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Abstract: In this work, bismuth sulfide (Bi2S3) thin films were deposited by a chemical bath depo-
sition (CBD) technique (called soft chemistry), while titanium dioxide (TiO2) nanoparticles were
synthesized by sol–gel and zinc oxide (ZnO) nanoparticles were extracted from alkaline batteries.
The resulting nanoparticles were then deposited on the Bi2S3 thin films by spin coating at 1000 rpm
for 60 s each layer to create heterojunctions of Bi2S3/ZnO and Bi2S3/TiO2. These materials were
characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disper-
sive X-ray spectroscopy (EDX). The optical and contact angle analyses were undertaken by UV–Vis
spectroscopy and a contact microscopy angle meter, respectively. The calculated band gap values
were found to be between 1.9 eV and 2.45 eV. The Bi2S3 presented an orthorhombic structure, the
TiO2 nanoparticles presented an anatase structure, and the ZnO nanoparticles presented a wurtzite
hexagonal crystal structure. Furthermore, heterogeneous solar photocatalysis was performed using
the Bi2S3, Bi2S3/ZnO, and Bi2S3/TiO2 thin film combinations, which resulted in the degradation of
Congo red increasing from 8.89% to 30.80% after a 30 min exposure to sunlight.

Keywords: heterogeneous solar photocatalysis; Congo red; bismuth sulfide; semiconductor oxides;
thin films

1. Introduction

Nowadays, water pollution has become a global problem due to the growth and
development of modern industry [1]. Municipal and industrial wastewater is estimated
to be about 2212 km3 in volume. The 2017 United Nations World Water Development
Report estimates that 80% of all wastewater generated by industry is discharged into the
environment without prior treatment [2]. These wastewater streams contain persistent
organic pollutants; organic dyes; and heavy metals, such as cobalt, copper, iron, and
mercury [3].

The textile industry is one of the largest dischargers of wastewater containing or-
ganic dyes, where it releases approximately 150 billion liters of untreated wastewater into
aquifers [4,5]. In these 150 billion liters of wastewater, more than 70,000 to 100,000 tons
(10% to 15% of the total organic dye wastewater discharges) of various organic dyes may
be dissolved [6]. These, in turn, are filtered into the aquifers, which affect the environment
with a darker appearance of the water, and thus, prevent the passage of sunlight and cause
a reduction in oxygen in the aquatic environment [7].

There are more than 10,000 different organic dyes in various applications [8], which
are classified into natural and synthetic dyes, with the latter being divided into three
categories: anionic dyes, cationic dyes, and nonionic dyes [9]. They are also classified by
their chemical structures into azo dyes, anionic dyes, and indigo dyes, all of which share a
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complex aromatic structure that makes them recalcitrant to the environment [10,11]. More
than 60% of these dyes are aromatic azo compounds [12]. Some of these dyes are: Aniline
Blue, Alcian Blue, Basic Fuchsin, Methylene Blue, Methyl Orange, Crystal Violet, Toluidine
Blue, and Congo Red [13].

Congo red dye, which is an anionic diazo chromophore dye based on benzidine [14], is
one of the most commonly used model dyes. It is a stable and non-biodegradable pollutant
with a complex aromatic structure (see Figure 1), which makes it soluble and difficult to
remove from water [15]. This dye may cause cancer, eye and skin irritation, central nervous
system damage, liver damage, and drowsiness when humans are exposed to it [16].
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To degrade organic dyes, scientists have turned to heterogeneous photocatalysis as an
emerging technology that employs the advanced oxidation process (POA). This process
begins with the irradiation of a solid semiconductor material, which becomes excited, thus
creating electron/hole pairs [17]. It comprises four steps for the mineralization of these
organic pigments: 1—absorption of light followed by the separation of the electron/hole
pair, 2—adsorption of the reagents, 3—redox reaction, and 4—desorption of the prod-
ucts [18]. This technology is advantageous due to its high efficiency, low operating cost,
operation at ambient pressure and temperature, a requirement of no chemical additives,
and environmentally friendly and non-toxic nature [19–22].

To effectively conduct heterogeneous photocatalysis on any organic pollutant, it is
necessary to utilize solid semiconductors, such as metal oxides and chalcogenides as
interfaces [22].

In recent years, sensitive photocatalysts, such as CuS, CdS, PbS, and Bi2S3, which
are excited in the visible region with a narrow bandgap energy, have been employed to
complement the more common semiconductors, like ZnO and TiO2, which are activated
in the ultraviolet region [23,24]. By combining these materials, various contaminants or
organic dyes, such as methyl orange, rhodamine B, methylene blue, and Congo red, can be
almost completely degraded [25–27].

Oxide semiconductors, such as TiO2, produce an excellent photocatalyst oxidative
decomposition of organic pollution under ultraviolet irradiation [27]; with a band gap
energy of 3.2 eV in the anatase phase [22], this material has excellent properties, such as
low cost, non-toxicity, stability chemical, and being environmentally friendly [28,29]. On
the other hand, ZnO has a band gap energy of 3.3 eV [29].

Some researchers used Bi2S3 in different forms as an interface to degrade any pol-
lutants dissolved in water. For example, Zhao [30] used Bi2S3 microspheres to degrade
methyl orange (MO) at a concentration of 25 mg/L in an aqueous solution, where the
experimentation consisted of irradiation with a 500 W high pressure mercury lamp using
the photochemical reaction apparatus. This resulted in the degradation of MO by Bi2S3
microspheres up to 20% after 30 min.

Balachandran [31] complemented Bi2S3 with ZnO by forming a Bi2S3-ZnO nanosheet
heterostructure, where this material was irradiated using four parallel medium-pressure
mercury lamps that emitted a wavelength of 365 nm to degrade a concentration of 180 mg/L
of AB (Acid Black); 200 mg of Bi2S3-ZnO nanosheets was placed in a reaction tube and
irradiated at 365 nm to obtain 44% degradation after 30 min.
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On the other hand, Bessekhouad [32] proposed complementing the Bi2S3 efficiency
with TiO2. For the photocatalytic degradation of an organic pollutant (Orange II), the solar
box ATLAS Suntest CPS was used to simulate natural radiation, where 100 mL of 10 ppm
of Orange II was mixed with 50 mg of Bi2S3-TiO2, and after 30 min, the photocatalytic
degradation of Orange II with Bi2S3-TiO2 resulted in up to 60% removal of the pollutant.
They proposed Bi2S3 as a thin film, where this nanomaterial can be used as an interface to
form radicals (•OH−) to degrade Congo Red (CR). The advantage of this photocatalytic
experiment is that the Sun was used as a source to irradiate the CR solution, where 30 min
of Sun irradiation achieved up to 30.81% degradation of the CR.

For this research, metal oxide semiconductors, such as titanium dioxide (TiO2) and
zinc oxide (ZnO) were utilized in nanoparticles. Both are inorganic n-type semiconduc-
tors that absorb electromagnetic radiation in the ultraviolet region (UV, >400 nm) [33,34].
Additionally, metallic sulfide (Bi2S3) was employed, which is an anisotropic n-type semi-
conductor due to its physical properties [35]. This material is activated in the visible region
(from 400 nm to 750 nm) of the electromagnetic spectrum, with a bandgap of 1.7 eV [36].
The advantage of the heterostructure is that it presents a greater efficiency when carrying
out the advanced oxidation process or degradation of any contaminant [37]. Three different
materials were synthesized using these materials: Bi2S3 thin films, Bi2S3 thin films coated
with TiO2 or ZnO nanoparticles, and Bi2S3/TiO2 or Bi2S3/ZnO thin films.

Bi2S3 thin films were synthesized using chemical bath deposition, while TiO2 was
obtained using a sol–gel process assisted by a microwave and ZnO nanoparticles were
extracted from alkaline batteries. These materials served as interfaces for heterogeneous
solar photocatalysis, which allowed for the utilization of UV–visible regions of up to 55%
of the solar radiation [38]. The resulting material’s photocatalytic activity was tested by
degrading Congo red dissolved in deionized water at an initial concentration of 20 ppm,
which demonstrated a reduction in this model organic pollutant.

2. Results and Discussion
2.1. Characterization of Bi2S3 Thin Films Deposited with Two and Three Layers
2.1.1. Morphology of Bi2S3 Thin Films

The morphologies of the Bi2S3 thin films that consisted of two and three layers
(Figure 2) resembled spherical shapes of entangled sea urchins, which were referred to as
such by some authors [39], while others described them as flower-shaped microspheres [30].
In Figure 2B, crystal growth was observed compared with Figure 2A due to the third layer
of the chemical bath. The methodology followed by Carrillo and collaborators [39] was
entirely reproducible and resulted in the same morphology.
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Figure 2. SEM micrographs for Bi2S3 thin films with (A) two layers and (B) three layers deposited.
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2.1.2. X-ray Diffraction of Bi2S3 Thin Films

Figure 3 displays various diffraction patterns, where the characteristic peak of the
Bi2S3 thin films appears on the crystallographic plane (2 2 1), which corresponds to the
orthorhombic structure. This structure aligns with the reference codes 00-017-0320 and
01-089-8965 of the X’Pert HighScore Plus calculation program, which is consistent with
previously reported results [36,39–41]. Figure 3 shows that the three-layer Bi2S3 thin-film
peaks were more intense due to the increased number of chemical bath depositions, which
led to an increase in the crystal size from 19.4 nm to 22 nm.

Catalysts 2024, 14, x FOR PEER REVIEW 4 of 22 
 

 

  
(A) (B) 

Figure 2. SEM micrographs for Bi2S3 thin films with (A) two layers and (B) three layers deposited. 

2.1.2. X-Ray Diffraction of Bi2S3 Thin Films 
Figure 3 displays various diffraction patterns, where the characteristic peak of the 

Bi2S3 thin films appears on the crystallographic plane (2 2 1), which corresponds to the 
orthorhombic structure. This structure aligns with the reference codes 00-017-0320 and 01-
089-8965 of the X’Pert HighScore Plus calculation program, which is consistent with pre-
viously reported results [36,39–41]. Figure 3 shows that the three-layer Bi2S3 thin-film 
peaks were more intense due to the increased number of chemical bath depositions, which 
led to an increase in the crystal size from 19.4 nm to 22 nm. 

 
Figure 3. Diffractogram for Bi2S3 thin films deposited with two layers (2 Bi2S3) and three layers (3 
Bi2S3). 

  

20 30 40 50 60 70 80 90

561061

501

221

211

130

230
130

561061

In
te

ns
ity

 (a
.u

.)

2θ (Degrees)

 2 Bi2S3

 3 Bi2S3

310

221

501

Figure 3. Diffractogram for Bi2S3 thin films deposited with two layers (2 Bi2S3) and three layers
(3 Bi2S3).

2.1.3. Optical Characterization

The absorption spectra in Figure 4 show a shift to the right (red shift) as the number of
layers increased from two to three. Also, in the range of 750 nm to 550 nm, the absorption in
the two different layers showed a higher value, which indicates the possibility of excitation
in the visible range. Carrillo and co-workers replicated the synthesis of such thin films, and
thus, the results are similar [39,40]. The transmittance spectra can be seen in FS1.

Regarding the band gap energy, Tauc’s method (see Figure 4) [42] was used and
reported values of 1.9 eV and 1.95 eV were obtained, shown with blue arrows. Other
authors that reproduced the same material also obtained a change in the band gap energy
when increasing the number of chemical baths [43].
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2.1.4. Contact Angle of Bi2S3 Thin Films

The study of the surface wettability of the thin films indicated contact angles that
ranged between 123◦ and 117◦ for the two-layer Bi2S3 thin film (Figure 5A) and three-layer
Bi2S3 thin film (Figure 5B), respectively. While classified as hydrophobic films since they
had contact angles with water greater than 90◦ [43], as the number of chemical baths
increased, the angle decreased.
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Thin films with contact angles classified as hydrophobic allow for higher flow and
prevent saturation, which facilitates an increased formation of oxidizing radicals on the
catalyst surface [44].

2.2. Characterization of Bi2S3/TiO2 Thin Films
2.2.1. Morphology of Bi2S3/TiO2 Thin Films

Figure 6 shows the micrographs of Bi2S3 thin films with TiO2 nanoparticles deposition.
To obtain additional insight into the topographies of the TiO2 nanoparticles, the EDX
analysis of the sample was performed from the same area, as shown in Figure 6A,B. The
EDX analysis (Figure 6C,D) confirmed the presence of titanium oxide nanoparticles on
Bi2S3 thin films. The elemental analysis of the two-layered Bi2S3/TiO2 thin films gave
~30.28% of bismuth, ~12.01% of sulfur, ~0.22% of titanium, and ~57.49% of oxygen, and
for the three-layered Bi2S3/TiO2 thin films, the analysis gave ~30.56% of bismuth, ~11.73%
of sulfur, ~0.74% of titanium, and ~56.96% of oxygen, which proved that the deposited
TiO2 nanoparticles were in the Bi2S3 thin films. Also, it was observed by means of EDAX
analysis, as shown in Figures S2 and S3, that the elemental distributions of Bi, S, Ti, and O
were homogeneous.
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Figure 6. SEM micrographs and EDX analysis for thin films: (A,C) two-layered Bi2S3/TiO2 and (B,D)
three-layered Bi2S3/TiO2.

2.2.2. X-ray Diffraction of Bi2S3/TiO2 Thin Films

Figure 7 shows distinct intensity peaks in the diffractograms that indicate characteristic
orientations of the TiO2 nanoparticles. The (1 0 1) orientation corresponded to the anatase
phase according to the TiO2 Nps reported in [45–47] while the (2 0 2) orientation belonged
to the rutile phase [46], which was located at 56.82◦. These crystallographic planes are
typical of TiO2. The characteristic peak of Bi2S3 remained unaffected by the presence
of TiO2 nanoparticles, with its peak located in the (2 2 1) crystallographic plane, which
corresponded to the orthorhombic structure [37].
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Bi2S3/TiO2 (3 Bi2S3/TiO2).

The peak at 28.51◦ was shared by both Bi2S3 and TiO2, but in different crystallographic
planes. For TiO2, this peak represented a (1 0 1) crystallographic orientation, while for
Bi2S3, it corresponded to the (2 3 0) crystallographic plane. In the three-layered thin-film
Bi2S3/TiO2, the peaks were more closely aligned, where the orientation remained at (1 0 1)
for TiO2 [47] and a crystallographic (2 1 1) plane for Bi2S3.

It is worth noting that the structural composition of neither material was compromised.
In the case of Bi2S3, the (2 2 1) crystallographic plane appeared more intense due to the
increased number of chemical bath depositions, which attested to the purity of Bi2S3 [39].
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For TiO2, the anatase and rutile phases were visible through their respective characteristic
peaks and crystallographic orientations, which confirmed the successful formation of a
heterojunction [48].

2.2.3. Optical Characterization of Bi2S3/TiO2 Thin Films

The absorption spectrum of the two-layer Bi2S3/TiO2 exhibited a blue shift relative to
the three-layer Bi2S3/TiO2 thin film, which enabled excitation with longer wavelengths
in the visible region, which was associated with electron/hole pair generation [49] The
transmittance spectra can be seen in FS4.

The TiO2 induced a shift toward the UV region, as shown by an absorption edge at
400 nm [28].

Both heterostructures can initiate the redox process of pollutants due to strong absorp-
tion in the visible region [48].

Figure 8 shows the bandgaps obtained using Tauc’s method for the two-layer and
three-layer Bi2S3/TiO2 films, which resulted in 2.3 eV and 2.35 eV respectively, shown with
blue arrows. These results indicate well-defined absorption edges and lower bandgaps
compared with the findings of Serentuya and colleagues [49]. Notably, the absorption edge
extended up to 650 nm, which indicates visibility in the visible region for both materials.
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(3 Bi2S3/TiO2).

2.2.4. Contact Angle of Bi2S3/TiO2 Thin Films

The contact angles of the two-layer and three-layer thin films (Figure 9A,B) showed
contact angles of 95.3◦ to 86.0◦. This means that the TiO2 nanoparticles influenced the affin-
ity to water, which shifted the three-layer Bi2S3/TiO2 film from hydrophobic to hydrophilic.
This reduction resulted in fewer hydroxyl groups being formed due to the wettability of
the film surface [50].
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Figure 9. Contact angle of (A) 2-layer Bi2S3/TiO2 thin film and (B) 3-layer Bi2S3/TiO2 thin film.

In general, the synthesized films had poor wettability, which was derived from the
chemical compositions and morphologies of the materials, and thus, a similar formation of
oxidizing groups was expected and a very similar degradation on the same pollutant was
derived [51].

2.3. Characterization of Bi2S3/ZnO Thin Films
2.3.1. Morphology of Bi2S3/ZnO Thin Films

Micrographs captured at 30k magnification (Figure 10) depicted the morphology of
the Bi2S3 thin films, where the nanospheres remained unaltered upon deposition of the
ZnO nanoparticles. The EDX spectra of the Bi2S3/ZnO samples are shown in Figure 10C,D.
The names and percentages of the elements for two layers of Bi2S3/ZnO and three layers
of Bi2S3/ZnO are shown in the labeling. Additionality was observed by means of EDAX
analysis, as shown in Figures S5 and S6, that the elemental distributions of Bi, S, Zn, and O
were homogeneous.
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Figure 10. SEM micrographs and EDX analysis for thin films: (A,C) two-layer Bi2S3/ZnO and (B,D)
three-layer Bi2S3/ZnO.

2.3.2. X-ray Diffraction of Bi2S3/ZnO Thin Films

Figure 11 displays the diffractogram peaks of the material separately, as it was consid-
ered a heterojunction, where the ZnO was deposited by spin coating and neither material
was structurally modified.
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Figure 11. Diffractogram for two-layer Bi2S3/ZnO (2 Bi2S3/ZnO) thin films and three-layer
Bi2S3/ZnO (3 Bi2S3/ZnO) thin films.

Characteristic peaks in the crystallographic planes (1 0 1) and (1 0 0) are shown for
ZnO, which correspond to the hexagonal wurtzite crystal structure [52,53] according to the
ZnO Nps reported in [54].

The hexagonal crystalline structure of ZnO is advantageous for photocatalysis due to
its chemical stability and high refractive index [55], which leads to increased hydroxyl ion
production and photoactivity [51].

2.3.3. Optical Characterization of Bi2S3/ZnO Thin Films

The absorption edges of the two- and three-layer Bi2S3/ZnO thin films ranged from
750 nm to 450 nm (see Figure 12). A blue shift, which indicates a shift toward shorter
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wavelengths, was observed compared with the Bi2S3 thin films without ZnO. Additionally,
the three-layer Bi2S3/ZnO films showed a red shift toward the visible region [56]. The
addition of ZnO resulted in enhanced absorption in the visible region because it absorbed a
small part of visible light near 400 nm, but it was not enough because this is the boundary of
the UV and visible regions; therefore, material that absorbs light toward the visible region
is required to take advantage of the source of solar radiation [53], which is one reason for
expanding the photocatalytic activity of Bi2S3 thin films. The transmittance spectra can be
seen in FS7.
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The addition of ZnO enhanced the photocatalytic activity of the Bi2S3 thin films in
the ultraviolet–visible spectrum such that the range of OH radical formation was broader.
Hence, sunlight became a viable radiation source since it falls within the range of 450
to 700 nm [57]. Thus, photons with energies greater than those depicted in Figure 12
(2.45 eV and 2.0 eV, shown with blue arrows.) can induce radical formation, which leads
to pollutant reduction. The bandgap increased significantly when ZnO was added to the
Bi2S3 thin films, as the metal oxide exhibited a bandgap of 3.3 eV [54]. Al-Zahrani showed
different band gaps of Bi2S3/ZnO, where the cationic concentration (the amount of positive
charges present on the surfaces of materials) caused the band gap energy blue shift; in this
case, this was caused by a heterostructure with anionic concentration because the materials
were type n, and therefore, shifted toward the red [54].

2.3.4. Contact Angle of Bi2S3/ZnO Thin Films

The introduction of ZnO nanoparticles decreased the contact angle (Figure 13A,B)
compared with the Bi2S3 thin films alone, which indicates a hydrophobic nature. This
reduced wettability facilitates the flow of OH radicals. The contact angle values observed
in this study were higher than those reported by Yu and colleagues [55], which is beneficial
for ensuring effective OH radical flow.
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2.4. Photocatalytic Activity of Bi2S3, Bi2S3/TiO2, and Bi2S3/ZnO Thin Films

The photocatalytic activity of the thin films was evaluated with the degradation of the
contaminant Congo red dissolved in deionized water at initial concentrations of 20,011 ppm,
20,495 ppm, and 20,373 ppm in the first, second, and third replicas, respectively. Table 1
shows the summary of each of the replicas of the photocatalytic activity exposed for 30 min
with each of the different materials.

Table 1. Congo red degradation replicas through heterogeneous solar photocatalysis using thin films.

Congo Red

1st Replica 2nd Replica 3rd Replica

Material Concentration % Degradation Concentration % Degradation Concentration % Degradation

C initial 20.011 0 20.495 0 20.373 0

Two-layer Bi2S3 15.727 21.408 16.696 18.53622835 17.510 14.05291317

Three-layer Bi2S3 15.904 20.523 16.58 19.10222005 18.560 8.899033034

Two-layer
Bi2S3/ZnO 13.846 30.808 15.225 25.71358868 17.475 14.22470917

Three-layer
Bi2S3/ZnO 15.237 23.856 15.264 25.52329837 17.312 15.02478771

Two-layer
Bi2S3/TiO2

15.46 22.742 16.654 18.74115638 17.237 15.392922

Three-layer
Bi2S3/TiO2

15.691 21.588 15.728 23.25933154 17.378 14.70082953

Figure 14 represents a graph of the three replicas showing the two Bi2S3/ZnO films
with higher efficiency in the degradation of the dye; it also showed a higher standard
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deviation, which indicates the variability of the degradation attributed to the incidence of
solar radiation. The average for the three replicas showed a degradation from 20.33 ppm to
15.87 ppm for an efficiency of 21.93%.
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Figure 14. The graph indicates the standard deviations and concentrations of the three experimental
replicas.

The first replica was performed on 17 May 2023 and had the highest radiation and
efficiency due to the incident solar radiation of the three replicas. The material that obtained
the highest degradation in the first replicas was the two-layer Bi2S3/ZnO thin film with
30.808% (applying Equation (1)) in 30 min. Figure 14 shows the decrease in absorbance and
degradation kinetics.

Figure 15 shows the absorbance related to the organic contaminant degradation,
which reveals a primary absorption edge at 497 nm. As the organic molecule transformed
and its concentration decreased, this edge diminished. Notably, the absorbance edges
showed a decreasing trend, which was characterized by a π→π* electronic transition with
a bathochromic shift (red shift), which indicates absorption at longer wavelengths [58].
The material exhibited no signs of wear or chemical reactions on the film, which was
attributable to its hydrophobic nature. This stability suggests its efficacy in combating
organic contaminants with complex molecular structures under natural climatic conditions.

Figure 15 shows the degradation time with the highest efficiency that was calculated
and the degradation kinetics of the organic pollutant. The two-layer Bi2S3/ZnO material
degraded 100% at 300 min. Equation (1) was used to describe the degradation kinetics:

C(t) = C0ekt (1)

Once Equation (1) was obtained, the values obtained from the measurements were
substituted to obtain the constant k using Equation (2):

k = −
ln
(

Ct
C0

)
t

(2)

The two-layer Bi2S3/ZnO thin films obtained the highest efficiency of 30.808% (as
shown in Table 2) in 30 min of solar irradiation, which indicates that the highest amount of
radicals were generated to degrade the pollutant.
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Table 2. Conditions of photocatalytic reaction (Ciudad Juarez Chihuahua, Mexico).

Conditions/Number of Replicas 1 2 3

Date and time 17 May 2023
(11:30 a.m. to 12:00 p.m.)

19 July 2023
(12:20 p.m. to 12:50 p.m.)

9 August 2023
(11:50 a.m. to 12:20 p.m.)

Solar radiation (W/m2) 1000 910 870

Solar UV index 7.12 11 10

Temperature (◦C) 25 39 33

Humidity (%) 24 13 26

Initial concentration
(Co) (mg/L) 20.011 20.495 20.373

The absorption edges provide insight into a potential degradation pathway, as depicted
in Figure 16, commencing with the following: (1) The attack of hydroxyl radicals on amines
(NH2), which leads to deamination [59]. (2) Subsequently, degradation of sodium atoms
occurs [14], with reactive oxygen species, such as OH and *O2 radicals [60], represented
at a wavelength of 235 nm, which vary according to the UV–Vis spectroscopy graph of
dye degradations [61]. (3) The hydroxyl then separates, and nitrogen double bonds are
broken by radical attacks [58], which form amine functional groups, while p-dihydroxyl
biphenyl is concurrently generated [59]. (4) Hydroxyl radical attacks further lead to the
formation of hydroquinone and two molecules of 3-aminonaphthalene-1-sulfonic acid [59].
(5) Following this, benzene rings begin to break down, which lead to the formation of
carboxylic acids, malonic acid, acetic acid, aldehydes, alkanes, etc [62,63], and ultimately
result in the mineralization of the Congo red molecule [62]. These degradation routes attest
to the discoloration of Congo red to a lighter shade in water.
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Various authors conducted similar experiments using different materials and meth-
ods. Hokonya and colleagues [15], for instance, degraded Congo red under controlled
parameters and artificial light, which achieved a degradation of 15.87% in 30 min at an
initial concentration of 25 ppm and 43.17% at an initial concentration of 15 ppm. They used
P-ZrO2CeO2ZnO nanoparticles in suspension as catalysts and demonstrated comparable
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efficiencies in the same time frame, but with the added benefit of easy separation from the
waste medium.

Hitkari and collaborators [63] also conducted controlled parameter experiments to
ensure direct radiation toward the material for optimal activation. They utilized ZnO
nanoparticles in suspension with copper, which achieved a degradation of 69% in 30
min using 50 mg of the synthesized sample in 50 mL of aqueous solution containing the
pollutant. However, this approach led to saturation, where electromagnetic waves did
not directly impact or impinge on the materials [63]. To address this, the present study
employed a smaller amount of photocatalyst to enable effective degradation under normal
climatic conditions.

Habibi and coworkers [64] degraded Congo red with CdS/ZnO (metal oxide chalco-
genide) using a 250 W mercury lamp as a source to activate the photocatalytic material
and obtained a decolorization time lapse of 105 min at a neutral pH in solution [64]. In
this work, the solution was not modified because it was considered deionized water with a
neutral pH. During the photocatalysis, the pH of the solution varied since the formation of
the oxidizing radicals was directly related to the change in the pH of the solution.

Concerning separate materials, it was found that they have a lower efficiency, as in
the work of Bessekhouad et al., who degraded an organic pollutant using Bi2S3 with TiO2
methyl oxide irradiated by a solar simulator. As a result, a degradation of the pollutant
was presented and it was observed that the separated materials obtained a lower efficiency
(similar to the present work); however, for this work, a smaller amount of photocatalyst
was used [32].

3. Experimental Section

The preparation of Bi2S3 thin films utilized the following reagents: bismuth nitrate
(III) pentahydrate (Bi(NO3)3 · 5H2O, ≥98.0%, Sigma Aldrich Toluca, Edo. Mex., Mexico),
triethanolamine (TEA)((HOCH2CH2)3N, 99.80%, J.T. Baker, Phillipsburg, NJ, USA), sodium
hydroxide (NaOH, 98.91%, CTR Scientific, Monterrey, México) and thiourea (NH2CSNH2,
99.2%, J.T. Baker).

For TiO2 nanoparticles, the following reagents from Monterrey, Mexico, were used:
titanium isopropoxide (C12H28O4Ti, 97%, Sigma Aldrich), isopropanol (C3H8O, 99.8%,
Fermont), and ethanol (C2H5OH, 99.5%, CTR).

ZnO nanoparticles were obtained from oxidized zinc (ZnO) extracted from the anode
of a worn-out alkaline battery (type D Energizer brand).

The organic pollutant Congo red (C32H22Na2N6O6S2) from the HIMEDIA brand was
employed for heterogeneous solar photocatalysis to degrade the pollutant.

3.1. Deposition of Bi2S3 Thin Films

The films were deposited on glass slide substrates (soda lime glass) previously washed
with acetone, isopropanol, and deionized water for 10 min in each solvent sequentially
under sonication (Branson 5800, Branson Ultrasonic, Brookfield, CT, USA). For the depo-
sition of Bi2S3 thin films, the chemical bath deposition technique was used following the
methodology of Carrillo [39]. This experiment used a mixture of 5 mL of TEA (1 M) with
40 mL of Bi(NO3)35H2O (0.1 M), 2.5 mL of TEA (C6H15NO3) (0.5 M), 2.5 mL of sodium
hydroxide (NaOH) (1 M), and 5 mL of thiourea (CH4N2S) (0.15 M). After obtaining the
homogeneous mixture of the precursors, 3 substrates were introduced at a temperature of
60 ◦C +/− 2 ◦C for 80 min; this process was repeated for the second and third film layers
to obtain a crystalline and homogeneous film growth.

Finally, and after 80 min of chemical bath deposition, the thin films were cleaned
with methanol under ultrasound for 10 min and then in deionized water in ultrasound for
10 min to finally dry the films at room temperature.
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3.2. Preparation of TiO2 Nanoparticles

For the films, the microwave-assisted sol–gel method was used for the synthesis of
TiO2 nanoparticles, following the methodology of Mota-González [47]. A total of 2.72 g
mL of titanium isopropoxide was poured into 40 mL of isopropanol and then stirred at
700 rpm for 1 min at 80 ◦C; after the minute, 0.52 mL of deionized water and 1 mL of
isopropanol was added and then stirred at 700 rpm for 1 min to 80 ◦C. The solution was
then allowed to precipitate for 24 h, during which time, the two phases were separated
(sol–gel), and the supernatant was removed with a pipette from the solution. To dry the
solution, a microwave was used for 15 min, with intervals of 5 s of drying with 60 s of rest
outside the microwave. After drying, the nanoparticles were crushed in a mortar and then
washed with deionized water.

3.3. Preparation of the ZnO Nanoparticles

For the synthesis of ZnO nanoparticles, Energizer brand D-type discharged alkaline
batteries were used following the methodology of Diaz-León et al. [65]. Wasted zinc
anodes were cleaned, dried, and then leached using 10 mL of nitric acid and 20 mL of
hydrogen peroxide per gram of washed powder. The resulting zinc-rich solution was used
to synthesize zinc oxide nanoparticles (ZnO Nps) via sol–gel methods. For starch-based
synthesis, 10 g of rice starch was dissolved in 150 mL of water, while for dextrose-based
synthesis, 21.4 g of dextrose was mixed with 150 mL of water. Thermogravimetric analysis
(TGA) determined the calcination temperature (400–800 ◦C) to convert the dried gels into
ZnO NPs [65].

3.4. Preparation of Bi2S3/TiO2 and Bi2S3/ZnO Thin Films

For the heterojunction of the materials, TiO2 and ZnO nanoparticles were deposited on
Bi2S3 films by a spin-coating technique. For the preparation of TiO2 and ZnO nanoparticles,
0.02 g was dissolved in 10 mL of ethanol and then deposited at a speed of 1000 rpm for
60 s on Bi2S3 thin films. This process was repeated 4 times; afterward, the Bi2S3/TiO2 and
Bi2S3/ZnO thin films with the nanoparticles were dried at 85 ◦C for 15 min.

3.5. Characteritation of Materials

The morphology of the materials was characterized using a Hitachi SU5000 scanning
electron microscope (Hitachi, Tokyo, Japan) at a voltage of 15,000 V. The elemental compo-
sitions were analyzed by EDAX quantitative analysis with a JEOL 6010 Plus (Tokyo, Japan).
The crystalline structure of the materials was studied with X-ray diffraction using PANalyt-
ical (Malvern, UK) with CuKα(λ) = 1.54 Å operated at 35,000 V and 23 Ma, while scanning
over 2θ in a range from 10 to 80◦. Optical absorption measurements were performed using
a Jeneway 6850 V/Vis spectrophotometer (Sapulpa, OK, USA) in the range of 300 nm to
1100 nm and PerkinElmer Lambda 25 UV–Vis spectrometer (Shelton, CT, USA) in a range
of 300 to 750 nm, with a scan of 0.2 nm. A Kruss model DSA 30 microscope was used for
the contact angle.

3.6. Photocatalytic Degradation of Congo Red

The photocatalytic activity of Bi2S3/TiO2 and Bi2S3/ZnO thin films was evaluated
through the degradation of the organic dye Congo red model by exposing it to solar
radiation for 30 min, where three replicas were made under different climatic conditions.
Table 2 shows the initial concentrations of each of the replicas and the climatic conditions
when each of the replicas was performed. To prepare the aqueous solution, 80 mL of Congo
red at an initial concentration of 20 ppm was prepared in a beaker while maintaining an
agitation of 500 rpm [66]. At the beginning of the photocatalytic study, the thin films were
introduced in such a way that they were in contact with the solution at a certain shrinkage.

After 30 min of activity, the sample was extracted with a syringe and then the concen-
tration was evaluated in a PerkinElmer Lambda 25 UV–Vis spectrometer in a range from
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300 to 750 nm. Derived from the spectrometer measurement, the percentage of degradation
was evaluated (Equation (3)) [5]:

% degradation =
C0 − Ct

Ct
× 100 (3)

Additionally, the degradation time of the material was calculated from the spectropho-
tometer measurements using the first-order differential equation presented in Equation
(4) [66]. The initial conditions were obtained to solve and calculate the maximum time re-
quired to degrade 100% of the pollutant under the same environmental conditions (Table 2)
as the photocatalytic activity carried out with nanomaterials.

dc
dt

= kC (4)

4. Conclusions

In this study, it was established that a stable material was synthesized for use as a
photocatalyst against complex organic molecules, owing to the stable structures inherent in
each of the materials employed. The chemical, structural, and morphological integrity of
the Bi2S3 thin film remained unaffected during the deposition of the metal oxides.

Optical characterization of the Bi2S3/TiO2 and Bi2S3/ZnO thin films revealed an
increase in the band gap compared with the Bi2S3 thin film. Furthermore, the absorp-
tion edges exhibited a red shift upon deposition of the metal oxide nanoparticles, which
indicates a broadening of the reaction spectrum relative to the Bi2S3 thin film.

Regarding the assessment of photocatalytic activity, the two-layer Bi2S3/ZnO material
demonstrated an efficiency of up to 30.80% in degrading Congo red, which is a model
pollutant, within 30 min. This novel material exhibited the capability to break down
molecules that contained complex organic compounds, which suggests degradation into
simpler molecular forms based on UV–Vis spectroscope evaluations.

Supplementary Materials: The following supporting information can be downloaded from https:
//www.mdpi.com/article/10.3390/catal14090589/s1: Figures S1–S9: Figure S1. Transmittance of
Bi2S3 thin films, Figure S2. EDX elemental analysis for thin films of two layers Bi2S3/TiO2, Figure S3.
EDX elemental analysis for thin films of three layers Bi2S3/TiO2, Figure S4. Transmittance 2 layer
Bi2S3/TiO2 and 3 layer Bi2S3/TiO2, Figure S5. EDX elemental analysis for thin films of two layers
Bi2S3/ZnO, Figure S6. EDX elemental analysis for thin films of three layers Bi2S3/ZnO and Figure S7.
Transmittance 2 layer Bi2S3/ZnO and 3 layer Bi2S3/ZnO, Figure S8. 2nd replica, (A) Degradation of
Congo red dye, (B) Dye degradation kinetics. Figure S9. 3rd replica, (A) Degradation of Congo red
dye (B) Degradation kinetics of the Congo red dye from the first replicate.
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4. Ljubas, D.; Smoljanić, G.; Juretić, H. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated

by the solar and the solar-like radiation. J. Environ. Manage. 2015, 161, 83–91. [CrossRef]
5. Ahmad, R.; Kumar, R. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. Appl. Surf. Sci. 2010,

257, 1628–1633. [CrossRef]
6. Turcu, E.; Coromelci, C.G.; Harabagiu, V.; Ignat, M. Enhancing the Photocatalytic Activity of TiO2 for the Degradation of Congo

Red Dye by Adjusting the Ultrasonication Regime Applied in Its Synthesis Procedure. Catalysts 2023, 13, 345. [CrossRef]
7. Moyo, S.; Makhanya, B.P.; Zwane, P.E. Use of bacterial isolates in the treatment of textile dye wastewater: A review. Heliyon 2022,

8, e09632. [CrossRef]
8. Zhu, H.; Jiang, R.; Li, J.; Fu, Y.; Jiang, S.; Yao, J. Magnetically recyclable Fe3O4/Bi2S3 microspheres for effective removal of Congo

red dye by simultaneous adsorption and photocatalytic regeneration. Sep. Purif. Technol. 2017, 179, 184–193. [CrossRef]
9. Huang, Z.; Li, Y.; Chen, W.; Shi, J.; Zhang, N.; Wang, X.; Li, Z.; Gao, L.; Zhang, Y. Modified bentonite adsorption of organic

pollutants of dye wastewater. Mater. Chem. Phys. 2017, 202, 266–276. [CrossRef]
10. Wang, X.; Deng, B.; Yu, L.; Cui, E.; Xiang, Z.; Lu, W. Degradation of azo dyes Congo red by MnBi alloy powders: Performance,

kinetics and mechanism. Mater. Chem. Phys. 2020, 251, 123096. [CrossRef]
11. Kim, J.R.; Kan, E. Heterogeneous photo-Fenton oxidation of methylene blue using CdS-carbon nanotube/TiO2 under visible light.

J. Ind. Eng. Chem. 2015, 21, 644–652. [CrossRef]
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40. Demir, H.; Şahin, Ö.; Baytar, O.; Horoz, S. Investigation of the properties of photocatalytically active Cu-doped—Bi2S3 nanocom-
posite catalysts. J. Mater. Sci. Mater. Electron. 2020, 2, 10347–10354. [CrossRef]

41. Lokhande, R.S.; Thakur, S.R.; Chate, P.A. Chemical deposition of bismuth sulphide thin films using malonic acid ligand. Optik
2020, 219, 165230. [CrossRef]

42. Shinde, N.S.; Rath, M.C.; Dhaigude, H.D.; Lokhande, C.D.; Fulari, V.J. Characterization of electrodeposited Bi2S3 thin films by
holographic interferometry. Opt. Commun. 2009, 282, 3127–3131. [CrossRef]

43. Momeni, M.; Saghafian, H.; Golestani-Fard, F.; Barati, N.; Khanahmadi, A. Effect of SiO2 addition on photocatalytic activity, water
contact angle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method.
Appl. Surf. Sci. 2017, 392, 80–87. [CrossRef]

44. Rong, Y.; Yang, Z.; Deng, L.; Fu, Z. ZnO@Ag microspheres used as the anodic materials of superior alkaline rechargeable Zn–Ni
batteries. Ceram. Int. 2020, 46, 16908–16917. [CrossRef]

45. Shah, A.H.; Rather, M.A. Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2
nanoparticles synthesized via polyol-mediated method. Mater. Today Proc. 2021, 44, 482–488. [CrossRef]

46. Wu, Z.; Yuan, D.; Lin, S.; Guo, W.; Zhan, D.; Sun, L.; Lin, C. Enhanced photoelectrocatalytic activity of Bi2S3–TiO2 nanotube
arrays hetero-structure under visible light irradiation. Int. J. Hydrogen Energy 2020, 45, 32012–32021. [CrossRef]

47. Mota-gonzález, M.; Hernández-carrillo, H.; Alaniz-hernandez, M. TiO2 obtenido por el proceso sol gel asistido con microondas.
Lat. Am. J. Appl. Eng. 2018, 3, 12–15. [CrossRef]

48. Kumar, S.; Sharma, S.; Sood, S.; Umar, A.; Kansal, S.K. Bismuth sulfide (Bi2S3) nanotubes decorated TiO2 nanoparticles
heterojunction assembly for enhanced solar light driven photocatalytic activity. Ceram. Int. 2016, 42, 17551–17557. [CrossRef]

49. Sarentuya; Bai, H. Amurishana Synthesis of Bi2S3-TiO2 nanocomposite and its electrochemical and enhanced photocatalytic
properties for phenol degradation. Int. J. Electrochem. Sci. 2023, 18, 100071. [CrossRef]

50. Carvalho, H.W.P.; Batista, A.P.L.; Hammer, P.; Ramalho, T.C. Photocatalytic degradation of methylene blue by TiO2-Cu thin films:
Theoretical and experimental study. J. Hazard. Mater. 2010, 184, 273–280. [CrossRef]

51. Bagheri, M.; Mahjoub, A.R.; Mehri, B. Enhanced photocatalytic degradation of congo red by solvothermally synthesized
CuInSe2-ZnO nanocomposites. RSC Adv. 2014, 4, 21757–21764. [CrossRef]

52. AL-Zahrani, A.A.; Zainal, Z.; Talib, Z.A.; Lim, H.N.; Holi, A.M. Bismuth sulphide decorated ZnO nanorods heterostructure
assembly via controlled SILAR cationic concentration for enhanced photoelectrochemical cells. Mater. Res. Express 2020, 7, 025510.
[CrossRef]

53. Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys
Compd. 2017, 727, 792–820. [CrossRef]

54. Nikam, P.R.; Baviskar, P.K.; Sali, J.V.; Gurav, K.V.; Kim, J.H.; Sankapal, B.R. SILAR coated Bi2S3 nanoparticles on vertically aligned
ZnO nanorods: Synthesis and characterizations. Ceram. Int. 2015, 41, 10394–10399. [CrossRef]

55. Yu, H.; Wu, Z.; Dong, Y.; Huang, C.; Shi, S.; Zhang, Y. ZnO nanorod arrays modified with Bi2S3 nanoparticles as cathode for
efficient polymer solar cells. Org. Electron. 2019, 75, 105369. [CrossRef]

https://doi.org/10.1016/j.mssp.2012.06.019
https://doi.org/10.1016/j.jece.2017.05.052
https://doi.org/10.1039/c3dt33117b
https://www.ncbi.nlm.nih.gov/pubmed/23411677
https://doi.org/10.1016/j.jphotochem.2004.02.006
https://doi.org/10.1038/s41598-020-68517-x
https://doi.org/10.1021/cr5001892
https://doi.org/10.1002/aenm.201100775
https://doi.org/10.1016/j.mssp.2014.10.024
https://doi.org/10.1016/j.apcatb.2014.02.044
https://doi.org/10.1016/j.apcatb.2014.12.050
https://doi.org/10.3390/sym14122487
https://doi.org/10.1007/s10854-020-03582-6
https://doi.org/10.1016/j.ijleo.2020.165230
https://doi.org/10.1016/j.optcom.2009.04.061
https://doi.org/10.1016/j.apsusc.2016.08.165
https://doi.org/10.1016/j.ceramint.2020.03.270
https://doi.org/10.1016/j.matpr.2020.10.199
https://doi.org/10.1016/j.ijhydene.2020.08.258
https://doi.org/10.69681/lajae.v3i1.14
https://doi.org/10.1016/j.ceramint.2016.08.068
https://doi.org/10.1016/j.ijoes.2023.100071
https://doi.org/10.1016/j.jhazmat.2010.08.033
https://doi.org/10.1039/c4ra01753f
https://doi.org/10.1088/2053-1591/ab6e2e
https://doi.org/10.1016/j.jallcom.2017.08.142
https://doi.org/10.1016/j.ceramint.2015.03.239
https://doi.org/10.1016/j.orgel.2019.07.027


Catalysts 2024, 14, 589 21 of 21

56. Ye, F.; Qian, J.; Xia, J.; Li, L.; Wang, S.; Zeng, Z.; Mao, J.; Ahamad, M.; Xiao, Z.; Zhang, Q. Efficient photoelectrocatalytic
degradation of pollutants over hydrophobic carbon felt loaded with Fe-doped porous carbon nitride via direct activation of
molecular oxygen. Environ. Res. 2024, 249, 118497. [CrossRef] [PubMed]

57. Wang, S.; Luo, C.; Tan, F.; Cheng, X.; Ma, Q.; Wu, D.; Li, P.; Zhang, F.; Ma, J. Degradation of Congo red by UV photolysis of nitrate:
Kinetics and degradation mechanism. Sep. Purif. Technol. 2021, 262, 118276. [CrossRef]

58. Argote-Fuentes, S.; Feria-Reyes, R.; Ramos-Ramírez, E.; Gutiérrez-Ortega, N.; Cruz-Jiménez, G. Photoelectrocatalytic degradation
of congo red dye with activated hydrotalcites and copper anode. Catalysts 2021, 11, 211. [CrossRef]

59. Telke, A.A.; Joshi, S.M.; Jadhav, S.U.; Tamboli, D.P.; Govindwar, S.P. Decolorization and detoxification of Congo red and textile
industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation 2010, 21, 283–296. [CrossRef]

60. Thomas, M.; Naikoo, G.A.; Sheikh, M.U.D.; Bano, M.; Khan, F. Effective photocatalytic degradation of Congo red dye using
alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. J. Photochem. Photobiol. A
Chem. 2016, 327, 33–43. [CrossRef]

61. Asaad Mahdi, M.; Farhan, M.A.; Mahmoud, Z.H.; Mahdi Rheima, A.; sabri Abbas, Z.; Kadhim, M.M.; Dhari Jawad Al-Bayati, A.;
Salam Jaber, A.; Hachim, S.K.; Hussain Ismail, A. Direct sunlight photodegradation of congo red in aqueous solution by TiO2/rGO
binary system: Experimental and DFT study. Arab. J. Chem. 2023, 16, 104992. [CrossRef]

62. Muneer, M.; Saeed, M.; Bhatti, I.A.; Haq, A.U.; Khosa, M.K.; Jamal, M.A.; Ali, S. Radiation induced degradation of Congo red dye:
A mechanistic study. Nukleonika 2019, 64, 49–53. [CrossRef]

63. Hitkari, G.; Chowdhary, P.; Kumar, V.; Singh, S.; Motghare, A. Potential of Copper-Zinc Oxide nanocomposite for photocatalytic
degradation of congo red dye. Clean. Chem. Eng. 2022, 1, 100003. [CrossRef]

64. Habibi, M.H.; Rahmati, M.H. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye
using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
2015, 137, 160–164. [CrossRef]

65. Díaz De León, C.L.; Olivas-Armendariz, I.; Hernández Paz, J.F.; Gómez-Esparza, C.D.; Reyes-Blas, H.; Hernández González, M.;
Velasco-Santos, C.; Rivera-Armenta, J.L.; Rodríguez-González, C.A. Synthesis by sol-gel and cytotoxicity of Zinc Oxide nanoparti-
cles using wasted alkaline batteries. Dig. J. Nanomater. Biostructures 2017, 12, 371–379.

66. Palma-Soto, E.; MOTA-GONZÁLEZ, M.; Luque-Morales, P.A.; Carrillo-Castillo, A. Determination of photocatalytic activity for
the system: CdS chemical bath deposited thin films coated with TiO2 NPs. Chalcogenide Lett. 2021, 18, 47–58. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envres.2024.118497
https://www.ncbi.nlm.nih.gov/pubmed/38365054
https://doi.org/10.1016/j.seppur.2020.118276
https://doi.org/10.3390/catal11020211
https://doi.org/10.1007/s10532-009-9300-0
https://doi.org/10.1016/j.jphotochem.2016.05.005
https://doi.org/10.1016/j.arabjc.2023.104992
https://doi.org/10.2478/nuka-2019-0006
https://doi.org/10.1016/j.clce.2022.100003
https://doi.org/10.1016/j.saa.2014.08.110
https://doi.org/10.15251/CL.2021.182.47

	Introduction 
	Results and Discussion 
	Characterization of Bi2S3 Thin Films Deposited with Two and Three Layers 
	Morphology of Bi2S3 Thin Films 
	X-ray Diffraction of Bi2S3 Thin Films 
	Optical Characterization 
	Contact Angle of Bi2S3 Thin Films 

	Characterization of Bi2S3/TiO2 Thin Films 
	Morphology of Bi2S3/TiO2 Thin Films 
	X-ray Diffraction of Bi2S3/TiO2 Thin Films 
	Optical Characterization of Bi2S3/TiO2 Thin Films 
	Contact Angle of Bi2S3/TiO2 Thin Films 

	Characterization of Bi2S3/ZnO Thin Films 
	Morphology of Bi2S3/ZnO Thin Films 
	X-ray Diffraction of Bi2S3/ZnO Thin Films 
	Optical Characterization of Bi2S3/ZnO Thin Films 
	Contact Angle of Bi2S3/ZnO Thin Films 

	Photocatalytic Activity of Bi2S3, Bi2S3/TiO2, and Bi2S3/ZnO Thin Films 

	Experimental Section 
	Deposition of Bi2S3 Thin Films 
	Preparation of TiO2 Nanoparticles 
	Preparation of the ZnO Nanoparticles 
	Preparation of Bi2S3/TiO2 and Bi2S3/ZnO Thin Films 
	Characteritation of Materials 
	Photocatalytic Degradation of Congo Red 

	Conclusions 
	References

