits ϕ1;ϕ2, and ,1 and ,2 to denote the actual metric lengths of 
the upper arm and forearm, respectively. When representing a 
2D exercise scenario, the yaw angle ϕ0 ¼ π=2. Therefore, the 
depth dimension becomes irrelevant since the arm’s length is 
not projected, and the trajectory is drawn on a plane in front of 
the camera. The links ,1; ,2 visual measurements, 

and 

Similarly, we use the variables θ1 and θ2 to denote the joint 
angles of the limb. 

We illustrate a shoulder exercise in Figure 3, and in Figure 9, we 
display the resulting Cartesian trajectory, with red points indi-
cating the Cartesian positions of the blue wrist landmark.

In summary, the rehabilitation trajectory, denoted as 
S ¼ �0;�1;�2; . . . ;�N, is comprised of a set of joint angles 
�i ¼ ðθ1; θ2Þ

T and limb parameters ,1 and ,2.

Figure 3. Visual instruction of various exercises by the therapist.
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In Figure 4, a series of repetitions stemming from exercises 
performed by the therapist is presented. These exercises 
encompass a single experimental repetition involving shoulder 
flexion (depicted in Figure 4a), along with three experimental 
repetitions focusing on elbow flexion (illustrated in Figure 4b). 
Additionally, three experimental repetitions of a rowing-like 
motion are depicted (Figure 4c), wherein both the shoulder 
and elbow joints operate in unison during the exercise. It is 
imperative to emphasise that the reference coordinates, 
denoted as ð0; 0Þ, are firmly anchored at the centroid of the 
shoulder.

Additionally, in Figure 5, we present angular motion mea-
surements for all joints utilising visual odometry, with a focus 
on the x � y plane. These angular measurements correspond to 
the Cartesian motion data depicted in Figure 4. In Figure 5a 
(left), we observe an experiment exclusively involving shoulder 
flexion, where a linear rigid arm is used, and there are a total of 
five repetitions. It’s important to note that this exercise is the 
simplest, resulting in data points with a higher degree of over-
lap. On the right side of Figure 5a, while still involving shoulder 
flexion, we observe slight angular perturbations in the wrist, 
averaging approximately 9�. These perturbations were primar-
ily caused by minor limb vibrations from the therapist and were 
further exacerbated by contrast and brightness noise in the 
measurements. Figure 5b displays angular measurements for 
elbow flexion exercises. To ensure clarity without excessive 
data overlap, we have chosen to present three distinct experi-
ments, each with multiple repetitions. On the left side of Figure 
5b, we observe angular perturbations in the wrist during elbow 
flexion exercises. Conversely, the right side of Figure 5b depicts 
three separate experiments involving elbow-flexion exercises, 
displaying multiple repetitions that result in periodic oscilla-
tions. This presentation highlights variations in speed during 

the experiments, reflecting biomechanical consistency and dif-
ferences in execution.

Figure 5c, in its entirety, represents three distinct experi-
ments of rowing-like motions, each of which consists of six 
repetitions. This comprehensive view enables us to examine 
the angular dynamics in these exercises in greater detail. On 
the left side of Figure 5c, we can observe the angular magni-
tudes of elbow flexions. Meanwhile, the right side of the same 
figure portrays shoulder flexions, which synchronise their 
motion with the elbow flexions. On the therapist’s side, the 
process involves employing a least square polynomial fitting 
approach to derive a Cartesian function yðxÞ. This method is 
used to process the vision-based 3D measured data, resulting 
in the determination of polynomial coefficients of the n-th 
degree, as described in the following equation: 

In this manner, we obtain a parametric function that accu-
rately fits the exercise’s Cartesian data, following a polynomial 
form: 

This approach significantly reduces the trade-off during data 
streaming to only a few coefficients and the time period T of 
one exercise oscillation. These coefficients require a minimal 
amount of bytes for transmission over the network, thereby 
mitigating significant time delays. Figure 6 illustrates experi-
mental data from teaching trajectories that have been 

Figure 4. Experimental measurements in flexion-extension exercises of shoulder, elbow and wrist.
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effectively fitted by various polynomials, exemplifying the prac-
ticality and efficiency of this approach.

By representing the exercise trajectory as a continuous poly-
nomial function, denoted as yðxÞ, available on the exoskele-
ton’s side, we open the door to the replication of experimental 
data at higher metrical resolutions. With the time constant of a 
period T at our disposal, the exoskeleton’s side can autono-
mously convert the high-resolution Cartesian data into new 
components as functions of time. Using Fourier series, we gen-
erate new Cartesian components, xðtÞ and yðtÞ, as functions of 

time. Figure 7 effectively demonstrates this process, showcas-
ing a Cartesian reference trajectory as xðtÞ versus yðtÞ, realisti-
cally reproducing three experiments involving elbow flexion. 
This approach, as presented in this work, offers sophisticated 
analytical functions that serve as effective substitutes for the 
therapist’s exercises, which typically involve large amounts of 
experimental data. In doing so, it efficiently addresses the 
challenges of long transmission time delays and the handling 
of extensive data tables, ultimately yielding parametric func-
tions that streamline the entire process.

Figure 5. Angular measurements for flexion-extension exercises of shoulder, elbow and wrist.
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Moreover, in scenarios where biomechanical constraints 
affecting a patient’s movements are detected during exoskele-
ton deployment, we employ smoothing functions to facilitate 
gradual transitions that accommodate these constraints. One 
such smoothing function, based on a linear approach, is 
detailed below: 

In this function, the original therapist’s trajectory is regarded as 
the ideal Cartesian reference motion, denoted as yðxÞ. 
Therefore, we introduce two key parameters: κτ , representing 
the translation factor of a family of functions, and κs, 

representing the scaling function’s coefficient. When κτ ¼ 0 
and κs ¼ 1, the exercise function aligns precisely with the 
therapist’s reference trajectory. However, by adjusting the 
values of these smoothing coefficients, we achieve gradual 
convergence towards the therapist’s ideal trajectory. Figure 8 
purposely illustrates various smoothing teaching trajectories 
that progressively approach the original therapist’s reference 
trajectory, represented by the continuous line, underscoring 
the flexibility and efficacy of this approach.

Indeed, it’s important to note that both κτ and κs are coeffi-
cients specific to each exercise trajectory, differences of 
patient’s limbs size or patient’s motion conditions. The coeffi-
cients are manually adjusted individually for different exercises 
based on the patient’s comfort. This adaptability ensures that 
the smoothing coefficients are tailored to the characteristics of 
each exercise, optimising their effectiveness.

3. Rehabilitation trajectory model

From the perspective of the patient-exoskeleton interface, 
the instructional trajectory S is inherently expressed in polar 
form. To facilitate processing, it is subsequently transformed 
into Cartesian points at the wrist location, represented as 
xref

i ¼ ,1 cosðθ1Þ þ ,2 cosðθ1 þ θ2Þ and 
yref

i ¼ ,1 sinðθ1Þ þ ,2 sinðθ1 þ θ2Þ, commonly referred to as 
the ideal or reference trajectory pref . In lieu of managing an 
extensive dataset comprising hundreds or thousands of points, 
this study derives an adaptive analytical reference model 
expressed as functions of time, akin to the approach proposed 
by Arteaga et al. (2020). Given the periodic nature of a rehabi-
litation exercise assumed to be a Cartesian function, the sug-
gested methodology involves obtaining xx and yy separately 
with respect to time. The utilization of a general Fourier series is 
deemed apt for representing a suitable function of time, pro-
viding a concise and analytically manageable characterisation 
of the patient’s movement trajectory. 

Figure 6. yðxÞmodels fitting experimental trajectories. Depiction of xy positions and produced joints’ angle.

Figure 7. Analytical xðtÞ vs yðtÞ functions fitting elbow-flexion experimental data 
of Figure 4.
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and 

In the general formulation (18)-(20) the Fourier series estimate 
the coefficients for (17). The parameter n represents the num-
ber of data to be fitted through the Fourier series. However, the 
kth number of Fourier coefficients are predetermined with a 
sufficiently large value to appropriately accommodate the tra-
jectory data. Equations 18, 19, and 20 comprise the Fourier 
series tailored to fit the trajectory data provided by the thera-
pist, expressing it as a trigonometric function.

A C++ program was implemented to autonomously com-
pute the discrete Fourier coefficients. Regarding the indepen-
dent terms, the average of the discrete data is presented as 
follows: 

Similarly, even though initially presented in continuous-time, 
the discrete Fourier series was formulated to derive the remain-
ing coefficients for the Cartesian component x vs t by 

likewise, for the Cartesian component y vs t 

Therefore, we have now acquired the Cartesian components of 
an xy trajectory as reference functions of time, denoted as xðtÞ
and yðtÞ. The numerical coefficients related to time obtained to 
align with the experimental reference data of shoulder flexion- 
extension, illustrated in Figure 9, are: 

and 

The experimental coefficients obtained are presented for illus-
trative purposes, specifically related to Figure 9. It’s essential to 
note that their numeric values may vary for different exercises 
or when administered by a human therapist, accounting for 
differences in limb size.

Figure 8. Family of smoothed reference trajectories adjusted by κτ and κs .

Figure 9. Periodic positions of shoulder flexion-extension fitted by fourier series.
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3.1. EMG sensing model calibration

This study suggests deriving a sensing model for estimating the 
Cartesian position of the limb through EMG measurements. 
Given the challenge of achieving repeatability in EMG data 
from the same exercises and subjects, an EMG calibration 
model is established at the onset of training. Real-time motion 
prediction becomes feasible using raw EMG data, typically 
encompassing combined muscle motions (Alenabi et al.  
2013). Table 2 provides a comprehensive overview, detailing 
the type of therapy and the associated muscles involved in 
obtaining EMG measurements.

Based on the electrodes illustrated in Figure 10c, the 
experimental raw EMG data is presented in Figure 14. This 
data pertains to the shoulder-elbow-wrist region and cor-
responds to multiple periodic flexion-extension exercises.

The series of plots illustrated in Figure 11 portrays three 
distinct experiments involving the same exercise, specifically 
elbow flexions, each comprising approximately five repetitions. 
In this configuration, Channel Ch5 was situated at the bicep 
brachii muscle, while concurrently, Channel Ch6 was positioned 
at the tricep brachial muscle. Notably, the magnitudes of ampli-
tude (μV) exhibit coherence and consistency across both 
channels.

The subsequent Figure 12 illustrates an experiment 
involving shoulder flexion. In this instance, Channel Ch5 
was positioned at the Pectoralis Major muscle, and Channel 
Ch6 was situated at the Deltoid Anterior muscle. The plots 
represent approximately five oscillations (flexions) with 
amplitude magnitudes measured in μV . It is noteworthy 
that, in this case, both frequency and amplitudes consis-
tently differ from those observed in other exercises.

Figure 13 presents experimental data related to rowing-like 
movements, showcasing three distinct experiments involving 
the same exercise with approximately six rowing flexions each. 
Channel Ch5 was positioned at the Trapezius middle muscle, 
while Channel Ch6 was situated at the Deltoid anterior muscle. 
The amplitude magnitudes (μV) and oscillation frequency 

exhibit distinct behavioral patterns, maintaining substantial 
consistency across both channels.

The activity level of muscles is inherently noisy due to the 
interaction of bi-joint muscles with movements in other joints. 
The EMG calibration measurement is acquired by initially filter-
ing the noisy native EMG signal ~E (Figure 14) into a linear 
envelope �Et within segments of Nk samples. Subsequently, a 
2nd order low-pass filter with a cutoff frequency fc ¼ 20Hz is 
applied, 

Consequently, an instantaneous EMG calibration measurement 
value, denoted as Ecal

t , is deduced from the periodicity of the 
filtered EMG signal �Et . To obtain an analytical representation of 
Ecal over a period of a specified exercise, a fitness model 
employing a Fourier series in terms of time, denoted as Ecal

t , is 
derived. 

The numerical coefficients in (24) are derived from the experi-
mental shoulder-elbow flexion-extension exercise shown in 
Figure 14. Let’s introduce a polynomial function ÊðtÞ as a 
time-dependent function capable of estimating EMG measure-
ments over time. This function can then be compared against 
the calibrated model Ecal

t , which serves as a reference function 
over time. To approximate Ecal

t , we employ the Taylor series 
(Maclaurin), representing it as ÊðtÞ. 

A polynomial approximation is advantageous for an observer 
due to its simplicity in terms of differentiation and integration 

Table 2. EMG electrodes placement for different therapy.

Exercisea Channel 1 Channel 2

Elbow Biceps brachii Triceps brachii
Shoulder Pectoralis major Anterior pectoralis
Shoulder and elbow Middle trapezius Anterior deltoid
Knee Rectur femoris Vastus medialis

aFlexion-extension exercise. See Figure 10 for channels placement. 
MOBIlab+ sampling 256Hz, high/low pass filters 100/0.5Hz.

Figure 10. The upper limbs’ EMG electrode placement is delineated in channel 1 (left) and channel 2 (right).
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with respect to time. In Figure 15a, a gradual polynomial fitting 
up to the 80th degree aligns with our calibration model (24). 
Additionally, Figure 15b visually represents the correlation 
between raw EMG data, overlaid with calibrated signals (filtered 
out), and their corresponding Cartesian positions over time 
during periodic exercises.

3.2. Observability based on real-time EMG

Given that the polynomial observation model ÊðtÞ is expressed 

as a function of time t, its inverse model tðÊtÞ provides a time 
value consistent with representing instantaneous Cartesian 
positions xðtÞ and yðtÞ. In the case of the experimental EMG 

Figure 11. Three elbow-flexion EMG measurements. Channels are Ch5 (bicep braquial) and Ch6 (tricep braquial).

Figure 12. Shoulder flexion EMG measurements. Channels Ch5 are (Pectoralis Major) and Ch6 (Deltoid Anterior).
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data from Figure 16, an 80th grade polynomial was obtained. As 
obtaining a non-linear analytical solution is not trivial, its 
inverse result for time is numerically calculated through the 
Newton-Raphson method for nonlinear equations. The 

instantaneous measurement Êt substitutes the left side of the 
following expression, 

Figure 13. Three different experiments of rowing exercise using EMG channels Ch5 (Trapezius middle) and Ch6 (Deltoid anterior).

Figure 14. Native EMG signals ~E during simultaneous shoulder-elbow flexion extension and wrist.
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where the time tk is the unknown value. Therefore, the Newton- 
Raphson method necessitates the first-order derivative with 
respect to time dÊ=dt, 

hence, a solution for tk is provided in the following manner, 

recursively, the best solution approximation is iteratively 
refined until the relative numeric error falls below εt . 

and now Cartesian models are satisfied as a functions of time tk as 
well 

The solution for tk establishes synchronicity between Êt 

and the expected Cartesian positions (xref
t , yref

t ) in (21) 
and (22), respectively. Figures 16a,b display the native 
data and filtered signals for two EMG channels. Similarly, 
Figure 16c presents only the filtered signals.

4. Exoskeletons morphology and control law

In this study, a proposed exoskeleton model incorporates a well- 
designed mechanism to facilitate standard rehabilitation exercises 
(Figure 18). Alternative methodologies, such as adaptive geome-
trical design, have been documented in previous literature (Wang 
et al. 2014) and locomotive control strategies (Goh Haoyong Yu et 
al., 2006). The design of speed reducers (e.g. the shoulder mechan-
ism shown in Figure 17a) primarily incorporates pulse encoders for 
joint rotation sensing. These mechanisms are intended to enforce 
limb tracking along the reference trajectories.

The design assumes all encoders have a constant angular 
resolution R [pulses/rev]. The number of pulses ηt measures the 
motor’s instantaneous angle θ0 [rad], and its angular speed w0 

[rad/s]. 

Figure 15. EðtÞpolynomial fitting with ith coefficients by McLaurin series.

Figure 16. Shoulder flexion-extension EMG measurement.
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All gears’ rotary speeds are described by (33) and illustrated in 
Figure 17b. Gears with a radius ri yield speeds wi as functions of 
the motor’s velocity w0, 

By expressing (33) in vector notation, the time-invariant linear 
system (34) emerges, 

This model encapsulates the functional representation of the 
joints, providing a framework to deduce Cartesian positions 
over time for feedback purposes. In Figure 18, the kinematic 
parameters of the upper and lower limbs are illustrated, featur-
ing a structured organisation of joint axes. In addition, Table 3 
shows the physics-based parameters used for computer 
simulations.

Therefore, it follows a dynamic controller at the level of the 
exoskeleton’s joint gearing, rather than at the level of the limbs’ 
global kinematic-EMG calibration. Employing an Euler- 
Lagrange approach, the general Lagrangian model Li for the 
ith gear, transmitting rotary kinetic and potential energy, is: 

and developing the following differential equation 

Subsequently, by considering and substituting joint kinematics 
from (34), and simplifying in terms of controlled motor motion 
ϕ0, the following dynamic vector τ ¼ ðτ1; τ23; τ5; τ7; τ8Þ

T is 
deduced, 

Figure 17. The joint’s mechanism.

Figure 18. Exoskeleton mechanism structure.
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Expressing τ in terms of the explicit vectors for inertia m and 
gravity force g, 

and expressing this relationship in vector notation, the follow-
ing dynamic equation is formulated, 

It follows that a controller is deduced from the dynamic 
Equation (39). Thus, rewriting the torque vector with a differ-
ential equation notation, 

and by separating different differentials, 

solving by definite integration, 

then by algebraically arranging and changing subindex nota-
tion, a model-based controller is yielded 

where mþ is the inertia vector pseudoinverse.2 Thus, the 
speeds of the exoskeleton’s joint mechanisms are recursively 
controlled according to a specified reference torque τref .

4.1. Limbs kinematic model

Based on the mechanical model presented in Figure 18, a set of 
Cartesian equations was deduced for kinematic analysis, form-
ing the foundation for position control. The non-linear and 
non-square systems obtained in (44) and (45) evidently lack 
inverse analytical solutions. Therefore, an algebraic numeric 
recursive approach was developed. Expressions (44a)-(44c) 
describes the upper limb kinematics of the 5 rotary joints. 
Notice that ϕ0 and ϕ3 are rolling axis. Thus, for x, 

for coordiante y 

and for coordinate z, 

Expressions (45a)-(45c) are the kinematic equations of the 
lower limb with 4 rotary joints, 

and 

and 

The instantaneous Jacobian matrix represents the rate of 
change of coordinates xyz w.r.t. the joint-space vector 
Φ ¼ ðϕ0;ϕ1;ϕ2; . . .ϕnÞ

T of length n. Such that, 

For the upper limb the Jacobian matrix elements are 

and for y, 

Table 3. Physics-based computer simulation parametersa.

Limbs:
m=1 kg Ix ¼ 0:1666 kg m2 Iy ¼ 0:1666 kg m2 Iz ¼ 0:1666 kg m2

1;2 ¼ 0:3 m limbs r1;2 ¼ 0:15 m τref ¼ 19:62 Nm €ϕref ¼ 36:14 s� 2

Gears:
r1 ¼ 1:5r0 m r2;3 ¼ 2:6r0 m r4;5 ¼ 2r0 m r6;7 ¼ 0:66r0 m
r8 ¼ 1:16r0 m n6;7 ¼ 2 (threads) n8 ¼ 40 (teeth) m8 ¼ 1:166m0 kg
m1 ¼ 1:5m0 kg m2;3 ¼ 3m0 kg m4;5 ¼ 2m0 kg m6;7 ¼ 1:5m0 kg
I1 ¼ 3:37r2

0 m0 kg m2 I2;3 ¼ 1:72r2
0 m0 kg m2 I4;5 ¼ 8r2

0 m0 kg m2 I6;7 ¼ 0:2875r2
0 m0 kg m2

I8 ¼ 1:58r2
0 m0 kg m2

aGazebo enabled with Object Dynamic Object (ODE).
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and for z, 

Figure 19. Tracking control of a complex reference trajectory.

Figure 20. Trajectory tracking metric errors, reference pref � pt , tracking yðxÞ ¼ k5x5 þ k3x3 � k0 and joints’ error.
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Likewise, for the lower limb, the Jacobian matrix terms are 

and for y 

and for z 

4.2. Recursive time-variant control law

Other exoskeleton control approaches have addressed nonli-
nearity using sliding surfaces Zhu et al. (2016) or adaptive 
methods, implementing impedance with feedback using bio-
signals Li et al. (2017), and neural approximation He et al. 
(2019).

The present work takes an approach involving a model- 
based algebraic linear recursive system of equations. This 
work deduces a time-variant redundant kinematics control-
ler since Jt is considered. The model incorporates the 
reference trajectory provided by the therapist, denoted as 
pref . The real-time feedback utilises the EMG observation 

p̂t ¼ ðx̂t; ŷtÞ
T. The innovation model, representing the local 

reference, is the inverse model Φtþ1, and the updating 
model involves the encoders’ observation Φ̂t .

Let us define the state linear Equation (75) as the first-order 
derivative forward kinematics. 

Figure 21. Metric errors of controlled planar trajectory versus a reference (pref � pt ). Tracking yðxÞ ¼ κ1 cos κ2 x
xþκ3

� �
.
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and stating this expression in the form of differential equation, 
its derivative-order decreases 

completing all differentials with their respective integrals at 
both sides of the equality 

therefore, the expression (78) is the general recursive solution, 

Therefore, from such an equality the expressions (74) lead to 
forward/backward general solutions. The recursive forward: 

and the recursive backward: 

Therefore, the inverse general model for the recursive control 
law is set by an ideal global trajectory pref

t , 

Some terms in the model are expanded. Since the Jacobian is 
non-squared, a pseudoinverse matrix solution is applied, 

and the forward solution has the next local reference Φtþ1, 

Where the exoskeleton’s joints direct measurements are 
obtained from encoder devices, 

When the error condition k pf � pt k > ε is met, the control 
loop achieves goal tracking. Figure 19a illustrates a complex 
trajectory and its tracking control performance concerning the 
joint angles (Figure 19b). Additionally, Figure 19c depicts the 
evolution of position metric errors throughout the entire refer-
ence trajectory.

In the context of numerical simulations for numerous con-
trolled trajectories, the efficacy of the control approach was 
validated through a comparative analysis against a reference 
ideal function. The trajectory in Figure 20-above illustrates an 
xy path with an arbitrary reference defined as 
yðxÞ ¼ k5x5 þ k3x3 � k0. Along the same row of the figure, the 
plots elucidate the error between the reference function and the 
controlled function. Ideally, a precise match is anticipated 
between the two functions. The observed errors in the x and y 
components, in general, are relatively small. As for the z compo-
nent, its error is nearly zero since this trajectory is intentionally 
planar, confined solely to the xy plane. Consequently, any varia-
tion along the z axis should be virtually null. This illustration 
underscores the expectation that the controlled functions accu-
rately align with a segment of a 5th-grade polynomial function.

Moreover, Figure 20-below displays the resulting errors in 
joints’ angles induced by the trajectory in the same figure 
(expressed in physical units as radians).

Figure 22. Calibrated EMG measurements, estimation joints’ angle ϕ1 and ϕ2 in 
elbow-flexion performance.
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A comprehensive depiction akin to Figure 20, showcasing 
the entire joint performance, is presented in Figure 21. A dis-
tinct range of coordinates from a different reference function is 
established as the reference trajectory, with the framework’s 
origin situated at the shoulder centroid. Similarly, Figure 21- 
above exhibits a Cartesian plot along with the errors along the 
three axes (reference versus controlled function). Figure 21- 
below illustrates the joints’ angle performance resulting from 
the controlled tracking trajectory.

5. Results and discussion

Summarizing the core focus of this work, we direct our attention 
to the following three figures: Figures 22–24. These figures encap-
sulate the fundamental purpose and achievement of this study. 
They provide a visual representation of the work’s primary objec-
tive, which is the estimation of joint angles from EMG measure-
ments. For the sake of clarity and simplicity, the plots in these 
figures display data for two key joint angles, highlighting the 
remarkable success of the approach. Figure 22 presents data 
from three distinct experiments involving elbow flexion. Within 
this figure, the shoulder angle is denoted as ϕ1 (depicted in red), 
and the elbow angle is represented as ϕ2 (in blue). Two specific 
channels, Ch5 and Ch6, correspond to the electromyography 
measurements of the biceps brachii and triceps brachii, respec-
tively. The selection of these two channels reflects the authors’ 
recognition of their suitability for assessing electromyography 
activity during limb motion.

Following the calibration process, the results in Figure 22 
demonstrate that the activity associated with elbow flexion 
(depicted in blue) reveals a strong correlation between the eleva-
tion angle and the measurements from Ch5, emphasising the 
crucial role of the biceps brachii in this motion. Conversely, the 
decrease in the elbow’s angle is found to be correlated with the 

measurements from Ch6, highlighting the impact of the triceps 
brachii. Interestingly, the motion of the shoulder joint (ϕ1) is not 
detected within this specific configuration, as indicated by the red- 
colored plot. This observation sheds light on the distinct contribu-
tions of the two channels to the control of different joint angles.

Figure 23 offers a close look at an experiment comprising 
five repetitions of shoulder flexion. Within this figure, the 
shoulder angle continues to be represented as ϕ1, depicted in 
red, while the elbow angle is identified as ϕ2 and shown in blue. 
The electromyography measurements are captured by chan-
nels Ch5 and Ch6, corresponding to the activity of the pector-
alis major and anterior pectoralis muscles, respectively. 
Following the calibration process, the results in Figure 23 reveal 
that during shoulder flexion activity (as depicted in the red- 
coloured plot), the elevation angle is strongly influenced, with 
substantial contributions from both Ch6 and Ch5 measure-
ments. This highlights the role of both the anterior pectoralis 
and the pectoralis major muscles in controlling the shoulder’s 
elevation angle.

However, as the exercise primarily involves shoulder motion 
and maintains the elbow at a fixed position, the motion of joint 
ϕ2 is not detected in this particular configuration, as indicated 
by the blue-colored plot. This distinction further underscores 
the remarkable accuracy of the approach in distinguishing the 
contributions of different muscle groups to specific joint move-
ments. Overall, Figure 23 demonstrates the successful applica-
tion of electromyography measurements in estimating joint 
angles, exemplifying the adaptability and precision of this 
approach for diverse exercises involving multiple joints.

Figure 24 offers insight into three distinct experiments invol-
ving rowing-like flexion, wherein both shoulder and elbow 
joints exhibit synchronised motion activity. As in previous fig-
ures, the shoulder angle is denoted as ϕ1, represented by the 
red-colored plot, while the elbow angle is identified as ϕ2 and 
displayed in blue. The electromyography measurements for 

Figure 23. Calibrated EMG measurements, estimation joints’ angle ϕ1 and ϕ2 in shoulder-flexion performance.
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these experiments are derived from channels Ch5 and Ch6, 
corresponding to the activity of the middle trapezius and ante-
rior deltoid muscles, respectively. After calibration, the results 
within Figure 24 reveal that elbow flexion activity (illustrated by 
the blue-colored plot) exhibits different oscillatory angular 
phases. The data suggests that the elevation of ϕ1 appears to 
be significantly impacted by Ch5 measurements, while ϕ2 is 

influenced by Ch6 data. The remarkable consistency observed 
across these three experiments serves to validate the proposed 
approach in this research, showcasing the method’s ability to 
accurately estimate joint angles during complex exercises that 
involve synchronised motion of multiple joints. This validation 
is a testament to the reliability and effectiveness of the 
approach, underscoring its potential for real-world applications 
in the field of tele-rehabilitation.

Although this study does not address more intricate rehabilita-
tion types, the showcased exercises are representative of typical 
rehabilitation routines, serving as a testament to the feasibility of 
the proposed method. Currently, the demonstration of the mod-
el’s applicability is achieved using only two EMG channels.

Given the limitation of relying on a singular visual sensor, the 
integration of various technological sensing devices becomes 
imperative. This broader array of sensing devices aims to encom-
pass diverse perspectives surrounding the therapist’s tasks, 
thereby enhancing the overall accuracy of measurements.

In the context of trajectory adjustment for the linear trajec-
tory smoother model, a manual trial-and-error approach is 
employed to fine-tune the trajectory parameters, specifically 
kt and ks.

6. Conclusion

In this comprehensive research endeavour, a remarkable para-
digm shift was introduced in the realm of tele-rehabilitation. 
The novel approach had a striking feature: therapists were no 
longer required to utilise additional devices during exercise 
teaching. Instead, they could effectively guide exercises with 
the utmost convenience by simply positioning themselves in 
front of a camera adorned with landmarks at each joint. This 
breakthrough allowed for asynchronous interactions, removing 
the constraints of rigid scheduling, as exercises could be con-
ducted at different dates and times, making rehabilitation more 
accessible and flexible for patients.

The patient-exoskeleton interface was engineered to receive 
concise data structures, and the innovative use of coefficient 
sets emerged as a masterstroke. These sets proved invaluable 
in ensuring that data streaming remained swift and uninter-
rupted, unfazed by the passage of time. The application of such 
forward-thinking engineering principles significantly enhanced 
the tele-rehabilitation experience.

One of the standout features of this work was the treatment 
of all exercises as periodic functions. This approach enabled the 
seamless application of Fourier series fitting, providing an ele-
gant and efficient means of data representation. The ability to 
translate complex exercises into Fourier series representations 
presented a new dimension of flexibility in tracking and control.

A cornerstone of this research was the ingenious method for 
reproducing rehabilitation exercises using Cartesian analytical 
polynomials. This method unlocked the door to producing 
high-resolution functions of time by synthesising Cartesian 
functions of time with EMG data, with time itself serving as 
the universal synchronisation variable. This synthesis repre-
sented the union of clinical precision and technological sophis-
tication, making the rehabilitation process more accurate and 
efficient.

Figure 24. Calibrated EMG measurements, estimation joints’ angle ϕ1 and ϕ2 in 
rowing-like flexions performance.
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A novel model for inferring Cartesian posture from EMG 
signals was a pioneering aspect of this work, showcasing 
remarkable reliability. The need for recalibration with each 
new exercise served as a testament to the adaptability and 
responsiveness of this approach, ensuring that the exoskeleton 
remained in sync with the patient’s unique characteristics and 
movements.

The proposed exoskeleton underwent rigorous simulation 
testing, encompassing hundreds of tracking control rehabilita-
tion exercises. Its adaptability was underscored by a control law 
that could be seamlessly adjusted to suit various exoskeleton 
structures, simply by readjusting the Jacobian matrix. This 
adaptability introduced an exciting degree of versatility and 
expandability in the application of this technology, not limited 
by specific hardware constraints.

In essence, this simulation prototype, anchored by a single 
reference trajectory, demonstrated remarkable potential in 
the calibration of numerous EMG experiments and the execu-
tion of multiple tracking control exercises. The system’s 
adaptability, efficiency, and the profound impact it could 
have on the field of tele-rehabilitation were evident through-
out this research. The approach outlined in this study pro-
mises to redefine and enhance the way rehabilitation is 
conducted, making it not just more effective but also more 
accessible and accommodating to a wide range of patient 
needs. It represents a significant step forward in the integra-
tion of technology and healthcare, and its implications are 
bound to be felt for years to come.

As a future work, enhancing the visual teaching process can 
be accomplished by substituting the RGB camera with either an 
RGB-D or a ranging laser device. This alternative not only 
mitigates noise but is also impervious to constraints and illu-
mination variations, offering the added advantages of infrared 
capabilities and 3D cloud data provision.

In addition, to ensure the linear trajectory smoother model’s 
optimal performance, automatic optimisation methods and 
tuning of rehabilitation trajectories, facilitated by parameters 
kt and ks, will enable a systematic convergence towards the 
desired reference trajectory shape.

In our forthcoming work, there is an envisioned redesign of 
the exoskeleton mechanism. This redesign incorporates elastic 
soft materials, mimicking artificial muscles activated by electri-
cal/optical signals, preserving EMG feedback.

In addition, addressing the expansion of the EMG device 
array is pivotal, allowing for the comprehensive mapping of 
additional body muscles while utilising more compact techno-
logical devices.

We posit that exploring alternative controllers is imperative 
for achieving enhanced performance, tailored to different reha-
bilitation tasks, fostering a more nuanced understanding of 
optimal controller-task relationships.

Notes

1. Experimental estimations fh ¼ 1:10249 m, fw ¼ 1:48499 m.
2. The Moore-Penrose right-pseudoinverse is applied. mþ ¼ mTðmmTÞ

� 1
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