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A B S T R A C T   

The relationship between Lean Manufacturing (LM) practices and their impact on Social Sustainability (SOS) 
remains an area that warrants further investigation, especially in developing countries and industrial sectors with 
a high level of manual work in which there are many occupational diseases, where well-being is required by 
labor laws, such as Mexican maquiladora (MM) companies. Recognizing this research gap, this study explores 
and assesses the influence of LM practices on MM’s SOS. The study proposed and evaluated a structural equation 
model (SEM) with eight hypotheses tested statistically using information obtained from 411 responses to a 
questionnaire distributed across the MM. WarpPLS software (version 8.0) was employed to validate the SEM and 
STELLA ARCHITECT V3.0.1, to evaluate a system dynamics model to simulate the longitudinal behavior of LM 
practices on SOS. The findings underscore the critical role of the 5 S methodology in facilitating the adoption of 
practices, such as Total Productive Maintenance, Quick changeover, and One-piece Flow, exhibiting positive 
repercussions on SOS. Notably, the study’s estimates suggest a timeline of approximately 6.5 years to attain 
100% implementation of these tools, while achieving complete SOS may extend to approximately 11.75 years. It 
is imperative to approach these projections cautiously, because of the dynamic nature of business environments, 
wherein unforeseen alterations may significantly influence these timelines. These estimates offer valuable in-
sights into the potential temporal dynamics of LM practices and SOS implementations in industrial contexts.   

1. Introduction 

Lean Manufacturing (LM) prioritizes waste reduction along with 
heightened productivity and efficiency. It streamlines processes, curtails 
expenses, elevates quality, and bolsters overall competitiveness (Alex-
ander and Iskandar, 2023). LM refines operations by eliminating 
wasteful practices and enhancing efficiency, cutting costs, time, and 
workforce. It targets waste elimination, such as motion, fostering 
resource efficiency by curbing unnecessary consumption, while 
improving quality and reducing human labor, development time, and 
production space (Arshad Ali et al., 2020). Moreover, LM facilitates agile 
manufacturing, ensures operational processes, and supports 

cost-effective standardization, enabling high-volume and high-quality 
operations (Khalfallah and Lakhal, 2021). 

LM finds extensive applications across diverse industrial sectors, 
including the Mexican maquiladora industry (MMI). Its impact extends 
beyond environmental benefits, encompassing supply oversight, trans-
parency, fair workforce treatment, and community engagement (Piercy 
and Rich, 2015). Previous studies have explored LM’s effect of LM on 
sustainable company performance, identifying impactful practices 
(Iranmanesh et al., 2019); however, LM’s alignment with environmental 
and social sustainability (SOS) indicates positive effects on supply chain 
sustainability through just-in-time (JIT) delivery, quality and environ-
mental management, and employee engagement (Rupasinghe and 
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Wijethilake, 2021). 
The Mexican Maquiladora Industry (MMI) has driven the US–Mexico 

border economy for decades, favoring job creation and economic 
growth. Academics and the government are interested in it (Cañas et al., 
2011), and it is considered one of Mexico’s essential economic activities 
as it contributes to employment, trade, and overall economic develop-
ment. LM in the Maquiladora industry can enhance performance and 
sustainability by implementing tools that positively impact social, eco-
nomic, and environmental aspects (García-Alcaraz et al., 2022). From a 
social point of view, LM can lead to improvements in occupational 
health, safety, and living conditions of society (Ghaithan et al., 2021). 

Studies have shown that 5S is the most influential LM tool for 
employee SOS, and TPM contributes to success in this area of MMI 
(Samadhiya et al., 2023). This MMI has attracted foreign investment, 
and 2.96 million Mexicans work in 5156 maquiladoras nationwide 
(Index, 2023). Ciudad Juarez, located in northern Mexico, has 322 
companies, which is equivalent to 6.24% nationwide, of which 32% are 
in the automotive sector, 29% in the electronics sector, 12% in the 
medical sector, 8% in the call center, 8% in packaging, 7% in plas-
tics/mechanics and 4% in other sectors (Index, 2022), generating 339, 
065 jobs locally. These companies apply LM to generate efficiency, 
reduce waste, improve quality, and improve employee well-being. 

Some studies examined the relationship between LM practices and 
sustainability outcomes in MMI. For example, García-Alcaraz et al. 
(2022) analyzed visual LM tools, such as andon and visual management, 
to measure their impact on economic and environmental sustainability 
by avoiding errors, while García Alcaraz et al. (2022) analyzed the 
relationship of MMI tools associated with machinery and equipment that 
favor social, environmental, and economic sustainability by avoiding 
accidents and defects due to poorly calibrated or malfunctioning 
equipment. Concerns about the environmental implications linked to 
MMI, including their proximity to residential areas, insufficient risk 
assessment, and inadequate attention to energy efficiency, have been 
raised (Grineski et al., 2015). Effective strategies, such as cleaner pro-
duction and pollution prevention programs, have been recognized as 
successful tools for establishing sustainable production systems in the 
MMI, ensuring the safety of workers, communities, and the environment 
(Velazquez et al., 2014). Although these studies analyzed community 
well-being, they did not investigate the well-being of workers within the 
MMI. 

Traditional approaches to analyzing the relationship between LM 
and SOS are based on the structural modeling of variables (Burawat, 
2019) and the cross-functional involvement of executives and workers to 
understand strategic alignment mechanisms (Longoni and Cagliano, 
2015). Moreover, this relationship has been explored from a cultural 
perspective (Iranmanesh et al., 2019), and the mediating role of green 
technology adoption and product innovation has been analyzed (Afum 
et al., 2021). However, such causal relationships or qualitative analyses 
have been criticized for the time invariance they assume is inconsistent 
with dynamic complexity theory (Zhang, 2022), such as applying LM 
practices in open systems such as MMI. 

However, despite the long-standing history of MMI, few studies have 
analyzed the relationship between LM and SOS within the company, 
such as workers’ well-being, safety, and sense of belonging in the pro-
duction lines. This research seeks to address this gap by analyzing the 
impact of LM tools such as 5 S, TPM, Quick Changeover (QCO), and One- 
Piece Flow on SOS using a structural equation model (SEM) that quan-
titatively analyzes the impact of these LM tools on SOS. Additionally, 
through the system dynamics (SD) model, the behavior of these practices 
within companies is simulated, thus allowing an understanding of their 
dynamics over time and improving the SEM disadvantages. This meth-
odological combination seeks to determine the optimal point to reach 
the desired levels of LM tools and implementation of SOS in the MMI. It 
was validated using information from industries established in Ciudad 
Juarez. This strategy offers a more complete and detailed perspective on 
how these tools influence long-term operational sustainability in this 

context, providing valuable insights for the academic community and 
companies involved. 

This study will allow managers and those responsible for imple-
menting lean manufacturing tools to focus on those vital to ensure SOS 
in their workers and increase their sense of belonging, job security, and 
well-being in production lines. The structure of the paper is as follows: 
Section 2 encompasses a literature review, defining LM tools and SOS 
elements, and justifying the proposed hypotheses. Section 3 details the 
methodology, which is divided into SEM and SD descriptions. Section 4 
presents the results of each methodological step. Finally, Section 5 
presents the conclusions of the study. 

2. Theoretical background and hypotheses 

In IMM, some tools have been shown to relate to economic and 
environmental sustainability because there is a focus on eliminating 
waste, which means lower costs and less material being sent to sanitary 
depots. However, specific LM tools are directly related to workers’ safety 
and well-being on production lines, such as 5 S, TPM, quick change-
overs, and one-piece flow, which impact efficiency and well-being in-
dexes, as discussed below. 

2.1. 5 S (5S) 

The 5S is an LM tool to standardize routines and cleanliness in the 
workplace, and it refers to a business concept that minimizes the time 
and resources used in manufacturing. It emphasizes eliminating waste, 
such as transportation, inventory, movements, waiting, overproduction, 
and overprocessing, and has been useful for sorting, organizing, clean-
ing, and other basic requirements (Senthil Kumar et al., 2022). 5S fa-
cilitates saving by reducing operating space, time, energy, and health 
risks, and improving working conditions, staff morale, product quality, 
and safety (Shahriar et al., 2022). 5S are the pillars for working with 
more systematic techniques such as Single Minute Exchange of Dies 
(SMED) and Poka Yoke. 

The 5S has been implemented in different sectors. In the health sector 
(Nahmens et al., 2011), a hematology laboratory (Marín et al., 2013), 
university engineering laboratories (Jiménez et al., 2015), a small-scale 
manufacturing company (Gupta and Jain, 2015), and the automotive 
cable production industry (Veres et al., 2018), among others. 

2.2. Total productive maintenance (TPM) 

TPM significantly reduces machine downtime, manufacturing losses, 
and material waste and improves personnel and equipment productiv-
ity. TPM supports predictive and autonomous maintenance by detecting 
equipment irregularities and degradation (Agustiady and Cudney, 
2018). Controlled maintenance, lower maintenance costs, production 
stoppages, and downtime boost labor productivity using TPM. By pro-
moting employee knowledge and abilities, TPM enhances internal 
communication, team building, cooperation, equipment specifications, 
audits, diagnostics, OEE and crisis management. It increases employee 
trust, workers feel ownership of the machine, and all workers collabo-
rate to achieve organizational goals (Agustiady and Cudney, 2018). In 
this sense, maintenance is vital to manufacturing organizations. 

TPM has improved autonomous maintenance, education and 
training, safety, and quality maintenance in several industries (Ireland 
and Dale, 2001), and has been implemented in different industrial sec-
tors. For example, Tsarouhas (2007) reported an increased production 
rate, product quality, and cost reduction, while Gupta and Garg (2012) 
reported increased efficiency and machine productivity with regard to 
OEE. 

However, other LM tools support the TPM. For example, 5S helps 
make the workplace efficient, improves safety (Ishijima et al., 2016), 
and maintains a clean and organized work environment, facilitating the 
implementation of TPM. In addition, TPM improves the efficiency of 
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production processes, and 5S provides a solid implementation, 5S helps 
to keep organization, identification, and cleanliness, as it reduces the 
search time for parts and replacements (Ribeiro et al., 2019). The 5 S 
simplifies the identification of fluid leaks, material spills, metal shavings 
from unanticipated wear, and minor fractures in mechanisms for speedy 
maintenance (Agustiady and Cudney, 2018). Thus, we propose the 
following hypothesis. 

H1. 5S has a direct and positive effect on TPM 

2.3. Quick changeover (QCO) 

Product setup is crucial to manufacturing lead-time, and QCO is an 
LM approach that improves production efficiency and reduces change-
over time (COT) (Vo et al., 2019). QCO simplifies and streamlines the 
remaining processes to streamline production and decreases the model 
COT by performing as many operations as feasible while the equipment 
is running. QCO reduces non-product-value tasks and has four steps 
(Singh et al., 2018): the preliminary stage, separating internal and 
external activities, converting internal to external activities, and 
simplifying all preparation operations. 

The QCO cuts lead time and boosts competitiveness. Cost and waste 
reduction, production capacity, equipment adaptability, machine effi-
ciency, customer happiness, and the OEE index are QCO advantages 
(Ribeiro et al., 2022). Numerous studies on QCO implementation have 
been reported in sectors such as the foundry industry (Jit Singh and 
Khanduja, 2010), manufacturing companies (Singh et al., 2018), aero-
space industry (Amrani and Ducq, 2020), and ready-made garment in-
dustry (Toki et al., 2023), among others. 

The preparation of tools and devices for assembly and disassembly is 
one of the most significant tasks spent in a model changeover. With the 
application of 5S, these times are reduced to almost zero because 
everything that is needed is prepared in advance, is at hand, and is in 
proper operating conditions (Posada, 2007). The 5S may be used to 
categorize tools faster and prevent looking for them (Vieira et al., 2019), 
saving time while searching for model change tools, and supporting the 
QCO. Thus, we propose the following hypothesis. 

H2. 5S has a direct and positive effect on QCO 

QCO and TPM minimize lead-time and boost competitiveness, and 
their success relies on machinery diagnosis and operator competence 
(Espinoza-Huamash et al., 2022). TPM is directly related to QCO because 
it helps eliminate all forms of time loss in maintenance and tries to have 
the machines in optimal conditions. In addition, planned maintenance 
attempts to avoid stops in machines to maximize their availability. 
Therefore, QCO supports TPM in reducing idle time in machinery, pre-
venting low quality, and improving availability and delivery rates 
(Correia Pinto et al., 2020). Thus, the following theory is proposed. 

H3. TPM has a direct and positive effect on QCO 

2.4. One-piece flow (OPF) 

OPF wants employees and goods to move together. OPF pieces go 
between machines or processes without waiting for the remainder of the 
batch (Wang and Li, 2013); therefore, the goal is to manufacture the 
product parts one at a time in more organized and sequenced processes 
to avoid long queues and inventory processes. OPF reduces 
non-product-value activities by minimizing mobility (Tang et al., 2016); 
improves quality, productivity, and value-added; and decreases pro-
duction cycle time, work-in-process, and transportation (Ortega del 
Castillo, 2019). 

OPF has been applied in different sectors to improve production 
operations, such as in the automotive industry (Ioana et al., 2020), 
healthcare systems (Chadha et al., 2012), and manufacturing (Tang 
et al., 2016). However, 5S is closely related to OPF as it helps create an 
environment conducive to a smooth and uninterrupted product 

workflow (Heaton and Abdelazim, 2021). One of the critical elements of 
5S is Seiton, which consists of arranging tools, equipment, and materials 
logically and efficiently (Randhawa and Ahuja, 2017); since organizing 
the workplace, unnecessary movement and transportation can be 
minimized for a more streamlined and continuous workflow. 

In addition, by eliminating waste and improving workspace utiliza-
tion, 5S can lead to more efficient and streamlined processes, resulting in 
higher productivity and cost optimization (Randhawa and Ahuja, 2017). 
In addition, 5S aims to minimize movement and transportation, result-
ing in a more efficient and organized work environment (Putri et al., 
2022). Thus, we propose the following hypothesis. 

H4. 5S has a direct and positive effect on OPF 

Implementing a continuous flow system in production processes 
aims to reduce waiting time, equipment stoppages, and process defects 
by eliminating waste and standardizing sequences. By improving the 
equipment, procedures, and workers, TPM eliminates machine failures, 
minor machine stoppages, and production errors (Heravi et al., 2021). 
By implementing the TPM, the six significant losses related to failures, 
setups and adjustments, speed losses and minor stoppages, process de-
fects, and yield losses can be eliminated; consequently, the continuous 
flow of parts is hindered (Chand and Shirvani, 2000). 

TPM pillars, such as autonomous maintenance, can reveal latent 
problems that cause failures and dust and grime that impede continuous 
flow (Alarcón Bernal et al., 2014). In conclusion, the TPM is necessary 
for optimal production flow, and the following hypothesis is proposed. 

H5. TPM has a direct and positive effect on OPF 

Waiting times are wasteful during a model change and generate 
waste when setting the correct parameters to produce the first good part. 
These waiting times hinder and slow down the continuous flow of pro-
cesses, and reducing the model COT facilitates the flow of a single part 
(De Vries and Van der Poll, 2018). By reducing times, smaller batches 
can be produced more frequently, giving flexibility and agility; OPF 
moves a single product through each phase of the process in the quickest 
feasible time rather than dividing work items into batches to send 
products to the market and offer value to consumers more regularly 
(Peron et al., 2021). In that sense, reducing the model COT allows for 
continuous product flow without lengthy lead times and, more impor-
tantly, without loss of throughput (Antosz and Pacana, 2018). There-
fore, we propose the following hypothesis. 

H6. QCO has a direct and positive effect on OPF 

2.5. Social sustainability (SOS) 

Langhelle (1999) called SOS the “ethical code of behavior for human 
survival and progress to be realized in a mutually inclusive and sensible 
manner." SOS prioritizes population welfare, equity, public awareness 
and cohesiveness, and local labor and enterprise use (Olawumi and 
Chan, 2018). SOS outcomes “are the products and processes that 
determine human health and safety well-being under proactive supply 
chain initiatives" (Husgafvel et al., 2015). 

By reducing COT and increasing OEE, organizations can achieve 
higher levels of productivity, which can positively impact employees by 
reducing stress and increasing job satisfaction (Bevilacqua et al., 2015). 
QCO contributes to improving companies’ competitiveness and 
long-term viability, which can result in job security and economic sta-
bility of employees (Emamisaleh and Taimouri, 2021). The QCO fosters 
SOS by promoting innovation, addressing societal challenges, stream-
lining processes, and reducing waste, allowing organizations to focus on 
sustainable practices (Emamisaleh and Taimouri, 2021). 

Adapting to client expectations can help SOS fulfill evolving 
customer and societal needs (Eldardiry et al., 2021). In this sense, QCO 
contributes to SOS by improving working conditions, promoting job 
security, fostering innovation, and addressing social challenges, and the 
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following hypothesis is proposed. 

H7. QCO has a direct and positive effect on SOS 

OPF reduces the risk of fatigue and injury to workers by eliminating 
the need for excessive manual handling and heavy lifting (Ghaithan 
et al., 2023). In addition, reducing waste and optimizing workflow leads 
to a cleaner and safer work environment, minimizing exposure to haz-
ardous materials, and reducing the risk of accidents (Papetti et al., 
2020). OPF improves worker well-being and satisfaction, performance 
and productivity, and supply chain management practices (Papetti et al., 
2020), contributing to SOS by creating a more equitable and inclusive 
manufacturing industry. Thus, the following hypothesis is proposed. 

H8. OPF has a direct and positive effect on SOS 

Fig. 1 shows the hypotheses described above and the proposed 
model. 

3. Methodology 

This section describes every step of this study, and Fig. 2 summarizes 
the steps developed in two stages. 

3.1. Stage 1. structural equation modeling (SEM) 

The SEM technique was used to validate the relationships between 
the variables in Fig. 1 because it allows the analysis of complex re-
lationships, enabling direct and indirect relationships to be quantified. 
This is particularly useful when traditional regression methods based 
solely on observed data are ineffective (Takele et al., 2023). In addition, 
SEM is useful for discovering heterogeneous groups and analyzing 
complex interactions in a system (Kiefer et al., 2022). In addition, SEM 
has been used to relate LM tools and their interdependence (J.R. Día-
z-Reza et al., 2022a, b) and to quantify the effect of Six Sigma on 
operational capability (Muraliraj et al., 2020). However, SEM requires 
information to validate the hypotheses, and the following activities were 
developed. 

3.1.1. Step 1. development and application of the questionnaire 
A questionnaire was developed through literature review to collect 

information about the reported LM practices and sustainability benefits. 
In this study, the items that integrated the LVs were 5S (Attri et al., 
2017), TPM (García Alcaraz et al., 2022), QCO (Díaz-Reza et al., 2016), 
OPF (Wang and Li, 2013), and SOS (García Alcaraz et al., 2022; ul Haq 
and Boz, 2020). This literature review generated the first draft of the 
questionnaire and represents a rational validation (García-Alcaraz et al., 
2022). 

Some items integrated into the LVs came from studies conducted in 
other regions and different industrial environments, so the question-
naire underwent a judge validation process to adapt it to the MMI 
environment. Five academics and five managers specialized in LM and 
SOS issues from MMI and regional universities were asked to evaluate 
whether they met the quality criteria according to Hernández-Nieto 
(2002), focusing on relevance, conceptual clarity, wording and termi-
nology, appropriate distracters difficulty, and cognitive levels. 

The questionnaire consists of 207 activities divided into 35 LMTs and 
27 benefits divided into SOS, ENS, and ECS; however, this study reports 
only four LMTs (5S, TPM, OPF, and QCO) and SOS were used. The 
questionnaire had three sections: the first section referred to de-
mographic information; the second section listed the LMT and divided 
them into quality, production, planning, control, and material flow 
tools. The third section addresses the ECS, ENS, and SOS benefits. The 
questionnaire was uploaded to Google Forms and a link was generated to 
access it. It was answered using a five-point Likert scale, where five 
means strongly agree that the activity is performed, and one means 
strongly disagree that the activity is performed. The complete ques-
tionnaire appears as supplementary material. 

The Manufacturing, Maquiladora, and Export Services Industry 
Program were used to identify regional companies implementing LM. 
The sample consisted of managers, engineers, technicians, supervisors, 
and operators, all with previous LM implementation experience. Initial 
contact was made via email, in which each potential participant was 
invited to participate, and a link to the questionnaire was provided. A 
second email was sent if no response was received within the 12 days. 
The application and data collection period was from January 15 to April 
15, 2023. The final questionnaire was attached as supplementary ma-
terial to ensure transparency and repeatability. 

To calculate the minimum sample size when conducting this 
research, the inverse square root method is shown in equation (1) pro-
posed by Kock and Hadaya (2018). 

N̂ =

(
Z.95 + Z.80

|β|min

)2

(1)  

where. 

Z.95 is the Z-score for a confidence level of 95% from a standard 
normal distribution with a mean of 0 and a standard deviation of 1. 
|β|min is the absolute minimum path coefficient in the model and is 
obtained after the PLS-SEM evaluation. 

3.1.2. Step 2. Latent variables debugging and statistical validation 
An XLS file was downloaded from Google Form and opened in SPSS 

Fig. 1. Proposed model.  
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25® for debugging, according to  

• The standard deviation was calculated to identify non-committed 
participants. If the deviation was less than 0.5, the questionnaire 
was deleted.  

• Items were standardized to identify outliers, where values greater 
than four and less than − 4 were considered extreme values and were 
replaced by the median. 

With a debugged database, the next step was statistical validation 
using indexes that appear in Table 1 and were proposed by Kock 
(2021a). 

3.1.3. Step 3. SEM validation 
The partial least squares (PLS) approach was used to validate the 

SEM, and it was integrated into WarpPLS 8.0® software, given that it is 
recommended for small sample sizes and non-normal data distributions 
(Kock, 2021a). The PLS-SEM approach was used to find in-
terdependencies among the LM tools (J.R. Díaz-Reza et al., 2022a, b) 

and the effects of LM and economic sustainability (José Roberto Día-
z-Reza et al., 2022). In this study, the PLS-SEM approach was used to 
generate dependence equations for the variables. 

Before interpreting the results from PLS-SEM, the following model 
quality and fit indices recommended by Kock (2021b) were analyzed: 
average path coefficient (APC), average R2 and Average Adjusted 
R-squared (AARS) to measure predictive validity; average block VIF 
(AVIF) and full collinearity VIF (AFVIF) to measure collinearity; and the 
Tenenhaus GoF index (GoF) to measure data fit. PLS-SEM reports the 
direct effects, the sum of indirect and total effects, using a standardized β 
value. Every effect was tested using a hypothesis test, where H0: β =
0 and H1: β∕=0 with a confidence level of 95%. For every dependent LV, 
R2 was reported and the effect size (ES) was obtained for every effect. 

3.2. Stage 2. system dynamics (SD) 

Because SEM reports static values over time, SD is used to similarly 
determine when a manager can obtain the benefits of LM tools and an 
acceptable SOS. The coefficients generated from SEM were used to 
generate the dependency equations, and different scenarios were used 
for the simulation. SD has been used to simulate innovation problems 
efficiently (Delgado-Maciel et al., 2020), but the combination of SEM - 
SD has also been reported because of its ability to incorporate dynamism 
into the models; for example, Mohandes et al. (2022) evaluated the 
critical factors of sewer system overflow and Kara (2018) evaluated the 
quality systems in universities in developing countries. This stage 
comprises of three steps. 

3.2.1. Step 4. Map the process or system 
As a first step in Stage 2, the LVs involved in the models in Figs. 2 and 

3 were graphically represented, that is, the system components were 
identified, how they interact with each other, and how they influence 
the overall system behavior to have a visual and structured 

Fig. 2. Methodology applied to conduct the study.  

Table 1 
Validation Index to be Evaluated.  

Indexes Measurement Suggested value 

R2 Predictive parametric 
validation 

≥0.20 
Adjusted R2 

Composite Reliability Internal consistency ≥0.70 
Cronbach’s Alpha 
Average Variance Extracted 

(AVE) 
Discriminant validity ≥0.50 

Full Collinearity variance 
inflation factor (VIF) 

Collinearity ≤3.30 

Q2 Predictive non- 
parametric validity 

>0.00 and similar 
to R2  
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understanding of how the system works. This process is one of the most 
important since improvement in industry begin when all variables are 
identified (Gholami et al., 2019). 

3.2.2. Step 5. Causal loop diagram (CLD) 
CLD illustrates the cause-and-effect relationships between variables 

and helps understand the dynamic behavior of a system over time. CLDs 
consist of nodes that represent variables, and arrows indicate the causal 
relationships between variables. Positive feedback loops indicate rein-
forcing relationships, whereas negative feedback loops indicate equi-
librium relationships (Rockow et al., 2019). In these models, SEM allows 
the relationships between variables, and SD captures the dynamic 
behavior of a system over time, considering the accumulation of stocks 
and the flow of variables (Bai et al., 2016). 

Fig. 3 shows the CLD obtained from the SEM model shown in Fig. 1. 
The blue arrows represent the item loadings for each variable with a 
positive flow. The black arrows represent the hypotheses or effects be-
tween variables with a positive flow. For example, 5S positively affects 
QCO, indicating that if 5S increases, QCO also increases. Moreover, 
because the effect is positive, if 5S decreases, so does QCO. The same 
applies to TPM and OPF because 5S directly and positively affects these 
two. Observe also that TPM has a direct and positive effect on QCO and 
OPF, and QCO has a direct and positive effect on OPF, QCO, and OPF 
directly and positively affects SOS. 

3.2.3. Step 6. Scenarios simulation 
Several scenarios were created to understand how the system 

responded to different conditions and influences by manipulating its 
variables. These scenarios allowed the testing of various configurations 
and strategies to anticipate their future impact. It also facilitated the 
identification of key variables and prioritization of areas for improve-
ment or risk management. In addition, the simulation of these scenarios 
provided projections of the future evolution of the system. The scenarios 
addressed are as follows.  

• The first scenario was the simulation extension over time, that is, the 
simulation period was 13 years to observe the time at which 100% 
implementation of each variable would be achieved and at what 
point 100% social sustainability would be achieved.  

• Scenarios 2–6 were established with different initial values for each 
variable over five years.  
o Scenario 2. The initial values of 5 S, TPM, QCO, OPF, and SOS were 

set to 0.25.  
o Scenario 3. The initial values for 5 S, QCO, and SOS were set at 

0.25, and those for TPM and OPF were set at 0.5.  
o Scenario 4. The initial values of 5 S, TPM, QCO, OPF, and SOS were 

set to 0.50.  
o Scenario 5. The initial values for 5 S, QCO, and SOS were set at 

0.75 and for TPM and OPF at 0.50.  
o Scenario 6. The initial values of 5 S, TPM, QCO, OPF, and SOS were 

set to 0.75. 

4. Results 

4.1. SEM results 

4.1.1. Descriptive analysis of the sample 
The questionnaire application resulted in 428 responses, leaving 411 

valid questionnaires after the data debugging process. 79.80% of re-
spondents had over two years of experience, 46% had more than five 
years, and 21% had more than ten years. Engineers had the highest 
participation rate (38%) (Table 2). 

Table 3 illustrates the companies’ sizes and industrial sectors. The 
most participative sector was the automotive sector with 36%, followed 
by the medical sector with 17.5%. Approximately 16% of the informa-
tion came from large companies with more than 1000 workers. 

Fig. 3. Causal loop diagram.  

Table 2 
Job Position vs. Years of Experience.  

Years Job position 

Manager Engineer Supervisor Technician Other Total 

0 to <1 1 6 0 3 13 23 
1 to <2 3 22 4 15 16 60 
2 to <5 4 61 25 26 23 139 
5 to <10 17 44 21 6 15 103 
≥10 25 23 10 8 20 86 
Total 50 156 60 58 87 411  
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4.1.2. Validation of latent variables 
The LVs validation indices are listed in Table 4. There was no 

collinearity, and the variables had appropriate predictive, convergent, 
and internal validity. The normal-JB normality test and non-parametric 
predictive validity demonstrate that none of the variables are normal, 
which justifies the PLS-SEM approach. 

4.1.3. Model validation 
Table 5 indicates sufficient predictive validity because the APC, ARS, 

and AARS indices are statistically significant, there is no collinearity, 
and the data fits the proposed model well. Therefore, this model can be 
interpreted. 

4.1.4. Structural equation model 
The model evaluation using PLS-SEM in WarpPLS v.8 is shown in 

Fig. 4. The effects (β), p-value, effect size, and total R2 for the dependent 
LVs are shown. All the direct effects were statistically significant at p <
0.001. 

Table 6 shows the direct, indirect, and total effects of the initial 
model. 

SEM also analyzes reciprocal relationships, so a regression model 
was proposed, reversing the directions of the arrows (see Fig. 5), where 
the independent LV is SOS and the independent variables are OPF, QCO, 
TPM, and 5S. This regression model also shows the effect values (β), p- 
values, and R2 for each dependent LV. All hypotheses were statistically 
significant according to the p-values. 

Using the SEM analysis, the regression coefficients and weights of 
each variable’s indicators were obtained, as shown in Table 6. The 
regression coefficients represent the direct effect sizes and the weights 
represent the contribution of each item or indicator to its respective 
variables. 

4.2. SD results 

4.2.1. Development of the SD model 
Fig. 6 illustrates the feedback CLD, which integrates the SEM of 

Figs. 4 and 5. Five feedback loops existed (B1, B2, B3, B4, and B5). Each 
of these tools aims to achieve 100% implementation through the 
development of its activities. Therefore, a variable (Desired Level) was 
added to measure the percentage of implementation over time. Like-
wise, two variables were added: one that measures the Gap to reach 

100% implementation, and the adjustments that must be made to reach 
the desired level. 

The same process was followed for each tool, differentiated only by 
the influence of certain variables. Meanwhile, for the SOS, the influence 
comes from QCO and OPF. For QCO, the influence comes from 5 S, TPM, 
SOC, and OPF. OPF, TPM, and QCO influence the 5S. The TPM is affected 
by 5S, QCO, and OPF. Finally, the OPF is influenced by 5S, TPM, and SOS. 
This means that there is feedback from each variable on the other var-
iables. In this sense, if the level of development of each tool’s activities is 
0, the Gap will be 100, and the adjustments that must be made to reduce 
this Gap will be significant. However, if there is already a level of 
implementation in these companies, for example, 30%, the Gap will be 
70% and the adjustments to be made will be minor. 

4.2.2. Equations 
Once the causal loop model was defined, a mathematical represen-

tation of the model was created, including the equations that describe 
the relationships between the variables. The proposed equations are as 
follows: 

5S is the LV that analyzes the activities performed to implement this 
methodology and is defined by: 

FSt =FSt=0 +

∫ t

0
(AFS) dt (1)  

where.  

• A: represents the adjustment in activities.  
• G: represents the difference between the desired and implemented 

levels.  
• w: represents the weights of the indicators for each LV. 

A5S represents the adjustment made to the activities in 5S imple-
mentation. This is the result of the sum of the product of each regression 
coefficient (RC) of OPF, QCO, and TPM multiplied by the weights of the 5S 
indicators (w), that is, 5S1, 5S2, 5S3, 5S4, 5S5, and 5S6. 

G5S represents the difference (Gap) between the desired level of 5S 
implementation and the level implemented at a particular instant in 
time. 

The equations for the four LVs were set up similarly. 

Table 3 
Company size vs. Industrial sector.  

Company Size aIndustrial Sector Total 

1 2 3 4 5 6 7 8 9 10 

<50 1 0 0 1 2 3 1 0 1 18 27 
50 to <300 8 1 4 4 3 3 8 1 0 14 46 
300 to <1000 29 1 3 13 6 3 10 4 1 19 89 
1000 to <5000 70 2 7 23 3 3 21 3 1 14 147 
5000 to <10,000 18 0 2 9 0 0 20 0 0 5 54 
>10,000 22 1 0 6 1 1 12 0 0 5 48 
Total 148 5 16 56 15 13 72 8 3 75 411  

a 1-Automotive; 2-Aeronautics; 3-Electric; 4-Electronics; 5-Logistics; 6-Machining; 7-Medical; 8-Rubber and Plastics; 9-Textile and Clothing; 10–Other. 

Table 4 
LV validation.   

5 S TPM QCO OPF SOS 

R2  0.397 0.571 0.521 0.344 
Adj. R2  0.396 0.569 0.517 0.341 
Composite Reliability 0.964 0.957 0.952 0.930 0.956 
Cronbach’s Alpha 0.955 0.948 0.936 0.906 0.947 
Avg. var. Extrac. (AVE) 0.816 0.762 0.798 0.727 0.758 
Full. Collin. VIF 2.404 2.190 2.518 2.081 1.628 
Q2  0.399 0.572 0.522 0.346 
Normal - JB No  

Table 5 
Model fit and quality indexes.  

Index and criteria Value p-value Best if 

Average Path Coefficient (APC) 0.397 p < 0.001 p < 0.05 
Average R-Squared (ARS) 0.458 p < 0.001 
Average Adjusted R-Squared (AARS) 0.456 p < 0.001 
Average block VIF 1.865  ≤3.3 
Average full Collinearity VIF 2.164  
Tenenhaus GoF 0.595  ≥0.36  
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A5S=G5S

[

(RCOPF→5S ∗ OPF) ∗
∑6

i=1
w5Si +(RCQCO→5S ∗ QCO)

∗
∑6

i=1
w5Si +(RCTPM→5S ∗ TPM) ∗

∑6

i=1
w5Si

]

(2) 

Equations (3) and (4) correspond to the TPM variables and are as 
follows: 

TPMt =TPMt=0 +

∫ t

0
(ATPM) dt (3)  

ATPM =GTPM

[

(RC5S→TPM ∗ 5S) ∗
∑7

J=1
wTPMj +(RCOPF→TPM ∗ OPF)

∗
∑7

J=1
wTPMj +(RCQCO→TPM ∗ QCO) ∗

∑7

J=1
wTPMj

]

(4) 

Equations (5) and (6) describe the behavior of the QCO variable: 

QCOt =QCOt=0 +

∫ t

0
(AQCO) dt (5)  

AQCO=GQCO

[

(RC5S→QCO ∗ 5S) ∗
∑5

k=1
wQCOk +(RCSOS→QCO ∗ SOS)

∗
∑5

k=1
wQCOk +(RCOPF→QCO ∗ OPF) ∗

∑5

k=1
wQCOk

]

+ (RCTPM→QCO

∗ TPM) ∗
∑5

k=1
wQCOk (6) 

Equations (7) and (8) describe the behavior of the OPF variable. 

OPFt =OPFt=0 +

∫ t

0
(AOPF) dt (7)  

Fig. 4. Initial model evaluated.  

Table 6 
Regression coefficients and indicator weights.  

Relation Regression 
Coefficient 

Indicators Weights 
(w) 

Indicators Weights 
(w) 

a5S → 
TPM 

0.630 5S1 → 5S 0.184 OPF2 → 
OPF 

0.229 

a5S → 
QCO 

0.445 5S2 → 5S 0.180 OPF3 → 
OPF 

0.240 

a5S → OPF 0.304 5S3 → 5S 0.186 OPF4 → 
OPF 

0.239 

aTPM → 
QCO 

0.393 5S4 → 5S 0.182 OPF5 → 
OPF 

0.244 

aTPM → 
OPF 

0.211 5S5 → 5S 0.187 OPF6 → 
OPF 

0.220 

aQCO → 
OPF 

0.303 5S6 → 5S 0.187 SOS1 → 
SOS 

0.166 

aQCO → 
SOS 

0.349 TPM1 → 
TPM 

0.164 SOS2 → 
SOS 

0.162 

aOPF → 
SOS 

0.299 TPM2 → 
TPM 

0.165 SOS3 → 
SOS 

0.168 

bSOS → 
QCO 

0.266 TPM3 → 
TPM 

0.158 SOS6 → 
SOS 

0.160 

bSOS → 
OPF 

0.500 TPM4 → 
TPM 

0.163 SOS7 → 
SOS 

0.169 

bOPF → 
QCO 

0.523 TPM5 → 
TPM 

0.162 SOS8 → 
SOS 

0.159 

bOPF → 
TPM 

0.282 TPM6 → 
TPM 

0.165 SOS9 → 
SOS 

0.163 

bOPF → 5S 0.274 TPM7 → 
TPM 

0.168   

bQCO → 
TPM 

0.485 QCO3 → 
QCO 

0.217   

bQCO → 
5S 

0.366 QCO4 → 
QCO 

0.222   

bTPM → 
5S 

0.299 QCO5 
→QCO 

0.227     

QCO6 → 
QCO 

0.225     

QCO7 → 
QCO 

0.228    

a Direct effects of Initial model Evaluated. 
b Direct effects of Evaluated Feedback Model. 
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Fig. 5. Evaluated feedback model.  

Fig. 6. Causal feedback loop diagram.  
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AOPF=GOPF

[

(RC5S→OPF ∗ 5S) ∗
∑5

l=1
+(RCTPM→OPF ∗ TPM)

∗
∑5

l=1
wOPFl +(RCSOS→OPF ∗ SOS) ∗

∑5

l=1
wOPFl +(RCQCO→OPF ∗ QCO)

∗
∑5

l=1
wOPFl

]

(8) 

Equations (9) and (10) describe the behavior of the SOS variables. 

SOS=SUPt=0 +

∫ t

0
(ASOS) dt (9)  

ASOS=GSOS

[

(RCQCO→SOS ∗ QCO) ∗
∑7

m=1
wSOSm +(RCOPF→SOS ∗ SOS)

∗
∑7

m=1
wSOSm

]

(10)  

4.2.3. Initial parameters 
The next step was to perform the simulation model using STELLA 

ARCHITECT® V3.3 software. In Fig. 7, the water tanks represent the 
adjustments to be made in the activities of each tool fed by the weights 
of the indicators, gaps, and desired level for each LV. All of these are 
auxiliary variables because the water tank is fed by other LVs that 
directly affect them. 

To run the simulation, initial parameters were established to estab-
lish a starting scenario, simulate the time at which the desired level of 
implementation would be reached, and analyze the system’s behavior 
under different conditions. The simulation was carried out for five years 
because most of the participating companies are large, and the imple-
mentation time of tools such as TPM is not a short-term project and 
requires continuous improvement and maintenance until it becomes an 
integral part of the culture of the company’s operations. 

An initial value of 0.1 was established for each LV, meaning that the 
companies already have 10% implementation of each tool. The aim was 
to investigate the time at which this level of implementation is 1 or 

100%. Therefore, different initial values (between 0 and 1) can be 
established to determine the behavior in these scenarios. Thus, 0 repre-
sents zero implementation in the development of the activities and 1 
indicates that 100% has been achieved. 

4.2.4. Evaluation of the simulation model 
Fig. 8 shows the simulation with initial values of 0.1 (10% imple-

mentation) for each LV. The feedback loops generated between the LV 
are shown. The positive (red arrow) and negative (blue arrow) flows are 
shown. Regarding positive influences, the Gap for each variable directly 
influences the water tanks, that is, the LV. If this Gap increases, the 
adjustments should increase. In the case of negative influence, if the 
level of implementation increases, the Gap decreases, that is, the higher 
the level of implementation, the lower the desired level. Click here to 
observe the simulation’s behavior for each scenario: https://exchange. 
iseesystems.com/public/jose-roberto-diaz-reza/diaz-reza-et-al/index. 
html#page1. 

Fig. 9 shows the companies’ SOS progress over five years. This il-
lustrates that in five years, only 89.4% of SOS will have been achieved 
when it was initially simulated and counted as 10% of the scope. 

Fig. 10 illustrates that 5S has reached 100% over the five years, TPM 
at 99.7, QCO at 99.8, and OPF at 99.2%, which makes them practically 
one step away from the desired level of 100% implementation. 

Fig. 11 illustrates the period in which the desired level is reached for 
each tool. Fig. 11 a shows that the first variable to reach the desired level 
of 100% will be 5S in 4.5 years, followed by QCO in 5.75 years 
(Fig. 11b), TPM at 6 years (Fig. 11c), OPF at 6.5 years (Fig. 11d) and, 
finally, SOS in a time of 11.75 years (Fig. 11e). 

4.3. Scenarios evaluation 

Fig. 12 shows the simulation results for each proposed scenario. The 
initial values of the variables range from 0.25 to 0.75. It was observed 
that the different initial values of the LM and SOS variables significantly 
affected the time required to reach the desired levels of implementation. 
In general, a higher initial value for LM tools leads to a faster imple-
mentation of these tools and, consequently, to faster achievement of SOS 
objectives. The scenario with lower initial values for all the LM and SOS 
tools (Fig. 12a) demonstrates that even if starting with lower 

Fig. 7. Simulation model made in STELLA ARCHITECT® Software.  
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implementations, an equitable strategy for improving all tools can lead 
to steady and significant progress toward SOS objectives in a relatively 
short period. In contrast, when specific LM tools had higher initial values 
than others (Fig. 12b, 12c, and 12d), it is observed that these tools reach 
the desired levels earlier, but progress toward SOS objectives is slower. 
This suggests that an unbalanced approach to implementing LM tools 
may affect the overall improvement in organizational and social 

sustainability. 

5. Discussion of results 

5.1. From the structural equation model 

Regarding SEM, eight statistically validated hypotheses were 

Fig. 8. Simulated model.  

Fig. 9. Level of implementation of SOS.  
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evaluated, where 5S was the independent variable, TPM, QCO, and OPF 
were mediating variables, and SOS was the dependent variable. All re-
lationships were statistically significant between 5S and TPM with β =
0.630 for H1 and explained 39.7% of it. This finding demonstrates that 
5S is the first step in TPM implementation (Randhawa and Ahuja, 2017) 
and that is why managers should focus on having clean, safe, and 
standardized workplaces before implementing it to reduce accidents, 
inefficiencies, idle time in machines, and increase quality with cali-
brated machines (Kumar et al., 2018). 

5S directly affects QCO (H2) and OPF (H4), with β = 0.445 and β =
0.304, explaining 30.7% and 19.6% of its variability, respectively. This 
indicates the importance of organization, cleanliness, and hygiene 
within the workplace before implementing a product change and 
improving production flow. This indicates that 5S helps reduce tool 
search time during changeover, improving efficiency and productivity, 
and increasing the OEE index, reducing accident risk and stress on 
workers when performing fast-paced (José Roberto Díaz-Reza et al., 
2022). 

In addition, TPM directly affects QCO (H3) with β = 0.393, explaining 
26.4% of the variability, and OPF with β = 0.211 (H5), explaining 12.7% 
of the variability. These results indicate that TPM reduces the number of 
setups, equipment downtime, breakdowns, accidents, and maintenance 
costs, while increasing equipment productivity and operating efficiency 
(Ondra, 2022). However, TPM also supports machinery availability, 
increasing OPF mainly because of high OEE and machinery reliability, 
which facilitates on-time deliveries and customer satisfaction (Vital and 
Lima, 2020). 

The findings indicate that QCO positively influenced OPF with β =
0.303 (H6) and SOS with β = 0.349 (H7), explaining 19.8% and 18.8% of 
its variability, respectively. This indicates that QCO increases flexibility, 
improves efficiency, yields a higher throughput, enables shorter pro-
duction runs, responds faster to demand, and increases productivity 
(Haddad et al., 2021). However, it also generates job satisfaction, 
improved safety, enhanced skill development, and reduced physical 

strain, allowing employees to spend less time on non-value-added ac-
tivities and leading to higher job satisfaction (Garcia-Garcia et al., 
2022). 

Finally, OPF positively influenced SOS with β = 0.299 (H8), 
explaining 15.6% of its variability. Maintaining a continuous flow 
within the production processes will improve working conditions, work 
safety, and employee health, and reduce work pressure. This agrees with 
Vaddula et al. (2015), who concluded that continuous flow can improve 
worker safety by reducing manual handling and exposure to hazards, 
and promoting work balance, which increases job satisfaction. 

Although they were not added as hypotheses, it is important to 
discuss some indirect effects, where the most important are the re-
lationships that 5S has on SOS, QCO, and OPF, which have values of β =
0.435, β = 0.248, and β = 0.342, respectively, all of which are statisti-
cally significant. These findings indicate the importance of having 
selected and ordered tools to be used with proper cleanliness and 
discipline in the workplace, as this facilitates the achievement of other 
objectives associated with the continuous flow of production lines, rapid 
changes, and the well-being of workers. 

Other significant indirect effects are those of TPM on SOS and OPF, 
with β = 0.236 and β = 0.119, respectively, and both are statistically 
significant. This indicates the importance of mediating variables such as 
QCO in facilitating OPF in production lines and QCO and OPF in facil-
itating SOS. That is, TPM facilitates flow in the production system 
through rapid changes, and at the same time, this impacts the welfare of 
workers, their safety, and job satisfaction. 

5.2. From the system dynamics model 

Fig. 11 a shows that the first variable to reach the desired level of 
100% will be 5S in 4.5 years, followed by QCO in 5.75 years (Fig. 11b), 
TPM in 6 years (Fig. 11c), OPF in 6.5 years (Fig. 11d) and, finally, SOSin 
a time of 11.75 years (Fig. 11e). With the initial values for all LVs at 0.25 
in Scenario 2 (Fig. 12 a), that is, a 25% implementation for each LM tool 

Fig. 10. Percentage achieved by variable over five years.  
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and a 25% achievement in SOS. It is observed that, after five years, 5S 
will reach the desired level of 100%, and practically, TPM and QCO will 
reach it simultaneously since both have 99.9% and OPF will have 
reached 99.8%, while SOS will achieve only 94% in 5 years. 

From Fig. 12 b for Scenario 3, the initial values for 5S, QCO, and SOS 
were set to 0.25 and TPM and OPF were set to 0.5. The simulation 
showed that 5S and QCO reached the desired level, while TPM and OPF 
reached 99.9%, and SOS reached 95.1%. Scenario 4 (Fig. 12c) sets the 
initial values of all the variables at 0.5.5S, TPM, and QCO reached the 
desired levels, while OPF was 99.9% and SOS was 97.3%. Fig. 12 d for 

Scenario 5 sets the initial 5S, QCO, and SOS values at 0.75 and the TPM 
and OPF at 0.5. The simulation yielded the desired levels of 100% for 5S, 
TPM, QCO, and OPF and 98.8% for SOS. Finally, for Scenario 6, initial 
values of 0.75 (Fig. 12e) were established for each variable, yielding 
values of 100% for 5S, TPM, QCO, and OPF and 98.9% for SOS. 

6. Conclusions 

The analysis of 411 responses to a questionnaire using a structural 
equation model, in which the effects of 5 S, TPM, OPF, QCO, and SOS 

Fig. 11. Time to reach the desired level of implementation.  
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Fig. 12. Initial values for every scenario.  
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were analyzed, concluded that all of them were interrelated. Based on 
the magnitude of the direct effects, the results indicate that the 5 S tool is 
vital for TPM and QCO, because it is the highest in the model, indicating 
the relevance of having clean, orderly, standardized, and disciplined 
workplaces. This, in turn, allows for quick machine changeovers, mini-
mizing downtime and facilitating the continuous flow of raw materials 
and products through production lines. 

This indicates that implementing 5 S, TPM, OPF, and QCO can in-
crease productivity and companies’ social sustainability. Therefore, 
managers should focus on improving workplace conditions to facilitate 
the implementation of TPM and quick changeovers that provide safety 
for workers, increase hygienic conditions, and improve the social sus-
tainability of the company. However, it is essential to mention that it is 
important to invest in training and development to improve employees’ 
skills to create a culture that values efficiency, continuous improvement, 
and social responsibility within the company. 

Regarding the SD presented, it is crucial to interpret with caution the 
initial projections of 100% implementation of SOS in 11.75 years, as 
these timelines are subject to change due to the changing dynamics of 
business environments, such as new worker satisfaction and techno-
logical advances. In addition, achieving the optimal value of 100% may 
be challenging for companies, which may be satisfied with a lower value 
depending on the needs of their environment. In other words, these 
estimates should be indicative targets and may be adjusted because of 
the possible unforeseen changes in the business environment. Therefore, 
the successful implementation of 5S, OPF, TPM, and QCO and gaining 
SOS will require flexibility, adaptability, and an understanding of the 
interdependence between different management tools. 

Finally, this study contributes to a better understanding of how LM 
tools can directly affect SOS issues in an industrial context, serving as an 
example of how to integrate methodologies such as SEM and SD to 
address complex industrial and sustainability problems. We hope that 
the implications of these findings may be valuable for practitioners and 
managers in the industry, as they offer insights into how LM method-
ologies influence SOS and provide guidance for decision-making to 
improve business practices and policies related to sustainability. 

Limitations 

LM integrates many tools for optimizing industrial processes; how-
ever, in this study, only four tools were related to SOS to create a more 
understandable model, which is a limitation because other LM tools 
must be analyzed. Additionally, data used to validate the SEM in this 
study were obtained from the MMI established by Ciudad Juarez 
(Mexico). Their particular characteristics, such as socioeconomic envi-
ronment, labor culture, and relationship with the local community, can 
influence our findings. They may not be generalizable to other regions or 
countries in different contexts. 

Future work 

Future research will include ES and ECS and analyze the effects of 
these tools in generating sustainability. We will extend the research to 
other locations with significant maquiladora companies to compare and 
contrast the findings. This would allow us to evaluate whether the re-
sults obtained in Ciudad Juarez are consistent in other contexts or if 
there are significant differences. These strategies could focus on training 
programs, social responsibility policies, and improvements in working 
conditions, among other aspects. 
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