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Abstract: Several variations of stochastic processes have been studied in the literature to obtain
reliability estimations of products and systems from degradation data. As the degradation trajectories
may have different degradation rates, it is necessary to consider alternatives to characterize their
individual behavior. Some stochastic processes have a constant drift parameter, which defines the
mean rate of the degradation process. However, for some cases, the mean rate must not be considered
as constant, which means that the rate varies in the different stages of the degradation process. This
poses an opportunity to study alternative strategies that allow to model this variation in the drift. For
this, we consider the Hjorth rate, which is a failure rate that can define different shapes depending on
the values of its parameters. In this paper, the integration of this hazard rate with the Wiener process
is studied to individually identify the degradation rate of multiple degradation trajectories. Random
effects are considered in the model to estimate a parameter of the Hjorth rate for every degradation
trajectory, which allows us to identify the type of rate. The reliability functions of the proposed model
is obtained through numerical integration as the function results in a complex form. The proposed
model is illustrated in two case studies based on a crack propagation and infrared LED datasets. It is
found that the proposed approach has better performance for the reliability estimation of products
based on information criteria.

Keywords: Wiener process; hazard rate; random effects; Hjorth rate

MSC: 62N05; 60H30

1. Introduction

Stochastic modeling is an important strategy that has been applied in diverse scientific
areas, specifically to study the evolution of characteristics of interest through time. In some
case studies, the behavior’s modeling of a certain characteristic may be of interest such
that it is possible to predict and measure the performance according to certain predefined
indices [1]. A common example is the quality characteristic of a product, for which it
is important to model its behavior to be able to ensure that the product will perform
its intended function during a certain period. Based on this example, the behavior of a
quality characteristic may vary in the life cycle of a product due to aging and the loss of
performance, which is the result of the effect of several environmental conditions during
the continuous usage. This means that a quality characteristic that is observed during a
certain period will behave as decreasing, constant, and increasing. All of these behaviors
characterize the life cycle of a product [2,3]. In this sense, the Wiener process (WP) has
been presented as an appropriate model to describe these behaviors, due to its important
properties and characteristics, such as the fact it allows one to model non-monotone
behaviors as it is based on the normal distribution and it is time-indexed [4,5].
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In this sense, several modifications of the WP have been proposed in the literature to
extend the applicability of the model to other cases where a characteristic of interest has an
uncertain evolution through time. Specifically, random effects have been considered for this
purpose. For example, Whitmore [6], Pan et al. [7], Wang et al. [8], Zhou et al. [9], Jiang [10],
and Xu et al. [11] studied the WP with a random drift under different circumstances to
obtain reliability estimations of products. The inclusion of random shocks and competing
risk models have also been considered as an alternative to describe the random behav-
iors of degradation trajectories. For example, Guan et al. [12] proposed a model that
considered catastrophic and degradation failures by taking into account the WP and the
Weibull distribution, and a Bayesian approach was considered to estimate the parameters
of interest. Wang et al. [13] also considered a competing failure approach that integrated
the WP and other stochastic processes to model the different stages of the life cycle of
a product, and shocks were also integrated in the proposed approach. Zhang et al. [14]
proposed a WP with cumulative random shocks that were described by a compound Pois-
son process; the model was illustrated with the degradation analysis of Li-ion batteries.
Zhang et al. [15] considered a class of random shocks named as random abrupt jumps that
defined multiple phases of a degradation trajectory; they considered a WP as the base of the
model and proposed an estimation scheme to obtain the first-hitting time distribution of
the degradation process. In this sense, Sun et al. [16] also developed a model based on the
WP, and random shocks that were described by a Poisson process, but they also considered
a nonlinear version of the WP; this was achieved by considered a time transformation in
the modeling.

Nonlinear versions of the WP have also been considered in the literature to develop
new approaches to deal with the randomness of degradation trajectories. Palayangoda
et al. [17], Liu et al. [18], Lin et al. [19], Wang et al. [20], and Lyu et al. [21] considered
accelerated degradation tests to propose nonlinear versions of the WP to characterize
reliability functions, remaining useful life functions, or optimal burn-in policies for different
applications. Other transformations of the WP have also been proposed. For example,
Giorgio and Pulcini [22] and Giorgio et al. [23] proposed a WP that took into account that
the degradation increments are not necessarily positive and that each increment depends
on the current degradation level; they proposed a Bayesian approach to estimate the
parameters of that model. Muhammad et al. [24] studied a similar approach where non-
negative increments were considered; they developed this approach by letting the rate of
the process be described by a transmuted–truncated normal distribution. On the other
hand, a phenomenon of interest such as the relaxation effects in lithium-ion batteries has led
to interesting modeling approaches to obtain reliability estimations. This case was studied
by Xu et al. [25] and Xu et al. [26], where they considered a WP to obtain the remaining
useful life prediction and state-of-health estimation of batteries.

An interesting approach that has been studied lately relies on integrating hazard rate
functions in the parametrization of the WP. Hazard rate functions are important functions
that define the conditional probability of failure given the reliability at certain time, it
can also be interpreted as a rate of failures for a certain period. This function defines the
three stages of the life cycle of a product, infant mortality (increasing rate), useful life
(constant rate), and wear-out (increasing rate), where all three stages form a bathtub shape.
In this sense, multiple probability distribution functions (PDFs) have been proposed in the
literature with the aim of obtaining a hazard rate that can identify all three stages. These
functions are of interest, as when they are integrated in a stochastic process, it is possible
to identify whether a degradation trajectory is increasing, constant, decreasing, or if it
has a bathtub shape. Peng et al. [27] considered this approach for the inverse Gaussian
process, where the hazard rate of the Weibull distribution was considered as the drift
parameter of the process. Rodríguez-Picón et al. [28] also considered the inverse Gaussian
process but extended the approach by considering six hazard rate functions, such as the Lai
modified Weibull, Xie modified Weibull, Schabe, Chen, and Dimitrakopoulu, in the drift
parameter of the process to analyze the degradation process of two case studies. They also
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considered random effects in the multiple models to account for unit-to-unit variation with
the objective of identifying the type of degradation trajectory. Moreover, Giorgio et al. [29]
proposed a WP with a drift parameter based on the Weibull hazard rate; they obtained
the reliability and remaining useful life functions and considered random effects in the
scale parameter of the Weibull rate, which did not allow them to individually characterize
the trajectories.

The previously discussed works provide different approaches to model degradation
trajectories under different circumstances. However, further extensions are needed. In this
paper, we provide a modeling approach based on the WP that considers a hazard rate function
as the drift parameter. Furthermore, random effects are considered in the model with the
objective of characterizing the behavior of each degradation trajectory. For example, in the
case of the Weibull hazard rate, the shape parameter (β) defines the behavior of the rate, i.e.,
if β < 1 the rate is decreasing, if β = 1, it is constant, and if β > 1, it is increasing. Then, if
the Weibull hazard rate is defined as the drift in the WP and it is assumed that β is random
for every trajectory, it is possible to characterize the behavior of the degradation trajectories
individually when estimating β. For this reason, we consider the Hjorth hazard rate, as
this rate allows us to characterize the same behaviors of the Weibull rate but also including
a bathtub behavior and the increasing rate can be characterized as constantly increasing
or exponentially increasing [30], which extends the possible characterizations. Individual
characterizations of trajectories are an important aspect, since increasing trajectories will reach
a critical level in much less time in comparison with decreasing behaviors, which at the end is
reflected in the reliability estimation of a product.

The rest of the paper is organized as follows: In Section 2, we provide the proposed
modeling approach based on the WP and the Hjorth hazard rate, the PDF of the stochastic
process with random effects is presented, and the reliability function is provided. In
Section 3, we discuss the details about the scheme to estimate the parameters, and the
estimation of the WP with a random hazard rate is implemented based on a Bayesian
approach by considering the Gibbs sampler in the OpenBUGS 3.2.3 software. The method
to obtain the reliability function is also described, and a numerical integration is considered
because that function results in a complex form. In Section 4, we illustrate the proposed
approach by implementing the model in two case studies based on a crack propagation
and a infrared light emitting diode (IRLED) datasets. Finally, in Section 5, we provide the
conclusions of the manuscript and insights for future research.

2. The Wiener Process with Hazard Rate Functions

In this section, we describe the considered models and how they are integrated for the
proposed approach. First, we discuss the WP, which is a non-monotone stochastic process
describing the behavior of a random variable X(t) at times t ≥ 0, which can be defined as

X(t) = X(0) + µ(t) + σB(t), (1)

where µ is the drift parameter of the process, also known as the degradation rate, σ is
the diffusion parameter, and B(t) is the standard Brownian motion. X(0) represents the
initial level of the process at t = 0; in this paper, we assumed that X(0) = 0. In general,
the increments ∆X(t) = X(t + ∆t)− X(t) of the WP are independent and follow a normal
distribution with a PDF defined as f (∆X(t)|µ, σ) and described by

f (∆X(t)|µ, σ) =
1√

2π∆tσ
exp −

{
(∆X(t)− µ∆t)2

2σ2∆t

}
. (2)

By considering that a degradation test has been performed for i = 1, 2, . . . , n speci-
mens and that degradation measurements have been observed at times ti for j = 1, 2, . . . , m
inspection times, then the increments ∆Xi

(
tj
)
= Xi

(
tj
)
− Xi

(
tj − 1

)
follow a normal distri-

bution as ∆Xi
(
tj
)
∼ f

(
µ∆tj, σ2∆tj

)
, where ∆tj = tj − tj−1. As previously discussed, µ is
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considered as a rate function of the process that can be characterized in different forms. In
this paper, we considered one hazard rate defined as

h(t) = δt +
θ

1 + βt
. (3)

The function in (3) is the Hjorth hazard rate, where δ is the location parameter, β is a
scale parameter, and θ represents a shape parameter [30]. This rate has important character-
istics that are illustrated in Figure 1. As a comparison, we also provide an illustration of the
Weibull rates to demonstrate that more behaviors can be characterized with the Hjorth rate.
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Figure 1. Illustrations of the Weibull and Hjorth hazard rates under different variations of parameters.

In the case of the Hjorth rate, the rate is increasing when δ > θβ. Specifically, it has
a constant increasing behavior when θ and β are 0 and δ > 0, and it is exponentially
increasing when δ > θβ but θβ ≈ δ. It is decreasing when δ = 0, and it is constant when
δ and β are 0. Finally, it has a bathtub shape when 0 < δ < θβ. As can be noted, the
Hjorth rate has more flexibility to adapt more behaviors including the ones described by
the Weibull rate. For this reason, in this paper we propose to consider this hazard rate as
the drift function of the WP; thus,

µh(t) = h(t). (4)

which defines the fact that ∆Xi
(
tj
)

follows a PDF f
(
µh∆tj, σ2∆tj

)
. Indeed, this approach

allows a certain flexibility in the stochastic process to obtain a generalized characterization
of the behavior of the degradation trajectories. However, an individual characterization
is more convenient for the modeling of multiple trajectories. Thus, random effects were
considered for unit-to-unit heterogeneity, i.e., one parameter of the hazard rate function was
random among the multiple trajectories, which meant that it was estimated individually
for each trajectory. This allowed us to individually define the rate of each trajectory as
constant, increasing, decreasing, or following a bathtub shape.

In the case of the WP with a Hjorth rate, δi is described by a gamma distribution
f (aH , bH), where aH represents the shape parameter, and bH represents the scale parameter.
δi was assumed to introduce the random effects as this parameter defines the shape of the
rate for this distribution. By considering (2), the PDFs of the WP with a random hazard
rate based drift were defined as

f
(
∆Xi

(
tj
)
|aH , bH , θ, β, σ

)
=

∫ ∞

0
f
(
∆Xi

(
tj
)
|δi, θ, β, σ

)
× f (δi|aH , bH)dδ. (5)
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On the other hand, an important aspect of interest in degradation modeling is related
to the moment of failure of a degrading product of interest. This moment occurs when
the degradation accumulates to a certain level, which is defined as a critical level ω at
which the product does not meet the required performance, which defines a soft failure.
This moment is defined as a first-hitting time tω = in f

{
Xi

(
tj
)
≥ ω

}
. It is known that the

first-hitting time distribution of the WP results is an inverse Gaussian distribution (IGD), as
the mean and shape parameters are ω/µ̂ and ω2/σ̂2, respectively [12]. Thus, the reliability
function was defined as

R(tω |µ̂, σ̂) = 1 −
[

Φ

[
1
σ̂

√
1
tω

(µ̂tω − ω)

]
+ exp

{
2µ̂ω

σ̂2

}
× Φ

[
− 1

σ̂

√
1
tω

(µ̂tω − ω)

]]
.

By considering (4) for the Hjorth rate, and that δi is a random parameter, then the
reliability function for the proposed model is

RH

(
tω |âH , b̂H , θ̂, β̂, σ̂

)
=

∫ ∞

0
R
(
tω |δi, θ̂, β̂, σ̂

)
× f

(
δi|âH , b̂H

)
dδ. (6)

The parameters
(

âH , b̂H , θ̂, β̂, σ̂
)

are required to be previously estimated from (5) to
obtain the reliability function from the proposed approach.

3. The Estimation of Parameters

In this section, we discuss the estimation of the parameters of the proposed modeling
approach. We first discuss the estimation of the WP–Hjorth model defined in (5). As can be
noted, this model results in a complex form, as random effects are included in terms of (δi).
For this, we considered a Bayesian approach to obtain the estimations of

(
âH , b̂H , θ̂, β̂, σ̂

)
.

We used the OpenBUGS software for this purpose, as it integrates the Markov chain Monte
Carlo (MCMC) and the Gibbs sampler. These methods allow the estimation of complex
joint densities that require complex integration. Indeed the main application of MCMC and
Gibbs sampler is within the context of Bayesian estimation, as the posterior distributions
under this estimation scheme is a joint function of a likelihood function and some prior
distributions that require integration.

In the first instance, for all the parameters of interest (aH , bH , θ, β, σ), we defined
non-informative prior gamma distributions as θ ∼ f (aθ , bθ), β ∼ f

(
aβ, bβ

)
, σ ∼ f (aσ, bσ, ),

where in all cases, a represents the shape parameter, and b represents the scale parameter. As
δi was considered to be random with gamma PDF f (aH , bH), then non-informative gamma
prior distributions were also assumed to be aH ∼ f (ca, da) and bH ∼ f (cb, db). Then, by
considering that i = 1, 2, . . . , n degradation increments were observed for j = 1, 2, . . . , m
inspections, the likelihood distribution from (5) was defined as

L
(
∆Xi

(
tj
)
|aH , bH , θ, β, σ

)
=

n

∏
i=1

{
f (δi|aH , bH)

m

∏
j=1

f
(
∆Xi

(
tj
)
|δi, θ, β, σ

)}
. (7)

By considering this likelihood function and the previously discussed prior distribu-
tions, then the posterior distribution became

p
(
aH , bH , θ, β, σ|∆Xi

(
tj
))

= L
(
∆Xi

(
tj
)
|aH , bH , θ, β, σ

)
× f (aH)× f (bH)× f (θ)

× f (β)× f (σ).
(8)

The MCMC–Gibbs sampler was implemented in openBUGS to sample the posterior
function in (8) to obtain the estimations

(
âH , b̂H , θ̂, β̂, σ̂

)
. For all cases, a total of 180,000

iterations were considered to define the estimation of the parameters of interest, and 20,000
iterations were considered for burn-in purposes.
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Once these estimations were obtained, it was possible to assess the reliability by consid-
ering the reliability function in (6). It can be noted that the reliability should be obtained by
solving this complex integral. In this paper, we characterized the reliability by numerically
solving (6) using the R 4.3.2 software and the estimated parameters

(
âH , b̂H , θ̂, β̂, σ̂

)
. The

programming of this integral was as follows,

integrand<− function ( t , δi ) {
f1 <− SuppDists : : pinvGauss

(
tω , ω/(δit + (θ̂/(1 + β̂t))), ω2/σ̂2)

f2 <− dgamma
(

δi, âH , b̂H

)
return ( f1 * f2 )
}

cdf=sapply ( seq ( 0 . 0 0 0 0 0 1 , 2 , 0 . 0 1 ) ,
function ( t ) i n t e g r a t e ( integrand , lower =0 , upper=Inf , t = t ) $ value )

The first part of the code represents the integrand which consists in the multiplication
of the reliability function in RH

(
tω |δi, θ̂, β̂, σ̂

)
in (6) and the PDF of the random effects

parameter f
(

δi|âH , b̂H

)
. Note that the mean parameter of the IGD in f1 is defined as

ω/(δit + (θ̂/(1 + β̂t))), according to (4). Then, the integral is numerically solved by using
the sapply and the integrate functions in cdf at the end of the code.

4. Implementation of the Proposed Approach

To illustrate the proposed model, we first considered the crack propagation dataset
from Wu and Ni [31]. This dataset was obtained from an experimental study which
was performed to obtain fatigue crack growth data from a batch of 2024-T351 aluminum
alloy plate specimens that are used in aircrafts. The crack propagation trajectories for
30 specimens are presented in Figure 2.
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Figure 2. Crack propagation trajectories for 30 2024-T351 aluminum alloy plate specimens.

The WP was assumed to model the crack propagation trajectories by considering a
Hjorth rate with random effects. For this, we considered the model in (5) and estimated the
parameters

(
âH , b̂H , θ̂, β̂, σ̂

)
based on a Bayesian approach. The previously discussed prior
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distributions for every parameter and the likelihood function in (7) were assumed, and the
posterior distribution in (8) was sampled via MCMC–Gibbs sampling in the OpenBUGS
software. The obtained estimations are provided in Table 1, where the mean estimations for
every parameter are provided in the second column, along with the standard deviation (sd),
Monte Carlo (MC) error, and the percentiles at 2.5%, 50%, and 97.5%. It should be noted
that in all the parameters, the MC error is less than 5% of the standard deviation of the error,
which implies that convergence was achieved for the estimation of all the parameters.

Table 1. Obtained estimations for the WP–Hjorth random effects model.

Mean sd MC Error p0.025 p0.5 p0.975

β 0.06331 0.009791 4.43 × 10−4 0.04751 0.06209 0.08777
bH 25.6 8.619 0.3817 13 24.25 46.61
aH 188.1 69.15 3.12 90.45 176.6 360.7
σ 7.092 0.8213 0.005439 5.575 7.061 8.779
θ 120.2 25 1.204 70.88 116.2 173.7
δ1 6.704 0.6512 0.03045 5.368 6.642 8.035
δ2 6.935 0.6517 0.03047 5.594 6.871 8.258
δ3 7.688 0.6559 0.03063 6.336 7.625 9.024
δ4 7.784 0.6559 0.03062 6.429 7.722 9.12
δ5 7.479 0.6549 0.0306 6.135 7.416 8.817
δ6 7.381 0.6535 0.03053 6.032 7.321 8.706
δ7 7.882 0.6566 0.03064 6.529 7.822 9.213
δ8 6.679 0.6503 0.03039 5.345 6.616 8.004
δ9 8.241 0.6594 0.03074 6.886 8.182 9.575
δ10 6.608 0.6499 0.03038 5.27 6.545 7.935
δ11 6.849 0.6507 0.03042 5.514 6.784 8.175
δ12 8.206 0.6579 0.0307 6.856 8.146 9.541
δ13 7.376 0.6539 0.03054 6.027 7.315 8.706
δ14 7.306 0.6546 0.03059 5.957 7.245 8.639
δ15 6.696 0.6507 0.03042 5.362 6.634 8.017
δ16 7.552 0.6553 0.03061 6.2 7.49 8.885
δ17 7.399 0.6542 0.03057 6.052 7.336 8.73
δ18 7.278 0.6538 0.03055 5.937 7.215 8.611
δ19 6.917 0.6526 0.03051 5.573 6.853 8.245
δ20 6.598 0.6505 0.03042 5.267 6.536 7.929
δ21 7.318 0.6538 0.03055 5.974 7.256 8.65
δ22 6.677 0.6511 0.03044 5.344 6.614 8.005
δ23 7.155 0.6527 0.03051 5.816 7.093 8.479
δ24 6.791 0.6513 0.03043 5.457 6.728 8.118
δ25 7.475 0.6541 0.03056 6.123 7.411 8.806
δ26 8.169 0.6569 0.03064 6.819 8.11 9.506
δ27 7.033 0.6534 0.03053 5.691 6.972 8.367
δ28 6.861 0.6517 0.03047 5.514 6.801 8.184
δ29 7.644 0.6545 0.03058 6.292 7.583 8.972
δ30 8.546 0.6603 0.03078 7.187 8.489 9.877

It was previously discussed that random effects for the proposed model were taken
into account to individually characterize the degradation trajectories. In this case, the
parameter δi of the Hjorth rate was assumed as random to account for this individual
characterization. As can be noted from Table 1, an estimation of δi, i = 1, 2, . . . , 30 was
obtained for every crack propagation trajectory. Then, it was possible to identify the type
of rate for every trajectory by considering the individual estimations of δ̂i and θ̂, β̂. The
degradation rate is increasing when δ̂i > θ̂ β̂, it has a bathtub shape when 0 < δ̂i < θ̂ β̂, and
it is decreasing when δ̂i = 0. In the first instance, none of the trajectories were decreasing, as
can be noted in Figure 2; this is well identified as none of the δ̂i in Table 1 are zero and their
p0.025 > 0. Furthermore, none of the trajectories were constant through t, as neither δ̂i nor β̂
were zero, and for β̂, its p0.025 > 0. In Table 2, we provide the individual identification for
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the 30 crack propagation trajectories by considering the previously discussed rules and the
estimated parameters in Table 1.

Table 2. Identification of the degradation rates for the crack propagation trajectories.

Trajectory (i) δ̂i θ̂β̂ Rate Shape

1 6.704 7.609862 Bathtub
2 6.935 7.609862 Bathtub
3 7.688 7.609862 Increasing
4 7.784 7.609862 Increasing
5 7.479 7.609862 Bathtub
6 7.381 7.609862 Bathtub
7 7.882 7.609862 Increasing
8 6.679 7.609862 Bathtub
9 8.241 7.609862 Increasing
10 6.608 7.609862 Bathtub
11 6.849 7.609862 Bathtub
12 8.206 7.609862 Increasing
13 7.376 7.609862 Bathtub
14 7.306 7.609862 Bathtub
15 6.696 7.609862 Bathtub
16 7.552 7.609862 Bathtub
17 7.399 7.609862 Bathtub
18 7.278 7.609862 Bathtub
19 6.917 7.609862 Bathtub
20 6.598 7.609862 Bathtub
21 7.318 7.609862 Bathtub
22 6.677 7.609862 Bathtub
23 7.155 7.609862 Bathtub
24 6.791 7.609862 Bathtub
25 7.475 7.609862 Bathtub
26 8.169 7.609862 Increasing
27 7.033 7.609862 Bathtub
28 6.861 7.609862 Bathtub
29 7.644 7.609862 Increasing
30 8.546 7.609862 Increasing

From Table 2, it can be noted that trajectories (3, 4, 7, 9, 12, 26, 29, 30) were identified as
having an increasing degradation rate, while trajectories (1, 2, 5, 6, 8, 10, 11, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 27, 28) were identified as having a bathtub shape rate. In Figure 3,
a graphical illustration of the characterization for every trajectory is provided under two
schemes. Specifically, in Figure 3a, we provide the identification for every crack propagation
trajectory based on Figure 1; it can be noted that the increasing rate trajectories are identified
at the top of the figure and are marked with dashed red lines. The trajectories with a bathtub
rate are identified with solid black lines. It should be noted that when δ̂i > θ̂ β̂, i.e., when
increasing rates are identified, θ̂ β̂ ≈ δ̂i, which means that the crack propagation trajectories
have an exponentially increasing rate, as can be noted in the behaviors of these trajectories
in Figure 3a. On the other hand, in Figure 3b, an illustration of the Hjorth rate based on
the estimations from Table 1 and the rate in (3) is provided. From this figure, it can be
noted that the rates marked in dashed red lines are exponentially increasing as the similarly
identified crack propagation rates in Figure 3a, while the solid black lines have a bathtub
shape rate according to the identified crack propagation trajectories in Figure 3a.



Mathematics 2024, 12, 2613 9 of 15

0.10 0.15 0.20 0.25 0.30 0.35 0.40

1
8

2
0

2
2

2
4

2
6

2
8

3
0

Trajectories

Cycles x 100,000

C
ra

c
k
 s

iz
e

δ>= βθ 

0<δ< βθ 

(a)

0 2 4 6 8 10

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

Hjorth rate

t

H
a
z
a
rd

 r
a
te

δ>= βθ 

0<δ< βθ 

(b)
Figure 3. Characterization of the crack propagation trajectories and the Hjorth rates. (a) Identification
of the crack propagation trajectories. (b) Illustration of the Hjorth rate for the estimated values of δ̂i.
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Once the characterization of the crack propagation trajectories was defined, it was
necessary to estimate the reliability of the product. For this, we considered the reliability
function in (6) and the estimated parameters in Table 1. In this case, a value of ω = 50 was
considered to establish the critical level of degradation at which a failure of the product
occurred. Then, the integral for this function was numerically solved by considering the
code provided at the end of Section 3. The estimated reliability for the WP–Hjorth model
with random effects is presented in Figure 4 as a solid black line. As a comparison, we
also estimated the reliability of the constant-drift WP (CDWP) R(tω |µ̂, σ̂) which can be
obtained as indicated at the end of Section 2. The estimated parameters for the CDWP
were µ̂ = 1.748 and σ̂ = 2.256. This reliability function is presented in Figure 4 as a dashed
black line. It can be noted that the CDWP overestimated the reliability from t = 0 to
approximately t = 30, then the reliability tended to be lower for t > 30 in comparison with
the reliability form the WP–Hjorth model.

To further assess the fitting of the proposed model, we also considered the deviance
information criterion (DIC) to compare the performance of both models. The DIC is
defined as DIC = −2log

(
L
(
∆Xi

(
tj
)
|ϕ
))

+ 2pDIC, where ϕ is a vector of parameters of

interest, in this case ϕ =
(

âH , b̂H , θ̂, β̂, σ̂
)

for the W–Hjorth model, and pDIC is an esti-

mate of the effective number of parameters obtained as D̄
(
∆Xi

(
tj
)
|ϕ̂
)
− D

(
∆Xi

(
tj
)
|ϕ̂
)
=

E
(
−2log

(
L
(
∆Xi

(
tj
)
|ϕ
))
|Xi

(
tj
))

− 2log
(

L
(
∆Xi

(
tj
)
|ϕ
))

. The likelihood function for the
WP–Hjorth model with random effects is provided in (7), while the likelihood of the CDWP
model can be obtained with

L
(
∆Xi

(
tj
)
|µ, σ

)
=

n

∏
i=1

m

∏
j=1

{
f
(
∆Xi

(
tj
)
|µ, σ

)}
.

The estimated DIC values were DIC = 44.95 for the WP–Hjorth model with random
effects and DIC = 244.4 for the CDWP model. It is known that the model that has the
lowest DIC value is considered to be the best fitting model [32]. In this case, the proposed
model resulted in the lowest DIC value which confirmed the best fitting model was the one
that individually characterized the crack propagation trajectories.
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Figure 4. Reliability functions for the WP–Hjorth model with random effects and the CDWP.
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Implementation in a IRLED Dataset

To further illustrate the proposed approach, we also considered the IRLED dataset
from Yang [33]. These degradation data consist in measurements of the variation ratio of
the luminous power of 15 specimens. A degradation test was performed under 320 mA to
accelerate the degradation of the performance characteristic. The degradation trajectories
are illustrated in Figure 5.
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Figure 5. Degradation trajectories from the IRLED dataset.

As in the previous case study, the WP with a Hjorth rate was considered to fit the
degradation dataset. A Bayesian approach was also considered to sample (8) via MCMC–
Gibbs sampling in OpenBUGS by considering the iterations discussed in Section 3. The
obtained estimations are provided in Table 3 in the mean column. Furthermore, the sd, MC
error, and some percentiles are also provided. It can be noted that 15 estimations for δ̂i were
obtained, which means that the degradation rate for every trajectory could be individually
characterized. In this sense, in Table 4, we provide a comparison or every estimated δ̂i with
θ̂ β̂. From this table, it can be noted that the trajectories (1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15)
were identified as having a bathtub shape, as 0 < δ̂i < θ̂ β̂, while trajectories (8, 9, 10) were
identified as having an increasing degradation rate, as δ̂i > θ̂ β̂. These behaviors can be
better visualized in Figure 6, where the degradation trajectories that were identified as
having an increasing rate are presented as red dashed lines, and are on top of the other
trajectories, which means that these trajectories indeed had a larger degradation rate,
related to the identified increasing behavior. It can also be noted that the other trajectories
that were identified to have a bathtub shape are presented as black continuous lines. It can
be easily concluded that trajectories have a lower degradation rate, which relates to the
individual identification of their degradation rate.

Table 3. Parameter estimations of a WP with a Hjorth rate on the IRLED dataset.

Mean sd MC Error p0.025 p0.5 p0.975

β 15.69 30.88 1.307 0.001209 2.272 111.2
δ1 1.19 0.2769 0.005838 0.6514 1.19 1.728
δ2 1.132 0.279 0.006521 0.591 1.129 1.676
δ3 1.076 0.279 0.007097 0.5403 1.074 1.625
δ4 1.556 0.2803 0.001381 1.016 1.551 2.127
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Table 3. Cont.

Mean sd MC Error p0.025 p0.5 p0.975

δ5 1.603 0.2821 0.001205 1.056 1.596 2.175
δ6 1.758 0.2942 0.002153 1.201 1.748 2.358
δ7 1.629 0.2835 0.001187 1.085 1.624 2.205
δ8 2.414 0.3776 0.01026 1.665 2.419 3.144
δ9 2.464 0.386 0.01081 1.692 2.47 3.205
δ10 2.072 0.329 0.006066 1.461 2.065 2.733
δ11 1.136 0.2781 0.006461 0.5982 1.134 1.679
δ12 1.591 0.2812 0.00123 1.047 1.586 2.158
δ13 1.337 0.2746 0.003862 0.796 1.339 1.871
δ14 1.287 0.276 0.004606 0.748 1.287 1.818
δ15 1.683 0.2876 0.00141 1.134 1.674 2.266
bH 11.73 16.2 0.9232 2.433 7.48 63.51
aH 18.69 25.87 1.475 3.871 11.85 102.9
σ 0.3059 0.04201 7.78 × 10−4 0.2277 0.3044 0.3926
θ 0.126 0.3186 0.0113 2.13× 10−5 0.01097 0.9461

Table 4. Identification of the degradation rates for the 15 trajectories from the IRLED dataset.

Trajectory δ̂i θ̂β̂ Rate Shape

1 1.19 1.97694 Bathtub
2 1.132 1.97694 Bathtub
3 1.076 1.97694 Bathtub
4 1.556 1.97694 Bathtub
5 1.603 1.97694 Bathtub
6 1.758 1.97694 Bathtub
7 1.629 1.97694 Bathtub
8 2.414 1.97694 Increasing
9 2.464 1.97694 Increasing
10 2.072 1.97694 Increasing
11 1.136 1.97694 Bathtub
12 1.591 1.97694 Bathtub
13 1.337 1.97694 Bathtub
14 1.287 1.97694 Bathtub
15 1.683 1.97694 Bathtub
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Figure 6. Illustration of the individual characterization for the IRLED dataset.
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As in the previous case study, we also obtained the reliability function with ω = 90
for the WP with a Hjorth rate and random effects for the IRLED dataset; this can be seen
in Figure 7 as a continuous black line. Furthermore, we also fitted the CDWP in (2) to
this dataset; the obtained parameters were µ̂ = 1.584 and σ̂ = 0.2375. Based on these
parameters, we also calculated the reliability for the CDWP, which can also be seen in
Figure 7 as a dashed black line. Similar differences can be noted in this case study to those
in the crack propagation dataset. First, the reliability function from the WP with a Hjorth
rate had a wider behavior, having a lower reliability from around 45 h to 60 h and greater
reliability from 60 h to 80 h. Finally, the fitting of both models was assessed via the DIC
discussed in the first case study. For the WP with a Hjorth rate, the DIC obtained was 645.5,
while for the CDWP, it was 668.5. Once again, the best fitting model was the one proposed
in this paper, as it had the lowest DIC value.
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Figure 7. Estimated reliability values for the WP with a Hjorth rate and the CDWP for the
IRLED dataset.

5. Concluding Remarks

This paper proposed an approach to integrate the Hjorth hazard rate function as the
drift of the WP. As the drift of the WP defines a mean rate, it was possible to characterize
the behavior of the degradation trajectories. This is an important addition, as the drift of the
CDWP assumes a constant drift, which is not appropriate for most case studies since the
degradation trajectories are random with uncertain behaviors due to the effect of multiple
conditions. The proposed approach was complemented by considering a parameter of
the Hjorth rate as random, to account for unit-to-unit variability. This random parameter
allowed us to individually characterize the degradation rates for every trajectory. This
consideration was reflected in the reliability estimation of a product. If a constant drift is
assumed, then all of the degradation trajectories are assumed to have a constant growth,
which would lead to an inaccurate reliability estimation. However, some trajectories at
the beginning may have a low growth rate and then a larger growth rate, others may
have a decreasing rate followed by an increasing rate, and some may have a constant
rate. As the behavior of each trajectory is different, this is reflected in the reliability
estimation, as the first-hitting times will vary in comparison with the scenario where all
rates are assumed to be constant. These characteristics were illustrated by considering two
degradation datasets. It can be noted that some degradation trajectories were identified
to be exponentially increasing while others were identified to have a bathtub shape, as
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presented in Figures 3a and 6. Indeed, these differences had an impact on the first-hitting
times, as could be observed in the estimated reliability values in Figures 4 and 7, where
the reliability for the CDWP was also obtained. First, from these figures, it was noted that
the reliability for the WP–Hjorth model had a larger width, which was explained by the
different identified degradation rates and their variation in the first-hitting times. Second,
there was a crossing point for the reliability functions of both case studies at around t = 30
and t = 60, respectively.

The proposed approach can be extended in several aspects. Other parameters can be
studied to introduce random effects, for example, the diffusion parameter σ to account
for the variation within the increments in every degradation trajectory. This may be
appropriate to further characterize the trajectories of products with trajectories that present
a high variation either in their drift or diffusion. As for the Hjorth rate, β or θ can also
be considered as simultaneous random effects. In this way, it may be possible to be more
precise when identifying the rate for every trajectory. Furthermore, other hazard rate
functions may be considered, for example, the ones that can also characterize an upside-
down bathtub rate. However, these rates normally have complex forms that contribute to
the complexity of the stochastic model and the estimation of its parameters.
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